

OSPERT 2009:

International Workshop on Operating Systems

Platforms for Embedded Real-Time Applications

Editors:

Stefan M. Petters

Peter Zijlstra

Pre-Workshop Proceedings

Workshop Date: 30.06.2009

Dublin, Ireland

smp
Image

smp
Image

Copyright 2009 Politécnico do Porto.

All rights reserved. The copyright of this collection is with Politécnico do Porto. The

copyright of the individual articles remains with their authors.

Table of Contents

3 Message from the Chairs

3 Program Committee

4 Workshop Program

5 Extending RTAI/Linux with Fixed-Priority Scheduling with Deferred Preemption

14 Hierarchical Multiprocessor CPU Reservations for the Linux Kernel

23 Threaded IRQs on Linux PREEMPT-RT

33 Towards Unit Testing Real-Time Schedulers in LITMUS-RT

40 Exception-Based Management of Timing Constraints Violations for Soft Real-

Time Applications

49 Hardware Microkernels for Heterogeneous Manycore Systems

2

Message from the Workshop Chairs

The preparations of this year’s instalment of the Workshop on Operating Systems

Platforms for Embedded Real-Time Applications were focussed on one hand on

creating a very interactive format and on the other hand on nurturing the exchange of

ideas between industry and academia. The first thanks goes to Gerhard Fohler for

giving us the opportunity to pull this off. We aimed to achieve the objectives by

scheduling two discussion sessions one of which stacked with a high profile panel of

academic researchers and industry practitioners.

In this context we would like to thank Nicholas Mc Guire, Thomas Gleixner, Scott

Brandt and James Andersson for their willingness to share their thoughts on the

exchange between industry and academia in the panel session. The second discussion

session aims to shed some light on how a test bed for real-time research could look

like and will conclude the workshop.

At the start of the day and between the discussion sessions we have scheduled two

paper presentations sessions. The 6 papers presented were selected out of a total of 9

submissions. We thank all the authors for their hard work and submitting it to the

workshop for selection, the PC members and reviewers for their effort in selecting an

interesting program, as well as the presenters for ensuring interesting sessions.

Last, but not least, we would like to thank you the audience for your attendance. A

workshop lives and breathes because of the people asking questions and contributing

opinions throughout the day.

We hope you will find this day interesting and enjoyable.

