
Threaded IRQs on
Linux PREEMPT-RT

11

Linux PREEMPT-RT

Luís Henriques
Intel, Shannon

OSPERT 2009



Agenda

• Threaded IRQs overview

– Why threaded IRQs

– PREEMPT-RT overview

– Threaded IRQs in PREEMPT-RT

• Experimental results

– Experiments description

22

– Experiments description

– Experiments results

– Conclusions



Why threaded IRQs

• Threaded IRQs is a common design-pattern in 
other operating systems

• Benefits:

– Increased observability

– Interaction between interrupt handlers and softirqs/tasklets 
can be simplified

33

– Reduced locking complexity

– Improve system predictability

•But:
– Overall system throughput can decrease



PREEMPT-RT overview

• Linux is a GPOS kernel

– Give all tasks a fair share of resources

• Latencies depend on everything running on the 
system

•Main cause: preemption may be switched off for an 
unknown amount of time

44

unknown amount of time

• Thus, Linux does not guarantee timing

– Although it is considered ‘good enough’ for many 
applications



PREEMPT-RT overview
Main characteristics

• Complete kernel preemption

– Reduces scheduling latency by replacing most of the 
spinlocks with blocking mutexes

• High-resolution timers

• Priority inheritance protocol

• Threaded IRQs

55

• Threaded IRQs



Threaded IRQs in PREEMPT-RT
ISRs on Linux

•With mainline Linux, when an interrupt occurs, CPU 
is preempted and ISR is executed 

– ISR is executed at highest priority

– Typically with interrupts disabled or current interrupt line 
masked off

– ISRs can be preempted only by other interrupts

• A well written device driver:

66

• A well written device driver:

– Do very little work on ISR

– Push time-consuming activities to kernel threads, tasklets 
or softirqs



Threaded IRQs in PREEMPT-RT
ISRs on PREEMPT-RT Linux

•Device drivers register interrupt handler with usual 
interface (request_irq())

– No modifications required in device drivers

• A thread is created for the IRQ

– Only one thread per IRQ

• Kernel keeps a list of ISRs for each IRQ

77

• Kernel keeps a list of ISRs for each IRQ

– ISRs are sequentially invoked for shared IRQs

• Some drivers may not want their interrupt handlers 
threaded (e.g., clock and serial I/O on FreeBSD)
– IRQ_NODELAY flag for non-threaded IRQs



Threaded IRQs in PREEMPT-RT
ISRs on PREEMPT-RT Linux

do_IRQ()

handle_*_irq()

redirect_hardirq()

IRQ flag to

IRQ_INPROGRESS

88

redirect_hardirq()

Threaded 
IRQ?

handle_IRQ_event()wake_up_process()

Yes No



Agenda

• Threaded IRQs overview

– Why threaded IRQs

– PREEMPT-RT overview

– Threaded IRQs in PREEMPT-RT

• Experimental results

– Experiments description

99

– Experiments description

– Experiments results

– Conclusions



Experiments description
Test environment

Traffic

Generator
SUT

Ethernet

1010

Workstation



Experiments description
Test environment

• Hardware:

– Intel® EP80579 processor

– UP SoC at 800MHz

– Intel® 82572EI Gigabit Ethernet

– PCI Express

• Kernel:

1111

– 2.6.29.3 and 2.6.29.3-rt13 patchset:

– Vanilla

– PREEMPT-RT with Threaded IRQs only

– PREEMPT-RT with Threaded IRQs + complete preemption

• Cyclictest

– Measures accuracy of wakeup from sleep (500 usecs)



Experiments description
Test campaigns

• Five test scenarios:

– Vanilla kernel

– PREEMPT-RT kernel with Threaded IRQs config options:

– Cyclictest with low priority

– Cyclictest with high priority

– PREEMPT-RT kernel with Threaded IRQs + “Complete 
preemption” config options:

1212

preemption” config options:

