
Towards Unit Testing Real-

Time Schedulers in LITMUSRT

Mac Mollison

Björn Brandenburg

James H. Anderson

Towards Unit Testing Real-Time

Schedulers in LITMUSRT

• What is LITMUSRT?

• What is this talk about?

• What is a typical scheduling policy?

• Why do we need a test tool?

• How do we test? (Answer: Unit Testing)

• What are the specific tests?

LITMUSRT

Linux schedulers

CFS

SCHED_RR

SCHED_FIFO

LInux Testbed for MUltiprocesor Scheduling in Real-Time Systems

Patch to Linux 2.6.24 Kernel

Before the patch:

After the patch:

LITMUSRT

Linux schedulers

CFS

SCHED_RR

SCHED_FIFO

LITMUSRT

schedulers

G-EDF

C-EDF

P-EDF

PD2

+

LInux Testbed for MUltiprocesor Scheduling in Real-Time Systems

Patch to Linux 2.6.24 Kernel

Towards Unit Testing Real-Time

Schedulers in LITMUSRT

• What is LITMUSRT?

• What is this talk about?

• What is a typical scheduling policy?

• Why do we need a test tool?

• How do we test? (Answer: Unit Testing)

• What are the specific tests?

Overview

• What LITMUSRT is

• Why we want to test LITMUSRT schedulers

– Implementing real-time schedulers is

nontrivial – bugs can be subtle

• How to test LITMUSRT schedulers

– Unit Testing - testing small pieces of code

programmatically – with a twist

My Work

• Developed specification for a tool to test

schedulers

• Implemented prototype of the tool for the

G-EDF scheduling policy

Towards Unit Testing Real-Time

Schedulers in LITMUSRT

• What is LITMUSRT?

• What is this talk about?

• What is a typical scheduling policy?

• Why do we need a test tool?

• How do we test? (Answer: Unit Testing)

• What are the specific tests?

Sporadic Task Model

T1 (2,4)

Time (ms)

WCET Period

Execution on CPU

Release Deadline

Job Completion

Global Scheduling Policies

Ti

CPU 2CPU 1 CPU 3 CPU 4M CPUs

Ti

Ti

Ti

Ti

Ti Ti Ti Ti

Global Earliest Deadline First

(G-EDF)

T1 (2,3)

Time (ms)

Execution on CPU1

T2 (3,5)

Execution on CPU2

T3 (4,8)

At all times, the M jobs with earliest deadlines

should be executing.

Global Earliest Deadline First

(G-EDF)

T1 (2,3)

Time (ms)

Execution on CPU1

T2 (3,5)

Execution on CPU2

T3 (4,8)

Towards Unit Testing Real-Time

Schedulers in LITMUSRT

• What is LITMUSRT?

• What is this talk about?

• What is a typical scheduling policy?

• Why do we need a test tool?

• How do we test? (Answer: Unit Testing)

• What are the specific tests?

Why Develop a Test Tool?

1) Code is very complex

• We cannot easily tell if the code is correct

• We need help debugging

Why Develop a Test Tool?

1) Code is very complex

• We cannot easily tell if the code is correct

• We need help debugging

2) Resulting schedules are very complex

• We cannot easily tell if correct schedules are

produced

Global Earliest Deadline First

(G-EDF) ???

T1 (2,3)

Time (ms)

Execution on CPU1

T2 (3,5)

Execution on CPU2

T3 (4,8)

Global Earliest Deadline First

(G-EDF)

T1 (2,3)

Time (ms)

Execution on CPU1

T2 (3,5)

Execution on CPU2

T3 (4,8)

Incorrect!

Global Earliest Deadline First

(G-EDF)

T1 (2,3)

Time (ms)

Execution on CPU1

T2 (3,5)

Execution on CPU2

T3 (4,8)

Global Earliest Deadline First

(G-EDF)

T1 (2,3)

Time (ms)

Execution on CPU1

T2 (3,5)

Execution on CPU2

T3 (4,8)

Why Develop a Test Tool?

1) Code is very complex

• We cannot easily tell if the code is correct

• We need help debugging

2) Resulting schedules are very complex

• We cannot easily tell if correct schedules are

produced

3) We need to minimize overhead

• Detailed regression testing is necessary

Overhead

T1 (2,3)

Time (ms)

Execution on CPU1

T2 (3,5)

Execution on CPU2

T3 (4,8)

Overhead

Overhead

T1 (2,3)

Time (ms)

Execution on CPU1

T2 (3,5)

Execution on CPU2

T3 (4,8)

Overhead

Towards Unit Testing Real-Time

Schedulers in LITMUSRT

• What is LITMUSRT?

• What is this talk about?

• What is a typical scheduling policy?

• Why do we need a test tool?

• How do we test? (Answer: Unit Testing)

• What are the specific tests?

The Challenge

Without overhead, and if we did not need very

detailed feedback, we could check the invariant:

At all times, the M jobs with earliest deadlines

should be executing.

The Challenge

Instead, we have to use a series of specific tests

to detect anomalies in scheduling and to measure

overhead.

Unit Testing

A series of specific tests

with detailed feedback

that can be produced after each code revision

suggests

Unit Testing

Unit Testing

A series of specific tests

with detailed feedback

that can be produced after each code revision

suggests

Unit Testing

Unit Testing: programmatically

testing small

modules of code

after each revision

Unit Testing

A series of specific tests

with detailed feedback

that can be produced after each code revision

suggests

Unit Testing

Unit Testing: programmatically

testing small

modules of code

after each revision

We test

recorded

schedule

“traces” instead

Feather-Trace

Event records

Release

Switch To

Switch Away

Completion

Towards Unit Testing Real-Time

Schedulers in LITMUSRT

• What is LITMUSRT?