The Workshop Chairs

Stefan M. Petters

Peter Zijlstra

Program Committee

Jim Andersson, University of North Carolina at Chapel Hill, USA

Neil Audsley, University of York, UK

Scott Brandt, University of California, Santa Cruz, USA

Peter Chubb, NICTA, Australia

Hermann Härtig, TU Dresden, Germany

Johannes Helander, Microsoft, Germany

Robert Kaiser, University of Applied Sciences Wiesbaden, Germany

Giuseppe Lipari, Scuola Superiore Sant’Anna, Italy

Stefan M. Petters, IPP-Hurray, Portugal

Peter Zijlstra, Red Hat, Netherlands

3

Workshop Program

09:00-10:30 Session 1

Extending RTAI/Linux with Fixed-Priority Scheduling with Deferred Preemption

Mark Bergsma, Mike Holenderski, Reinder J. Bril and Johan J. Lukkien

Technische Universiteit Eindhoven, Netherlands

 Hierarchical Multiprocessor CPU Reservations for the Linux Kernel

Fabio Checconi, Tommaso Cucinotta, Dario Faggioli, Giuseppe Lipari

Scuola Superiore S. Anna, Italy

 Threaded IRQs on Linux PREEMPT-RT

Luís Henriques

Intel Shannon, Ireland

10:30-11:00 Coffee Break

11:00-12:30 Session 2 Panel Discussion

Real-Time vs. real fast in academia and industry

Jim Andersson, The University of North Carolina at Chapel Hill, USA

Scott Brandt, University of California, Santa Cruz, USA

Thomas Gleixner, Linuxtronix, Germany

Nicholas Mc Guire, OpenTech, Austria

Peter Zijlstra, Red Hat, Netherlands

12:30 -14:00 Lunch 14:00-15:30 Session 3

Towards Unit Testing Real-Time Schedulers in LITMUS-RT

Malcolm S. Mollison, Björn B. Brandenburg, and James H. Anderson

The University of North Carolina at Chapel Hill, USA

Exception-Based Management of Timing Constraints Violations for Soft Real-Time

Applications

Tommaso Cucinotta, Dario Faggioli

Scuola Superiore S. Anna, Italy

Alessandro Evangelista

Hardware Microkernels for Heterogeneous Manycore Systems

Jason Agron, David Andrews

The University of Arkansas, USA

15:30-16:00 Coffee Break

16:00-17:30 Session 4 Group Discussion

Testbed platforms for RT research:

Wish-list, problems, planning!

4

Extending RTAI/Linux with Fixed-Priority Scheduling with Deferred
Preemption

Mark Bergsma, Mike Holenderski, Reinder J. Bril and Johan J. Lukkien
Faculty of Computer Science and Mathematics

Technische Universiteit Eindhoven (TU/e)
Den Dolech 2, 5600 AZ Eindhoven, The Netherlands

Abstract

Fixed-Priority Scheduling with Deferred Preemption
(FPDS) is a middle ground between Fixed-Priority Pre-
emptive Scheduling and Fixed-Priority Non-preemptive
Scheduling, and offers advantages with respect to con-
text switch overhead and resource access control. In
this paper we present our work on extending the real-
time operating system RTAI/Linux with support for
FPDS. We give an overview of possible alternatives,
describe our design choices and implementation, and
verify through a series of measurements that indicate
that a FPDS implementation in a real-world RTOS is
feasible with minimal overhead.

1 Introduction

Fixed-Priority Scheduling with Deferred Preemp-
tion (FPDS) [4–7, 9] has been proposed in the liter-
ature as an alternative to Fixed-Priority Nonpreemp-
tive Scheduling (FPNS) and Fixed-Priority Preemptive
Scheduling (FPPS) [11]. Input to FPPS and FPNS
is a set of tasks of which instances (jobs) need to be
scheduled. FPDS is similar to FPNS but now tasks
have additional structure and consist of (ordered) sub-
tasks. Hence, in FPDS each job consists of a sequence
of subjobs; preemption is possible only between sub-
jobs. The benefits of FPDS, derived from FPNS are (i)
less context-switch overhead thanks to fewer preemp-
tions (ii) the ability to avoid explicit resource alloca-
tion and subsequent complex resource-access protocols.
The fact that subjobs are small leads to FPDS having
a better response time for higher priority tasks.

FPDS was selected as a desirable scheduling mech-
anism for a surveillance system designed with one of
our industry partners. [10] With response times found
to be too long under FPNS, FPDS was considered to

have the same benefits of lower context switch overhead
compared to FPPS with its arbitrary preemptions.

In this paper our goal is to extend a real-time Linux
version with support for FPDS. For this purpose we
selected the Real-Time Application Interface (RTAI)
extension to Linux [1]. RTAI is a free-software commu-
nity project that extends the Linux kernel with hard
real-time functionality. We aim to keep our extensions
efficient with respect to overhead, and as small and
non-intrusive as possible in order to facilitate future
maintainability of these changes. Our contributions
are the discussion of the RTAI extensions, the imple-
mentation1 and the corresponding measurements to in-
vestigate the performance of the resulting system and
the introduced overhead.

The work is further presented as follows. We start
with an overview of related work and recapitulation
of FPDS, followed by a summary of the design and
features of RTAI. Then we analyze how FPDS should
be dealt with in the context of RTAI. We present our
investigation, design and proof of concept implementa-
tion of FPDS in RTAI. This result is analyzed through
a series of measurements. We conclude with a sum-
mary and future work.

