Towards Unit Testing Real-
Time Schedulers in LITMUSRT?

Mac Mollison
Bjorn Brandenburg
James H. Anderson

Towards Unit Testing Real-Time
Schedulers in LITMUSRT

nat is LITMUSRT?

nat Is this talk about?

nat Is a typical scheduling policy?

ny do we need a test tool?

How do we test? (Answer: Unit Testing)
What are the specific tests?

=S ==

LITMUSRT

LInux Testbed for MUItiprocesor Scheduling in Real-Time Systems

Patch to Linux 2.6.24 Kernel

Before the patch:

Linux schedulers

CFS

SCHED_RR

SCHED_FIFO

LITMUSRT

LInux Testbed for MUItiprocesor Scheduling in Real-Time Systems

Patch to Linux 2.6.24 Kernel

After the patch:

Linux schedulers LITMUSRT
schedulers
CFS G-EDF
+
SCHED_RR -
SCHED_FIFO b EDF
PD?

Towards Unit Testing Real-Time

Sched
nat I1s LITM

= =X

ulers in LITMUSRT

JSRT?

nat is this talk about?
nat Is a typical scheduling policy?
ny do we need a test tool?

How do we test? (Answer: Unit Testing)

What are the

specific tests?

Overview

« What LITMUSRTis

» Why we want to test LITMUSRT schedulers

— Implementing real-time schedulers is
nontrivial — bugs can be subtle

« How to test LITMUSRT schedulers

— Unit Testing - testing small pieces of code
programmatically — with a twist

.

My Work

* Developed specification for a tool to test
schedulers

* Implemented prototype of the tool for the
G-EDF scheduling policy

Towards Unit Testing Real-Time

Sched
nat I1s LITM

= ==X

ulers in LITMUSRT

JSRT?

nat Is this talk about?
nat Is a typical scheduling policy?
ny do we need a test tool?

How do we test? (Answer: Unit Testing)

What are the

specific tests?

Sporadic Task Model

WCET | ‘ Period ‘ Release ‘ Deadline

T.(24) | et et |

Job Completion
Time(ms) | | [[[| [[[[P [[] |]

I Execution on CPU

Global Scheduling Policies

o I e B I e, B e B B

M CPUs CPU 1 CPU 2 CPU 3 CPU 4

Global Earliest Deadline First
(G-EDF)

T,(2,3) . - L :
1(2:3 At all times, the M jobs with earliest deadlines —

should be executing.

289 oot |

—
48 oo wt ewm oot |

Tme(ms) L I [| [[[[[[| [[[]/[]

B Execution on CPU1 Bl Execution on CPU2

Global Earliest Deadline First
(G-EDF)

T1(2.3) —t | ot |

Tme(ms) L I [| [[[[[[| [[[]/[]

B Execution on CPU1 Bl Execution on CPU2

Towards Unit Testing Real-Time

Sched
nat I1s LITM

= 22X

ulers in LITMUSRT

JSRT?

nat Is this talk about?
nat Is a typical scheduling policy?
Ny do we need a test tool?

How do we test? (Answer: Unit Testing)

What are the

specific tests?

Why Develop a Test Tool?

1) Code Is very complex
We cannot easily tell if the code is correct
We need help debugging

lr@ sched Ii'tmu...-H?Z sched gsn ...

%S(hed_litmus.((~/kernels/litmus2008-mod/litmus) - GVIM

e 00:44

File Edit Tools Syntax Buffers Window Help
QERas ve B A« 8 35%
litmus->tick(p);

%N B

L w

g
#define NO_CPU -1

static void litmus_schedule(struct rq *rq, struct task struct *prev)
{
struct rg* other_rq;
long prev_state;
1t_t maybe deadlock = 0;
/* WARNING: rq is not_ locked! */
if (is_realtime(prev))
update_time litmus(rq, prev);

/* let the plugin schedule */
rq->litmus_next = litmus->schedule(prev)]

/* check if a global plugin pulled a task from a different RQ */
if (rg->litmus_next && task_rq(rq->litmus_next) !'= rq) {
/* we need to migrate the task */
other_rq = task_rq(rq->litmus_next);
TRACE_TASK(rq->litmus_next, "migrate from %d\n", other_rq->cpu

