
Extending RTAI Linux with
Fixed-Priority Scheduling with

Deferred Preemption

Mark Bergsma, Mike Holenderski, Reinder J. Bril, Johan J. Lukkien

System Architecture and Networking
Department of Mathematics and Computer Science

Eindhoven University of Technology

This work was conducted within the ITEA CANTATA
project at TU/e

1

Outline

• Context

• Problem description

• Solution direction: FPDS + reservations

• Extending RTAI Linux with FPDS

• Measurements

• Evaluation and conclusions

2

2

Context

• Surveillance multimedia streaming application:
- Computation and data intensive tasks
- Dependent tasks (producer/consumer relation)
- Networked system: several cameras + server
- Cost-constrained system

• Camera platform
- Processor + memory (cache, local, global) + bus + network

• Application: two main tasks
- Video task (processor + memory + bus)
- Network task (processor + memory + bus + network)

3

We conducted this work in the context of the CANTATA
project, which has the aim of demonstrating surveillance
multimedia streaming application.

The system is comprised of several cameras + server,
communicating over the network.

We can identify two main tasks in the application:

 video processing task ... invoked periodically upon
video frame arrival

 video transmission task ... invoked by the video
processing task

3

Application example

video task

raw frames encoded frames

network task

network packets

4

Here we have a picture of the application where video and
network tasks communicate via buffers in the memory.

4

Platform example

5

The tasks execute on a platform consisting of a processor,
a co-processor and memory, connected via a bus with a
DMA controller, which is used by the tasks for moving data
between the memory and the processors.

Video task and Network task execute on the main
Processor

They move data from main Memory to IRAM and LM
(Local Memory) and back, using DMA channels.

5

network task

Platform example

5

The tasks execute on a platform consisting of a processor,
a co-processor and memory, connected via a bus with a
DMA controller, which is used by the tasks for moving data
between the memory and the processors.

Video task and Network task execute on the main
Processor

They move data from main Memory to IRAM and LM
(Local Memory) and back, using DMA channels.

5

Platform example

video task

5

The tasks execute on a platform consisting of a processor,
a co-processor and memory, connected via a bus with a
DMA controller, which is used by the tasks for moving data
between the memory and the processors.

Video task and Network task execute on the main
Processor

They move data from main Memory to IRAM and LM
(Local Memory) and back, using DMA channels.

5

Problem illustration (FPPS)

network task

video task

6

Our industrial partner started with FPPS, however, high
overheads due to the frequent preemptions, lead to
deadline misses -> FPNS.

6

network task

video task

Problem illustration (FPNS)

7

This became problematic with fluctuating network
bandwidth, e.g. due to congestion.

Since the network task is released after the non-
preemptive video processing task has finished, it may be
assigned the processor when the network is not
available, and therefore it may not make optimal use of
the processor

7

Problem

Video task is greedy and non-preemptive

+

Network availability fluctuates (e.g. congestion)

⇓
Network task cannot make optimal use of the

processor

8

We can summarize the problem as: the combination of ...
and fluctuating ... leading to the network task not being
able to ...

8

Goal

• Optimize network usage while guaranteeing
processor to the video processing task
- by allowing limited preemptions of the video

processing task, while guaranteeing its effectiveness

9

9

Solution direction

• Network task: increase the frequency of
processor availability
- Resolved by means of FPDS

• Introduce preemption points, at appropriate places
- minimizing context switch overhead

• Video task: still guarantee sufficient
processing time
- Resolved by means of reservations

• Bound the interference of the network task

10

We want to match the bursty availability of the network
with the resource provisioning to the network task.

Wrap the network task in a reservation driven by a
deferrable or sporadic server (bandwidth preserving).

In this presentation we focus on FPDS, without going into
detail about reservations.

10

network task

video task

Solution illustration

11

If the combination of FPDS and reservations is applied
properly, everything works out.

11

Outline

• Context

• Problem description

• Solution direction: FPDS + reservations

• Extending RTAI Linux with FPDS

• Measurements

• Evaluation and conclusions

12

12

RTAI Linux

13

• Real-time extension of Linux
- Supports FPPS
- Primitives have a short and bounded latency

• Basis for the ITEA2/CANTATA framework,
meant to be used by our industrial partner

• This work focuses on an efficient
implementation of FPDS in RTAI Linux.

13

RTAI Architecture

• RTAI is a hypervisor between hardware and Linux

• RTAI scheduler
- FPPS

• Co-operative scheduling for tasks with equal priority

- Linux scheduler is treated as a low priority soft task
- Support for periodic and one-shot tasks, task suspension,

timed sleep
- Priority inheritance for shared resources

14

Intercepts all interrupts and dispatches them to the
appropriate subsystems. In particular the timer interrupts,
allowing RTAI to schedule real-time tasks and provide
timeliness guarantees.

The hard real-time tasks are scheduled directly by RTAI,
while the Linux scheduler takes care of scheduling soft
tasks, which is itself treated as a low priority soft task.

14

RTAI Task

• Fixed priority, 16 bit, 0 the highest priority

• Periodic tasks implemented as a loop:

• Task Control Block (TCB)
- Contains all administrative task info, including task state

field
- Resides in the kernel space

15

while (true) {
 ...
 rt_task_wait_period();
}

15

RTAI Scheduler

• Ready queue: priority queue sorted by task priority

• Periodic tasks reside in the waiting queue (called timed
tasks): priority queue sorted by release time

• Scheduler invocation rt_schedule():
1. Update current time
2. Move tasks from waiting to ready queue
3. Select highest priority task from ready queue
4. Context switch to the selected task

• Implemented by two similar functions:
- rt_timer_handler() triggered periodically (by the timer)

- rt_schedule() event triggered

16

The waiting queue can be an ordered list or a red-black
tree.