2 Related work

As a recapitulation [4–7,9], in FPDS a periodic task
τi with computation time Ci is split into a number of
non-preemptive sub tasks τi,j with individual compu-
tation times Ci,j . The structure of all subtasks defin-
ing an FPDS task is defined by either the programmer
through the use of explicit preemption points in the
source, or by automated tools at compile time, and
can have the form of a simple ordered sequence, or a
directed acyclic graph (DAG) of subtasks. See Figure 1

1This work is freely available at
http://wiki.wikked.net/wiki/FPDS

1

5

Figure 1. FPDS task with a DAG structure

for an example of the latter.
[9] presents a rate-monotonic with delayed preemp-

tion (RMDP) scheduling scheme. Compared to tradi-
tional rate-monotonic scheduling, RMDP reduces the
number of context switches (due to strict preemption)
and system calls (for locking shared data). One of the
two preemption policies proposed for RMDP is delayed
preemption, in which the computation time Ci for a
task is divided into fixed size quanta ci, with preemp-
tion of the running task delayed until the end of its
current quanta. [9] provide the accompanying utiliza-
tion based analysis and simulation results, and show
an increased utilization of up to 8% compared to tradi-
tional rate-monotonic scheduling with context switch
overheads.

Unlike [9], which introduces preemption points at
fixed intervals corresponding to the quanta ci, our ap-
proach allows to insert preemption points at arbitrary
intervals, convenient for the tasks.

[3, 4] correct the existing worst-case response time
analysis for FPDS, under arbitrary phasing and dead-
lines smaller or equal to periods. They observe that the
critical instance is not limited to the first job, but that
the worst case response time of task τi may occur for
an arbitrary job within an i-level active period. They
provide an exact analysis, which is not uniform (i.e.
the analysis for the lowest priority task differs from
the analysis for other tasks) and a pessimistic analysis,
which is uniform.

The need for FPDS in industrial real-time systems
is emphasized in [10], which aims at combining FPDS
with reservations for exploiting the network bandwidth
in a multimedia processing system from the surveil-
lance domain, in spite of fluctuating network avail-
ability. It describes a system of one of our industry
partners, monitoring a bank office. A camera moni-
toring the scene is equipped with an embedded pro-
cessing platform running two tasks: a video task pro-
cessing the raw video frames from the camera, and a

network task transmitting the encoded frames over the
network. The video task encodes the raw frames and
analyses the content with the aim of detecting a rob-
bery. When a robbery is detected the network task
transmits the encoded frames over the network (e.g.
to the PDA of a police officer). In data intensive ap-
plications, such as video processing, a context switch
can be expensive: e.g. an interrupted DMA transfer
may need to retransmit the data when the transfer is
resumed. Currently, in order to avoid the switching
overhead due to arbitrary preemption, the video task
is non-preemptive. Consequently, the network task is
activated only after a complete frame was processed.
Often the network task cannot transmit packets at an
arbitrary moment in time (e.g. due to network con-
gestion). Employing FPDS and inserting preemption
points in the video task in convenient places will acti-
vate the network task more frequently than is the case
with FPNS, thus limiting the switching overhead com-
pared to FPPS and still allowing exploitation of the
available network bandwidth.

[10] also propose the notion of optional preemption
points, allowing a task to check if a higher priority task
is pending, which will preempt the current task upon
the next preemption point. At an optional preemp-
tion point a task cannot know if a higher priority task
will not arrive later, however if a higher priority task
is already pending, then the running task may decide
to adapt its execution path, and e.g. refrain from ini-
tiating a data transfer on a exclusive resource that is
expensive to interrupt or restart. Optional preemption
points rely on being able to check for pending tasks
with low overhead, e.g. without invoking the sched-
uler.

3 RTAI

RTAI2 is an extension to the Linux kernel, which
enhances it with hard real-time scheduling capabilities
and primitives for applications to use this. RTAI pro-
vides hard real-time guarantees alongside the standard
Linux operating system by taking full control of ex-
ternal events generated by the hardware. It acts as a
hypervisor between the hardware and Linux, and inter-
cepts all hardware interrupt handling. Using the timer
interrupts RTAI does its own scheduling of real-time
tasks and is able to provide hard timeliness guaran-
tees.

Although RTAI has support for multiple CPUs, we
choose to ignore this capability in the remainder of this

2The code base used for this work is version 3.6-cv of RTAI
[1].