• What is this talk about?

• What is a typical scheduling policy?

• Why do we need a test tool?

• How do we test? (Answer: Unit Testing)

• What are the specific tests?

Unit Tests

Unit Tests

Deadline Test

Sporadic Task Model Test

Completion Test

G-EDF Decision Test

G-EDF Latency Test

Unit Tests

Unit Tests

Deadline Test

Sporadic Task Model Test

Completion Test

G-EDF Decision Test

G-EDF Latency Test

Useful for any

scheduling policy

Deadline Test

Did all jobs complete by their deadlines?

T1 (2,3)

Time (ms)

Execution on CPU1

T2 (3,5)

Execution on CPU2

T3 (4,8)

Overhead

Deadline Test

Did all jobs complete by their deadlines?

T1 (2,3)

Time (ms)

Execution on CPU1

T2 (3,5)

Execution on CPU2

T3 (4,8)

Overhead

Deadline Test

Did all jobs complete by their deadlines?

T1 (2,3)

Time (ms)

Execution on CPU1

T2 (3,5)

Execution on CPU2

T3 (4,8)

Overhead

What about soft real-time?

Scheduler developers can

specify maximum acceptable

tardiness.

Were job releases separated by at least the

period of the task?

Sporadic Task Model Test

T1 (2,3)

Time (ms)

Execution on CPU1

T2 (3,5)

Execution on CPU2

T3 (4,8)

Overhead

Sporadic Task Model Test

T1 (2,3)

Time (ms)

Execution on CPU1

T2 (3,5)

Execution on CPU2

T3 (4,8)

Overhead

Sporadic Task Model Test

T1 (2,3)

Time (ms)

Execution on CPU1

T2 (3,5)

Execution on CPU2

T3 (4,8)

Overhead

Scheduler

developers can

specify a

tolerance variable

Completion Test

Did all released jobs actually complete?

T1 (2,3)

Time (ms)

Execution on CPU1

T2 (3,5)

Execution on CPU2

T3 (4,8)

Overhead

Completion Test

Did all released jobs actually complete?

T1 (2,3)

Time (ms)

Execution on CPU1

T2 (3,5)

Execution on CPU2

T3 (4,8)

Overhead

Unit Tests

Unit Tests

Deadline Test

Sporadic Task Model Test

Completion Test

G-EDF Decision Test

G-EDF Latency Test

Check for G-EDF

adherence in an

overhead-agnostic

manner

Are jobs switched to execution

in EDF order?

G-EDF Decision Test

Time (ms)

Execution on CPU1 Execution on CPU2

Overhead

T1 (2,3)

T2 (3,5)

T3 (4,8)

Are jobs switched to execution

in EDF order?

Test algorithm models

execution state

to check for correct

decisions.

G-EDF Decision Test

Time (ms)

Execution on CPU1 Execution on CPU2

Overhead

T1 (2,3)

T2 (3,5)

T3 (4,8)

Are jobs switched to execution

in EDF order?

G-EDF Decision Test

Time (ms)

Execution on CPU1 Execution on CPU2

Overhead

T1 (2,3)

T2 (3,5)

T3 (4,8)

Are jobs switched to execution

in EDF order?

G-EDF Decision Test

Time (ms)

Execution on CPU1 Execution on CPU2

Overhead

T1 (2,3)

T2 (3,5)

T3 (4,8)

Incorrect?

Are jobs switched to execution

in EDF order?

G-EDF Decision Test

Time (ms)

Execution on CPU1 Execution on CPU2

Overhead

T1 (2,3)

T2 (3,5)

T3 (4,8)

Incorrect?

This cannot be

distinguished

from overhead.

Unit Tests

Unit Tests

Deadline Test

Sporadic Task Model Test

Completion Test

G-EDF Decision Test

G-EDF Latency Test
Helps ensure

acceptable amounts

of overhead

G-EDF Latency Test

Measures latency

T1 (2,3)

Time (ms)

Execution on CPU1

T2 (3,5)

Execution on CPU2

T3 (4,8)

Overhead

G-EDF Latency Test

Measures latency

T1 (2,3)

Time (ms)

Execution on CPU1

T2 (3,5)

Execution on CPU2

T3 (4,8)

Overhead

Type 1Type 2Type 3
Test algorithm can use

sequence of events on

each processor to

determine type of latency

G-EDF Latency Test

T1 (2,3)

Time (ms)

Execution on CPU1

T2 (3,5)

Execution on CPU2

T3 (4,8)

Overhead

Type 1

G-EDF Latency Test

T1 (2,3)

Time (ms)

Execution on CPU1

T2 (3,5)

Execution on CPU2

T3 (4,8)

Overhead

Type 2

G-EDF Latency Test

T1 (2,3)

Time (ms)

Execution on CPU1

T2 (3,5)

Execution on CPU2

T3 (4,8)

Overhead

Type 3

Summary

• What LITMUSRT is

• Why we want to test LITMUSRT schedulers

– Implementing real-time schedulers is

nontrivial – bugs can be subtle

• How to test LITMUSRT schedulers

– Unit Testing - testing small pieces of code

programmatically – with a twist

Questions?

Towards Unit Testing Real-Time

Schedulers in LITMUSRT

