Towards Unit Testing Real-
Time Schedulers in LITMUSRT?

Mac Mollison
Bjorn Brandenburg
James H. Anderson



Towards Unit Testing Real-Time
Schedulers in LITMUSRT

nat is LITMUSRT?

nat Is this talk about?

nat Is a typical scheduling policy?

ny do we need a test tool?

How do we test? (Answer: Unit Testing)
What are the specific tests?

=S ==



LITMUSRT

LInux Testbed for MUItiprocesor Scheduling in Real-Time Systems

Patch to Linux 2.6.24 Kernel

Before the patch:

Linux schedulers

CFS

SCHED_RR

SCHED_FIFO




LITMUSRT

LInux Testbed for MUItiprocesor Scheduling in Real-Time Systems

Patch to Linux 2.6.24 Kernel

After the patch:

Linux schedulers LITMUSRT
schedulers
CFS G-EDF
+
SCHED_RR -
SCHED_FIFO b EDF
PD?




Towards Unit Testing Real-Time

Sched
nat I1s LITM

= =X

ulers in LITMUSRT

JSRT?

nat is this talk about?
nat Is a typical scheduling policy?
ny do we need a test tool?

How do we test? (Answer: Unit Testing)

What are the

specific tests?



Overview

« What LITMUSRTis

» Why we want to test LITMUSRT schedulers

— Implementing real-time schedulers is
nontrivial — bugs can be subtle

« How to test LITMUSRT schedulers

— Unit Testing - testing small pieces of code
programmatically — with a twist

.




My Work

* Developed specification for a tool to test
schedulers

* Implemented prototype of the tool for the
G-EDF scheduling policy
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Sporadic Task Model
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Global Scheduling Policies
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Why Develop a Test Tool?

1) Code Is very complex
We cannot easily tell if the code is correct
We need help debugging



lr@ sched Ii'tmu...-H?Z sched gsn ...

%S(hed_litmus.( (~/kernels/litmus2008-mod/litmus) - GVIM

e 00:44

File Edit Tools Syntax Buffers Window Help
QERas ve B A« 8 35%
litmus->tick(p);

%N B

L w

g
#define NO_CPU -1

static void litmus_schedule(struct rq *rq, struct task struct *prev)
{
struct rg* other_rq;
long prev_state;
1t_t maybe deadlock = 0;
/* WARNING: rq is not_ locked! */
if (is_realtime(prev))
update_time litmus(rq, prev);

/* let the plugin schedule */
rq->litmus_next = litmus->schedule(prev)]

/* check if a global plugin pulled a task from a different RQ */
if (rg->litmus_next && task_rq(rq->litmus_next) !'= rq) {
/* we need to migrate the task */
other_rq = task_rq(rq->litmus_next);
TRACE_TASK(rq->litmus_next, "migrate from %d\n", other_rq->cpu

/* while we drop the lock, the prev task could change its
* state
Xy

prev_state

mb();
spin_unlock (&rq->lock) ;

prev->state;

/* Don't race with a concurrent switch.
* This could deadlock in the case of cross or circular migrat
* Tt's the job of the plugin to make sure that doesn't happen
X
TRACE_TASK(rq->litmus_next, "stack in use=%d\n",
rq->litmus_next->rt_param.stack_in use);
if (rq->litmus_next->rt_param.stack in use != NO CPU) {
TRACE_TASK(rq->litmus_next, "waiting to deschedule\n");
_maybe_deadlock = litmus_clock();

while (rq->litmus _next->rt param.stack in use != NO_CPU) {
cpu_relax();

36,42-45

File Edit Tools Syntax Buffers Window Help
QeEs e XYY
for (last = lowest_prio_cpu();

edf preemption_needed(&gsnedf, last->linked);

last = lowest prio_cpu()) {

/* preemption necessary */

task = __take_ready(&gsnedf);

TRACE("check for preemptions: attempting to link task %d to %

task->pid, last->cpu);
if (last->linked)
requeue (last->linked) ;
link_task_ to cpu(task, last);
preempt(last);

%

8 9

I¢

/* gsnedf_job_arrival: task is either resumed or released */
static noinline void gsnedf job_arrival(struct task struct* task)

BUG_ON (! task) ;

requeue (task) ;
check for_preemptions();

¥

static veid gsnedf release jobs(rt domain t* rt, struct heap* tasks)

{
unsigned long flags;

spin_lock_ irqgsave(&gsnedf lock, flags);

__merge_ready(rt, tasks);
check for_preemptions();

spin_unlock_irqrestore (&gsnedf lock, flags);

}

/* caller holds gsnedf lock */

static noinline void job_completion(struct task struct *t, int forced

{
BUG ON(!t);

sched trace task completion(t, forced);

286,2-5
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Why Develop a Test Tool?

1) Code Is very complex
 We cannot easily tell if the code Is correct

« We needhelpd
2) Resulting schec

ebugging
ules are very complex

« We cannot easi
produced

y tell if correct schedules are

3) We need to minimize overhead
« Detailed regression testing Is necessary
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The Challenge

Without overhead, and if we did not need very
detailed feedback, we could check the invariant:
At all times, the M jobs with earliest deadlines

should be executing.



The Challenge

Instead, we have to use a series of specific tests
to detect anomalies in scheduling and to measure
overhead.



Unit Testing

A series of specific tests
with detailed feedback
that can be produced after each code revision
suggests
Unit Testing
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Unit Testing

with detailed feedback

suggests
Unit Tegdng
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Unit Testing: programmatically
testing small
modules of code
after each revision

A series of specific tests

that can be produced after each code revision
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recorded
schedule
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Unit Tests

Deadline Test

Sporadic Task Model Test

Completion Test

G-EDF Decision Test

G-EDF Latency Test




Unit Tests

Deadline Test

Useful for any
Sporadic Task Model Test — scheduling policy

Completion Test

G-EDF Decision Test

G-EDF Latency Test




Deadline Test

Did all jobs complete by their deadlines?
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Deadline Test

Did all jobs complete by their deadlines?

What about soft real-time?

Scheduler developers can
T,(3,9) specify maximum acceptable
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Sporadic Task Model Test

Were job releases separated by at least the
period of the task?
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Sporadic Task Model Test
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Sporadic Task Model Test
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Completion Test

Did all released jobs actually complete?
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Completion Test

Did all released jobs actually complete?
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Unit Tests

Deadline Test

Sporadic Task Model Test

Completion Test

G-EDF Decision Test

G-EDF Latency Test

-

o

Check for G-EDF
adherence in an
overhead-agnostic
manner
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G-EDF Decision Test

Are jobs switched to execution
iIn EDF order?
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G-EDF Decision Test
— 7 ~

Are job: Test algorithm models ecution

execution state
to check for correct
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G-EDF Decision Test

Are jobs switched to execution

in EDF order?.. IEOTEEE?
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G-EDF Decision Test

This cannot be

Are jobs{ distinguished  yacution

from overhead.
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Unit Tests

Deadline Test

Sporadic Task Model Test

Completion Test

G-EDF Decision Test

G-EDF Latency Test

}

Helps ensure
acceptable amounts
of overhead




G-EDF Latency Test

Measures latency
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G-EDF Latency Test

Test algorithm can use
sequence of events on
each processor to
determine type of latency
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Summary

« What LITMUSRTis

» Why we want to test LITMUSRT schedulers

— Implementing real-time schedulers is
nontrivial — bugs can be subtle

« How to test LITMUSRT schedulers

— Unit Testing - testing small pieces of code
programmatically — with a twist
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