/* while we drop the lock, the prev task could change its
* state
Xy

prev_state

mb();
spin_unlock (&rq->lock) ;

prev->state;

/* Don't race with a concurrent switch.
* This could deadlock in the case of cross or circular migrat
* Tt's the job of the plugin to make sure that doesn't happen
X
TRACE_TASK(rq->litmus_next, "stack in use=%d\n",
rq->litmus_next->rt_param.stack_in use);
if (rq->litmus_next->rt_param.stack in use != NO CPU) {
TRACE_TASK(rq->litmus_next, "waiting to deschedule\n");
_maybe_deadlock = litmus_clock();

while (rq->litmus _next->rt param.stack in use != NO_CPU) {
cpu_relax();

36,42-45

File Edit Tools Syntax Buffers Window Help
QeEs e XYY
for (last = lowest_prio_cpu();

edf preemption_needed(&gsnedf, last->linked);

last = lowest prio_cpu()) {

/* preemption necessary */

task = __take_ready(&gsnedf);

TRACE("check for preemptions: attempting to link task %d to %

task->pid, last->cpu);
if (last->linked)
requeue (last->linked) ;
link_task_ to cpu(task, last);
preempt(last);

%

8 9

I¢

/* gsnedf_job_arrival: task is either resumed or released */
static noinline void gsnedf job_arrival(struct task struct* task)

BUG_ON (! task) ;

requeue (task) ;
check for_preemptions();

¥

static veid gsnedf release jobs(rt domain t* rt, struct heap* tasks)

{
unsigned long flags;

spin_lock_ irqgsave(&gsnedf lock, flags);

__merge_ready(rt, tasks);
check for_preemptions();

spin_unlock_irqrestore (&gsnedf lock, flags);

}

/* caller holds gsnedf lock */

static noinline void job_completion(struct task struct *t, int forced

{
BUG ON(!t);

sched trace task completion(t, forced);

286,2-5

Why Develop a Test Tool?

1) Code Is very complex
 We cannot easily tell if the code Is correct

« We needhelpd
2) Resulting schec

ebugging
ules are very complex

« We cannot easi
produced

y tell if correct schedules are

Global Earliest Deadline First
(G-EDF) 7?7?72

Tme(ms) L I [| [[[[[[| [[[]/[]

B Execution on CPU1 Bl Execution on CPU2

Global Earliest Deadline First
(G-EDF)

Incorrect!

Tme(ms) L I [| [[[[[[| [[[]/[]

B Execution on CPU1 Bl Execution on CPU2

Global Earliest Deadline First
(G-EDF)

Tme(ms) L I [| [[[[[[| [[[]/[]

B Execution on CPU1 Bl Execution on CPU2

Global Earliest Deadline First
(G-EDF)

T1(2.3) —t | ot |

Tme(ms) L I [| [[[[[[| [[[]/[]

B Execution on CPU1 Bl Execution on CPU2

Why Develop a Test Tool?

1) Code Is very complex
 We cannot easily tell if the code Is correct

« We needhelpd
2) Resulting schec

ebugging
ules are very complex

« We cannot easi
produced

y tell if correct schedules are

3) We need to minimize overhead
« Detailed regression testing Is necessary

T,(2,3)

T,(3,5)

T5(4,8)

Time (mMs)

Overhead

ot it |

B Execution on CPU1

B Overhead

Bl Execution on CPU2

T,(2,3)

T,(3,5)

T5(4,8)

Time (mMs)

Overhead

t ot | ! ot |

B Execution on CPU1

B Overhead

Bl Execution on CPU2

T41.as = (17.‘ 33)

Ty34 = (2‘ 19)

136 = (17,31)

Thas = (2.~ 20)

Ty = (17, 32)

T-u;’,;’. = (2‘ 18)

Tyz = (2.‘ 17)

Tyz = (2.‘ 16)

Tyzp = (2.‘ 15)

Tz = (2‘ 14)

Typs = (2.‘ 13)

Tz = (2! 11)

Tuor = (2,12)

T_“_Qﬁ = (2,].D)

.