2

6

document, and assume that our FPDS implementation
is running on single-CPU platforms.

3.1 The scheduler

RTAI Linux system follows a co-scheduling model:
hard real-time tasks are scheduled by the RTAI sched-
uler, and the remaining idle time is assigned to the
normal Linux scheduler for running all other Linux
tasks. The RTAI scheduler supports the standard
Linux schedulables such as (user) process threads and
kernel threads, and can additionally schedule RTAI
kernel threads. These have low overhead but they can-
not use regular OS functions.

The scheduler implementation supports preemption,
and ensures that always the highest priority runnable
real-time task is executing.

Primitives offered by the RTAI scheduler API in-
clude periodic and non-periodic task support, multi-
plexing of the hardware timer over tasks, suspension of
tasks and timed sleeps. Multiple tasks with equal prior-
ity are supported but need to use cooperative schedul-
ing techniques (such as the yield() function that gives
control back to the scheduler) to ensure fair scheduling.

3.2 Tasks in RTAI

RTAI supports the notion of tasks along with asso-
ciated priorities. Tasks are instantiated by creating a
schedulable object (typically a thread) using the reg-
ular Linux API, which can then initialize itself as an
RTAI task using the RTAI specific API. Priorities are
16 bit integers with 0 being the highest priority.

Although the terminology of jobs is not used in
RTAI, all necessary primitives to support periodic
tasks with deadlines less than or equal to periods
are available. Repetitive tasks are typically repre-
sented by a thread executing a repetition, each it-
eration representing a job. An invocation of the
rt_task_wait_period() scheduling primitive sepa-
rates successive jobs. Through a special return value of
this function, a task will be informed if it has already
missed the time of activation of the next job, i.e. the
deadline equal to the period.

In each task control block (TCB) various properties
and state variables are maintained, including a 16 bit
integer variable representing the running state of the
task. Three of these bits are used to represent mutu-
ally exclusive running states (ready, running, blocked),
whereas the remaining bits are used as boolean flags
that are not necessarily mutually exclusive, such as the
flag delayed (waiting for the next task period), which

Figure 2. RTAI task states and flags

can be set at the same time as ready in the RTAI im-
plementation. This implies that testing the ready state
is not sufficient for determining the readiness of a task.
See Figure 2 for an overview of the task states relevant
for our work, including a new bit flag FPDS Yielding
which we will introduce for our FPDS implementation
in Section 5.4.

3.3 Scheduler implementation

In order to provide some context for the design deci-
sions and implementation considerations that will fol-
low, we briefly describe the implementation of the ex-
isting RTAI scheduler.

RTAI maintains a ready queue per CPU, as a prior-
ity queue of tasks that are ready to run (i.e., released),
sorted by task priority. Periodic tasks are maintained
with release times of their next job in a separate data
structure, the so-called timed tasks. This data struc-
ture can be an ordered linked list or a red-black tree. If
at any moment the current time passes the release time
of the head element of the timed tasks list, the sched-
uler migrates this task to the ready queue of the cur-
rent CPU. In practice this does not happen instantly
but only upon the first subsequent invocation of the
scheduler, e.g. through the timer interrupt, and there-
fore having a maximum latency equal to the period of
the timer. The scheduler then selects the head element
from the ready priority queue for execution, which is
the highest priority task ready to run. The currently
running task will be preempted by the newly selected
task if it is different. The scheduler ensures that at
any given time, the processor executes the highest pri-
ority task of all those tasks that are currently ready to
execute, and therefore it is a FPPS scheduler.

The implementation of the scheduler is split over
two main scheduler functions, which are invoked from
different contexts, but follow a more or less simi-

3

7

lar structure. The function rt_timer_handler() is
called from within the timer interrupt service rou-
tine, and is therefore time-triggered. The other func-
tions, rt_schedule() is event-triggered, and performs
scheduling when this is requested from within a sys-
tem call. Each of the scheduler functions performs the
following main steps:

1. Determination of the current time

2. Migration of runnable tasks from the timed tasks
queue to the ready queue

3. Selection of the highest priority task from the
ready queue

4. Context switch to the newly selected task if it is
different from the currently running task

After a new task is selected, the scheduler decides on
a context switch function to use, depending on the type
of tasks (kernel or user space) being switched in and
out. The context switch is then performed immediately
by a call to this function.

