Hierarchical Multiprocessor
CPU Reservations for the Linux
Kernel

Fabio Checconi, Tommaso Cucinotta,
Dario Faggioli and Giuseppe Lipari

June 30, 2009

Goal

Support arbitrary CPU reservations in the Linux kernel, while
preserving POSIX compliance and the current scheduler
structure as much as possible.

2/23

Context: the IRMOS Project

IRMOS is an EU project, aiming at supporting real-time
requiremnts in Service Oriented Infrastructures.

The reference systems are complex deployments of
multi-component services in a network of distributed resources.

3/23

Scheduling Requirements

CPU is Yet Another Resource, (on the host side) we need a
scheduler:

» that can handle multiprocessor virtual machines (KVM is
used to deploy VMs hosting services);

» that supports hard limits (people buy service time);

» that provides predictable response times (real-time
services must respect real-time constraints).

4/23

Requirements Remapping

Almost everything is already there...
» each VM is put in its own cgroup;

» sched_rt and throttling expose an interface to support
predictable service and hard limits.

Our paper describes how we enhanced throttling basing it on

EDF and on a new system model/analysis recently introduced
by Bini et al.

5/23

System Model

Most of what follows is borrowed from “The Multi Supply
Function Abstraction for Multiprocessors,” by Bini et al.,
RTCSA '09.

» Tasks belonging to the same application are grouped in
the same task group;

» each task group receives service from a set of
independent virtual processors Vi1 . m;

» whenever a virtual processor is selected for execution, a
task belonging to its task group is scheduled.

6/23

Block Diagram

00| ([® @
TT TT
\@@1/ \@/@ 2)

Physical Processors

Scheduling Algorithm

The system model allows for a number of possible
configurations; we opted for:

» Partitioned, hierarchical Hard-CBS to schedule virtual
processors on physical CPUs;

» Global fixed priority scheduling among tasks on the same
task group;

» Static, symmetric bandwidth assignment among virtual
processors: If a task group is assigned Q;/P; all of its
virtual processors will get Q;/P;.

8/23

H-CBS

The Hard-CBS is a non workconserving scheduling algorithm
based on EDF.

Each scheduled entity (virtual processors in our case) can be
assigned a share of the physical processor time, in the form of
@ time units every P. If an entity requires more than allocated
it is throttled.

9/23

a, A

To characterize how each single virtual processors receive
service from the physical processors they are scheduled on, we
use the (o, A) model, which characterizes the service in terms
of bandwidth «, and delay A.

For the H-CBS server we're using, we have:

a=— A =2P —2Q.

10 / 23

M(a, A)

Bini et al. introduced a way of composing multiple single CPU
reservations into a single multiserver one.

Using their and other known results allows us to derive a
schedulability test for our algorithm.

11 /23

Interfering Workload

For each task 7, we need to consider the interfering workload
from higher priority tasks:

k—1
W, = g Wi,
i=1

where

Wi = NG+ min{C, D + D; — C; — Ni; T; },

with Nk7,' = \‘%'_C'J .

i

12 /23

Interference

Now we can consider how the interfering workload is
distributed among the various virtual processors, and find an
upper bound to the interference:

. 0, Wy — L
7k:Lo+Zmin Lg,max< kgz” 1P)
=1

L, is the duration, in [0, D), over which service is provided by
¢ virtual processors in parallel.

13 /23

Schedulability

A task set ' = {7;},=1,..n is schedulable by a fixed priority
algorithm on a set of virtual processors V = {v;};_1
modeled by {Z;};—1

7777 m

.....

VkeN:1<k<n GCo+T, <D

with {Ls}s—o . m calculated as follows:

.....

Lo = Dix— Zi(Dy)
Ly = Z(Dx) — Zey1(Dx)
Zn(Dy).

™~
3
I

14 / 23

Implementation

» Use an RB tree to store groups and tasks, ordered by
priorities or deadlines (boosting can promote a group to a
fixed priority);

» changed the rt_bandwidth timer to be per-runqueue;

» added a task runqueue per each task group, to store its
child tasks, which cannot be stored together with child
runqueues (they have no deadline).

15 / 23

Tree Sorting

int rt_entity_before(struct sched_rt_entity *a,
struct sched_rt_entity *b)
{
struct rt_rq *rqa = group_rt_rq(a),
*xrqb = group_rt_rq(b);
if (('rga && !'rgb) || (rqa->rt_nr_boosted &&
rgb->rt_nr_boosted))
return rt_se_prio(a) < rt_se_prio(b);
if (rqa->rt_nr_boosted)
return 1;
if (rgb->rt_nr_boosted)
return O;
return rqa->rt_deadline - rgb->rt_deadline < O;

16 / 23

Task Runqueues

The only user-visible change is the introduction of task
runqueues, needed to keep tasks separed from groups (groups
have priorities only when boosted).

In addition to specify a Q/P assignment for each cgroup, the
user has to specify an assignment for its task runqueues.

The bandwidth used for task runqueues cannot be used for
groups.

17 /23

Interface Implications

To create a task group, as usual:

mount -t cgroup cgroup /dev/cgroup ; cd /dev/cgroup
mkdir tg0

To assign @ = 20ms over P = 100ms to its tasks:

echo 100000 > tgO/cpu.rt_period_us
echo 20000 > tgO/cpu.rt_runtime_us
echo 100000 > tgO/cpu.rt_task_period_us
echo 20000 > tg0O/cpu.rt_task_runtime_us

18 / 23

Data Structures

struct rt_edf_tree {
struct rb_root rb_root;
struct rb_node rb_leftmost;

}s

struct rt_rq {
struct rt_edf_tree active;
u64 rt_deadline;
struct hrtimer rt_period_timer;

/x ... %/

19 /23

Data Structures (2)

struct task_rt_group {
struct sched_rt_entity **xrt_se;
struct rt_rq **rt_rq;

struct rt_bandwidth rt_bandwidth;
struct task_group *tg;

};

struct task_group {
struct task_rt_group rt_rq_group;
struct task_rt_group rt_task_group,
VA T

20/ 23

Overheads

1600

1400

1200

1000

Duration (ns)
e}
S
<]
T

600

400

Thmn’ling —
EDF Throttling !
EDF Thr. + hrtick

21 /23

HRTick

1400 T T . T

EDF Throttling ———
EDF Thr. + hrtick &3¢

1200 S]

1000

800

600

Duration (ns)

400

200

22 /23

Future Work

From an academic POV:

>

>

Give a formal treatment to shared resources access;

evaluate bandwidth partitioning alternatives.

About the code:

>

vV v v v VY

Support non-cgroup configs;

evaluate overheads more extensively;

reintroduce priority arrays for task runqueues (?);
one cpupri per task group (?);

auto-determined bandwidth for task runqueues (7);

and many, many others...

23 /23

	Background
	The Scheduling Algorithm
	Implementation
	Conclusion