1

il

T
m B

TN

_-

0
0

'

1T

0

i
.

i
1 B

i

Towards Unit Testing Real-Time

Sched
nat I1s LITM

=S =X

ulers in LITMUSRT

JSRT?

nat Is this talk about?
nat Is a typical scheduling policy?
ny do we need a test tool?

How do we test? (Answer: Unit Testing)

What are the

specific tests?

The Challenge

Without overhead, and if we did not need very
detailed feedback, we could check the invariant:
At all times, the M jobs with earliest deadlines

should be executing.

The Challenge

Instead, we have to use a series of specific tests
to detect anomalies in scheduling and to measure
overhead.

Unit Testing

A series of specific tests
with detailed feedback
that can be produced after each code revision
suggests
Unit Testing

Unit Testing

A series of specific tests
with detailed feedback
that can be produced after each code revision
suggests
Unit Tegdng

-

Unit Testing: programmatically
testing small

modules of code
Q after each revision
J

Unit Testing

with detailed feedback

suggests
Unit Tegdng

-

Unit Testing: programmatically
testing small
modules of code
after each revision

A series of specific tests

that can be produced after each code revision

/

We test
recorded
schedule
“traces” instead

)

Feather-Trace

o ol B <
3 oI FE = S
<5 qv] e < Q
S|l 9| S| 5|2
) " —
c Dnm = = m
g » =10
T 7))
= i - . B =
N | 5 |
- .
- N _ - = "
— | = | =
= = n | T
- T
=— " ™
- u = | “m
SEEE = N | - 1
— n |
- HH " |
| = I_H_ = H.HD
T N | i B
N | m -
N | . ==
= HIuU I
= T -
i _N = _
- B o
— . LE = |
| - — |
— —
= |
. = = |
—
= |
= -y

) = =) G 5 - =) in = &) = = =)
] - Iz 5] » — - - — — — — - =

= P = B = % = = =
. - £ B = g 8 & & &5 8

K S & & . T T

Towards Unit Testing Real-Time

Sched
nat I1s LITM

=S =X

ulers in LITMUSRT

JSRT?

nat Is this talk about?
nat Is a typical scheduling policy?
ny do we need a test tool?

How do we test? (Answer: Unit Testing)

What are the

specific tests?

Unit Tests

Deadline Test

Sporadic Task Model Test

Completion Test

G-EDF Decision Test

G-EDF Latency Test

Unit Tests

Deadline Test

Useful for any
Sporadic Task Model Test — scheduling policy

Completion Test

G-EDF Decision Test

G-EDF Latency Test

Deadline Test

Did all jobs complete by their deadlines?

T1(2.3) — | t— |

289 _ ‘st | i

A8 P bt S D |

Tme(ms) L I | | [[[[[[[P[]][]

B Execution on CPU1 Bl Execution on CPU2
B Overhead

Deadline Test

Did all jobs complete by their deadlines?

T1(2,3) i it |

TGS st | . e | .
A8 P bt S D |

Tme(ms) L I | | [[[[[[[P[]][]

B Execution on CPU1 Bl Execution on CPU2
B Overhead

Deadline Test

Did all jobs complete by their deadlines?

What about soft real-time?

Scheduler developers can
T,(3,9) specify maximum acceptable
_ tardiness. / ¢
O
Tmems) | | | | | [I L 0 0 1 011 1 1]
B Execution on CPU1 Bl Execution on CPU2

B Overhead

Sporadic Task Model Test

Were job releases separated by at least the
period of the task?

T1(2.3) — | — |

235 st | — |

A8 P bt S D |

Tme(ms) L I | | [[[[[[[P[]][]

B Execution on CPU1 Bl Execution on CPU2
B Overhead

Sporadic Task Model Test

./

f_)% f_j%
T1(23) wryd | —/
T,(3.5) . ' f“- 1
T8 e s
Time (ms) N T N O O A

B Execution on CPU1

B Overhead

Bl Execution on CPU2

Sporadic Task Model Test

-

Scheduler
developers can
: specify a
f—’% tolerance varlable/
T1(2’3) 'l
T2(3,5) 4'-?; '-- !
—
T5(4,8) |
Time(s) | [[[[[[[L 111111/
B Execution on CPU1 Bl Execution on CPU2

B Overhead

Completion Test

Did all released jobs actually complete?