– Cyclictest with low priority

– Cyclictest with high priority

• Traffic injected at several (fixed) rates

– 64 bytes packets



Experiments results
Vanilla kernel

Traffic
Rate

(usecs)

cyclictest IRQs Lost 
Frames 
(%)

Min Avg Max eth0 eth1

10 5 48 585 18,076,863 13,882,919 0.00

9 4 48 1,180 13,912,623 11,093,282 0.00

8 4 52 1,051 10,644,941 9,791,348 0.00

7 4 76 1,435 10,350,929 9,970,528 0.00

1313

7 4 76 1,435 10,350,929 9,970,528 0.00

6 5 94 1,893 7,808,480 8,708,121 0.00

5 3 193 6,553 4,556,491 5,172,545 0.00

0 3 5 89 - - -



Experiments results
Threaded IRQs kernel, cyclictest priority LOW

Traffic
Rate

(usecs)

cyclictest IRQs Lost 
Frames 
(%)

Min Avg Max eth0 eth1

10 6 128,474,238 268,133,338 6,170,139 5,991,550 0.00

9 7 129,139,176 269,522,352 6,055,578 6,000,188 0.00

8 7 136,136,357 274,904,968 5,960,877 5,946,526 0.00

7 9 139,804,614 280,713,676 5,405,771 5,589,278 0.00

1414

7 9 139,804,614 280,713,676 5,405,771 5,589,278 0.00

6 256 154,922,510 310,819,204 4,239,118 4,350,945 0.55

5 - - 607,364,076 29,896 26,134 7.39



Experiments results
Threaded IRQs kernel, cyclictest priority HIGH

Traffic
Rate

(usecs)

cyclictest IRQs Lost 
Frames 
(%)

Min Avg Max eth0 eth1

10 4 8 65 6,223,553 5,994,708 0.00

9 4 8 479 5,780,033 5,836,146 0.13

8 5 9 74 5,123,027 5,277,829 0.00

7 6 135,580,508 272,452,238 4,467,440 4,591,824 0.00

1515

7 6 135,580,508 272,452,238 4,467,440 4,591,824 0.00

6 6 140,860,392 282,329,933 2,830,294 2,808,786 1.65

5 8 156,278,465 313,641,236 16,384 14,435 9.37

0 4 5 93 - - -



Experiments results
PREEMPT-RT kernel, cyclictest priority LOW

Traffic
Rate

(usecs)

cyclictest IRQs Lost 
Frames 
(%)

Min Avg Max eth0 eth1

10 2 60 1,417 6,094,390 5,887,783 0.00

9 2 74 1,294 6,053,376 5,858,603 0.00

8 7 129 1,466 5,553,851 5,596,537 0.00

7 2 152 1,546 4,810,329 5,044,578 0.00

1616

7 2 152 1,546 4,810,329 5,044,578 0.00

6 1 1,610 75,579 3,644,729 3,765,491 1.51

5 370,627 252,284,884 496,880,098 1,724,908 1,629,418 5.14



Experiments results
PREEMPT-RT kernel, cyclictest priority HIGH

Traffic
Rate

(usecs)

cyclictest IRQs Lost 
Frames 
(%)

Min Avg Max eth0 eth1

10 5 9 27 6,158,486 5,835,824 0.00

9 5 9 29 5,792,293 5,617,035 0.00

8 5 9 32 5,558,052 5,573,145 0.00

7 5 9 30 4,774,998 4,898,368 0.00

1717

7 5 9 30 4,774,998 4,898,368 0.00

6 1 42 25,880 3,398,359 3,431,860 0.33

5 5 1,249 50,153 454,401 407,200 6.96

0 4 5 25 - - -



Conclusions

•Overview of threaded IRQs on PREEMPT-RT

• Experimental results:

– Real-Fast: vanilla kernel

– Real-Time: PREEMPT-RT kernel

– Packets are lost at higher rates

• Probably, there’s still space for optimisations:

1818

• Probably, there’s still space for optimisations:

– IRQ threads with same priority sharing same thread

– No thread if there are no higher priority threads

– i.e., postpone context switch

– Others?