Event triggered may be synchronous with execution of
tasks (task suspension, timed sleep) or due to other
interrupts

16

Requirements for the extension

• Compatible
- Conservative with no effect on existing functionality

• Efficient
- Low overhead of the scheduler and preemption points

• Maintainable
- Easily integrated with future releases of RTAI

17

Compatible: want to preserve the existing functionality

Efficient: low overhead (both processor and memory)

Maintainable: changes to the RTAI code should be
minimal

17

• preemptible (Boolean)
- true: task is preemptive
- false: task is non-preemptive between preemption points

• RT_FPDS_YIELDING (Boolean)
- flag in the task state
- Indicates to the scheduler that the non-preemptive task is

at a preemption point

• Invariant:
- RT_FPDS_YIELDING ⇒ ¬ preemptible

Extend Task Control Block (TCB)

18

Our first step is to extend the TCB with two boolean
flags: ...

18

Additional primitive and
scheduler modification

• rt_fpds_yield():
1. RT_FPDS_YIELDING := true;
2. rt_schedule();
3. RT_FPDS_YIELDING := false;

• rt_schedule():
1. Update current time
2. Move tasks from waiting to ready queue
3. if (preemptible ∨ RT_FPDS_YIELDING)

4. Select highest priority task from ready queue
5. Context switch to the selected task

19

We introduce an additional primitive, rt_fpds_yield(),
which wraps the call to the scheduler between setting and
clearing the ...

The added if statement in rt_schedule() the makes
sure that preempting task will be switched in only if the
currently running task at a preemption point, or if it is
preemptive.

Both the preemptible and RT_FPDS_YIELDING pertain to
the current task.

19

• Avoid calling the scheduler when no new pending tasks

• Extend Task Control Block
- should_yield (Boolean)

• The should_yield flag is set to indicate that the task has to
call rt_fpds_yield() upon next preemption point

• Add primitive
- fpds_pp():

1. if (rt_should_yield())
2. rt_fpds_yield();

- First step: rt_should_yield() is a system call

Optimize preemption point

20

Our second step is to optimize the preemption point, and
avoid calling the scheduler when there are no pending
higher priority tasks which can preempt the current task.

should_yield is set by the scheduler and indicates that

Initially the should_yield was a flag in the TCB, requiring
a system call to inspect it.

20

Optimize preemption point

• rt_schedule():
1. Update current time
2. Move tasks from waiting to ready queue
3. if (higher priority task ready ∧ ¬ preemptible)

4. should_yield := true
5. if (preemptible ∨ RT_FPDS_YIELDING)

6. Select highest priority task from ready queue
7. Context switch to the selected task

21

Now the scheduler also needs to set the should_yield
flag when a higher priority task is ready AND the current
task is not preemptible .

21

Experimental results

• Synthetic task set: two tasks

• Measured the response time of the low priority task
under RTAI and RTAI+FPDS

• Tasks implemented in user space
- Benefit from address space protection
- Preemption point includes a system call overhead

22

The higher priority task was there to create work for the
scheduler.

22

• No measurable scheduler overhead
- Limited to a single if, with 3 variables and evaluating to false

Scheduler overhead

23

We ran the same task set under stock RTAI (indicated by
red crosses) and the modified RTAI (indicated by green
crosses covering the red ones).

Two tasks: h and l
T_h = T_sched (so that a new task arrives at every
scheduler invocation)

The overhead is lost in the noise of the measurements.

23

• Preemption point overhead: 440us
- Conform to the 434 us system call overhead in RTAI

Preemption point overhead

24

For measuring the overhead of the preemption point, we compared
the response time of the lower priority task with and without
preemption points, running under the modified RTAI.

434 us system call suggests that the preemption point overhead
can be reduced if a system call can be avoided.

Two tasks: l and h
l for FPDS:
for K/M {

 for i<M {

 counter := counter + 1;

 }

 rt_fpds_pp();
}

l for FPPS:
for K/M {

 for M {

 counter := counter + 1;

 }
}

24

Avoid the system call overhead

• Place the should_yield flag in the user space

• Similar to Litmus RT: soft real-time extension of the
Linux kernel [Dr. James H. Anderson & Students]

• Measurements showed that the preemption point
overhead was reduced to a few cycles

25

If the should_yield flag is stored in the kernel space, then
checking the should_yield flag will require a system call.
The system call can be avoided by storing the flag in the
user space of the current task (similar to Litmus).

We have implemented the should_yield in user space.

25

Evaluation and conclusions

✓Compatible
- Inserting preemption points and setting the task to non-

preemptive (between the preemption points) are optional

✓Efficient
- Low processor overhead of the scheduler and preemption

points
- Low memory overhead (two additional integers in TCB)
- Note: blocking due to non-preemptive subtasks is intrinsic

to FPDS (taken care of in the schedulability analysis)

✓Maintainable
- 106 lines added/modified

26

26

Future Work

• Monitoring
- Longest subtask will not interfere with higher priority tasks
- Critical path through the task graph will not interfere with

lower priority tasks

• Reservations

27

27

Questions?

Elaborate on the optional preemption points:

- Initially optional preemption points were meant to allow
tasks adapt their control path.
In systems which incur large context switch overheads,
such as the original platform of our industrial partner,
where a preemption would invalidate the instruction
pipeline and ongoing DMA transfers, one may want to
refrain from starting a computation which will be aborted
in case the task is preempted, and later restarted. The
spare capacity can be used for other more useful
computations.

28