T1(2,3) — | it |

235 st | — |

A8 P bt S D |

Tme(ms) L I | | [[[[[[[P[]][]

B Execution on CPU1 Bl Execution on CPU2
B Overhead

Completion Test

Did all released jobs actually complete?

T1(2,3) — | T—r |
G5 st | —
T8 pom wx s st |
Tmems) LI [[[[[1010401011
B Execution on CPUL Bl Execution on CPU2

B Overhead

Unit Tests

Deadline Test

Sporadic Task Model Test

Completion Test

G-EDF Decision Test

G-EDF Latency Test

-

o

Check for G-EDF
adherence in an
overhead-agnostic
manner

\

J

G-EDF Decision Test

Are jobs switched to execution
iIn EDF order?

T,(2,3) t T
259 s | |
T5(4.8) N e }
Timems) L | [[I [1L 10 @ bbbt
B Execution on CPU1 Bl Execution on CPU2

B Overhead

G-EDF Decision Test
— 7 ~

Are job: Test algorithm models ecution

execution state
to check for correct

_ decisions. Y,
T,(2,3) R I
2G5 s | — |
T5(4.8) N e }
Tmems) LI | I [1 1 1 P11 111111
B Execution on CPU1 Bl Execution on CPU2

B Overhead

G-EDF Decision Test

Are jobs switched to execution
_An EDF order? .

T,(2,3) t o
259 s | |
T5(4.8) N e }
Timems) L | [[I [1L 10 @ bbbt
B Execution on CPU1 Bl Execution on CPU2

B Overhead

G-EDF Decision Test

Are jobs switched to execution

in EDF order?.. IEOTEEE?
T,(2:3) 1 — o —
235 _ it | — |
;"Z Ny Ny
[l N }
Time(s) | [[[[[[[L 111111/
B Execution on CPU1 Bl Execution on CPU2

B Overhead

G-EDF Decision Test

This cannot be

Are jobs{ distinguished yacution

from overhead.

in EDF order?.. IEOTEEE?
T1(2.3) 1 — _ o —
(G5 — — |
w Y 4
[l N }
Time(ms) I [[I [[[01111 1[]
B Execution on CPU1 Bl Execution on CPU2

B Overhead

Unit Tests

Deadline Test

Sporadic Task Model Test

Completion Test

G-EDF Decision Test

G-EDF Latency Test

}

Helps ensure
acceptable amounts
of overhead

G-EDF Latency Test

Measures latency

T1(2.3) — | — |

235 st | — |

A8 e wx s .

Tme(ms) L I | | [[[[[[[P[]][]

B Execution on CPU1 Bl Execution on CPU2
B Overhead

T,(2,3)

T,(3,5)

T5(4,8)

Time (Ms)

G-EDF Latency Test

Test algorithm can use
sequence of events on
each processor to
determine type of latency

; T |

Execution on CPU1
B Overhead

Bl Execution on CPU2

T:(2,3)

T,(3,9)

T5(4,8)

Time (Ms)

G-EDF Latency Test

Type 1

i | it |

__ it |]

D e s |

Execution on CPU1
B Overhead

Bl Execution on CPU2

T,(2,3)

T,(3,5)

T5(4,8)

Time (Ms)

G-EDF Latency Test

Type 2

i | it |

Execution on CPU1
B Overhead

Bl Execution on CPU2

T,(2,3)

T,(3,5)

T5(4,8)

Time (Ms)

G-EDF Latency Test

Type 3

)]

Execution on CPU1
B Overhead

Bl Execution on CPU2

Summary

« What LITMUSRTis

» Why we want to test LITMUSRT schedulers

— Implementing real-time schedulers is
nontrivial — bugs can be subtle

« How to test LITMUSRT schedulers

— Unit Testing - testing small pieces of code
programmatically — with a twist

Towards Unit Testing Real-Time
Schedulers in LITMUSRT

Questions?