4 Mapping FPDS tasksets

For the case of FPDS we need a different formulation
of the taskset. This is because we now must indicate
additional subtask structure within each task. There
are several ways to approach this.

First, in the task specification we can mark subtask
completion by an API call. Many operating systems
already implement a primitive that can be used for
this, viz., a yield() function. In fact, in a cooperative
scheduling environment this would be exactly the way
to implement FPDS. When a currently running task
calls yield(), it signals the kernel that it voluntarily
releases control of the CPU, such that the scheduler
can choose to activate other tasks before it decides to
return control to the original task, according to the
scheduler algorithm. For the current case of RTAI we
would need to modify yield() since it currently per-
forms just cooperative scheduling among tasks of the
same priority and we would need to ensure that tasks
cannot be preempted outside yield() functions when
in ready state.

Second, we can simply use the regular task model
for the subtasks. However, this would imply signifi-
cant overhead in the form of subtask to subtask com-
munication, because the subtasks need to cooperate to
maintain the precedence constraints while scheduling
these subtasks, which are otherwise implied within the
execution of a single task.

Finally, we can develop special notation for this pur-
pose by special data structures and interaction points
to be filled in by the user. This, however, would prob-
ably not differ a lot from the first case. The advantage
would be that, unlike in the first two approaches, the
kernel would be aware of the details about the subtask
structure which is important for internal analysis by
the system, for monitoring or for optimization.

In the first case the API calls play the role of explicit
preemption points. These can be programmed directly,
but also automated tools could generate preemption
points transparently to the programmer guided by
other primitives and cues in the source code such as
critical sections. Moreover, the yield() approach in-
curs low overhead and limits the modifications to the
kernel. We therefore decide for the first approach.

5 Design and implementation

While designing the implementation of our chosen
FPDS task model, we have a number of aspects that
lead our design choices. First of all, we want our imple-
mentation to remain compatible; our extensions should
be conservative and have no effect on the existing func-
tionality. Any FPDS tasks will need to explicitly in-
dicate desired FPDS scheduling behaviour. Efficiency
is important because overhead should be kept minimal
in order to maximize the schedulability of task sets.
Therefore we aim for an FPDS design which introduces
as little run-time and memory overhead as possible.
Due to the need of keeping time, we do not disable
interrupts during FPDS tasks, so the overhead of in-
terrupt handling should be considered carefully as well.
Because we want to be able to integrate our extensions
with future versions of the platform, our extensions
should be maintainable, and written in an extendable
way, with flexibility for future extensions in mind.

We aim for a FPDS implementation that is non-
preemptive only with respect to other tasks; i.e. a task
will not be preempted by another task, but can be in-
terrupted by an interrupt handler such as the timer
ISR.

The process of implementing FPDS in RTAI/Linux
was done in several stages. Because the existing sched-
uler in RTAI is an FPPS implementation with no direct
support for non-preemptive tasks, the first stage con-
sisted of a proof of concept attempt at implementing
FPNS in RTAI. The following stages then built upon
this result to achieve FPDS scheduling in RTAI in ac-
cordance with the task model and important design
aspects described above.

4

8

5.1 FPNS design

The existing scheduler implementation in RTAI is
FPPS: it makes sure that at every moment in time, the
highest priority task that is in ready state has control
of the CPU. In contrast, FPNS only ensures that the
highest priority ready task is started upon a job finish-
ing, or upon the arrival of a task whenever the CPU is
idle. For extending the FPPS scheduler in RTAI with
support for FPNS, the following extensions need to be
made:

• Tasks, or individual jobs, need a method to in-
dicate to the scheduler that they need to be run
non-preemptively, as opposed to other tasks which
may want to maintain the default behaviour.

• The scheduler needs to be modified such that any
scheduling and context switch activity is deferred
until a non-preemptive job finishes.

Alternatively, arrangements can be made such that at
no moment in time a ready task exists that can pre-
empt the currently running FPNS task, resulting in
a schedule that displays FPNS behaviour, despite the
scheduler being an FPPS implementation. Both strate-
gies will be explored.

5.1.1 Using existing primitives

Usage of the existing RTAI primitives for influencing
scheduling behaviour to achieve FPNS would naturally
be beneficial for the maintainability of our implemen-
tation.

When investigating the RTAI scheduler primitives
exported by the API [12], we find several that can be
used to implement FPNS behaviour. These strategies
range from the blocking of any (higher priority) tasks
during the execution of a FPNS job, e.g. through sus-
pension or mutual exclusion blocking of these tasks, to
influencing the scheduler decisions by temporary modi-
fications of task priorities. What they have in common
however is that at least 2 invocations of these primitives
are required per job execution, resulting in RTAI in ad-
ditional overhead of at least two system calls per job.
Some of these methods, such as explicit suspension of
all other tasks, also have the unattractive property of
requiring complete knowledge and cooperation of the
entire task set.

5.1.2 RTAI kernel modifications

As an alternative to using existing RTAI primitives
which are not explicitly designed to support FPNS, the
notion of a non-preemptible task can be moved into the

RTAI kernel proper, allowing for modified scheduling
behaviour according to FPNS, without introducing ex-
tra overhead during the running of a task as induced by
the mentioned API primitives. Looking ahead to our
goal of implementing FPDS, this also allows more fine
grained modifications to the scheduler itself, such that
optional preemption points become possible in an effi-
cient manner: rather than trying to disable the sched-
uler during an FPNS job, or influencing its decisions by
modifying essential task parameters such as priorities,
the scheduler would become aware of non-preemptible
or deferred preemptible tasks and support such a sched-
ule with intelligent decisions and primitives. It does
however come at the cost of implementation and main-
tenance complexity. Without availability of documen-
tation of the design and implementation of the RTAI
scheduler, creating these extensions is more difficult
and time consuming than using the well documented
API. And because the RTAI scheduler design and im-
plementation is not stable, as opposed to the API,
continuous effort will need to be spent on maintain-
ing these extensions with updated RTAI source code,
unless these extensions can be integrated into the RTAI
distribution. Therefore we aim for a patch with a small
number of changes to few places in the existing source
code.

An important observation is that with respect to
FPPS, scheduling decisions are only made differently
during the execution of a non-preemptive task. Pre-
emption of any task must be initiated by one of the
scheduling functions, which means that one possible
implementation of FPNS would be to alter the deci-
sions made by the scheduler if and only if a FPNS task
is currently executing. This implies that our modifica-
tions will be conservative if they change scheduling be-
haviour during the execution of non-preemptive tasks
only.

During the execution of a (FPNS) task, interference
from other, higher priority tasks is only possible if the
scheduler is invoked through one of the following ways:

• The scheduler is invoked from within the timer
ISR

• The scheduler is invoked from, or as a result of a
system call by the current task

The first case is mainly used for the release of jobs
- after the timer expires, either periodically or one-
shot, the scheduler should check whether any (periodic)
tasks should be set ready, and then select the highest
priority one for execution. The second case applies
when a task does a system call which alters the state
of the system in such a way that the schedule may be
affected, and thus the scheduler should be called to

5

9

determine this. With pure FPNS, all scheduling work
can be deferred until the currently running task finishes
execution. Lacking any optional preemption points,
under no circumstances should the current FPNS task
be preempted. Therefore, the condition of a currently
running, ready FPNS task should be detected as early
on in the scheduler as possible, such that the remaining
scheduling work can be deferred until later, and the
task can resume execution as soon as possible, keeping
the overhead of the execution interruption small.

In accordance with our chosen task model in Sec-
tion 4, we decide to modify the kernel with explicit non-
preemptive task support, as described in section 5.1.2.

5.2 FPNS implementation

Towards an FPNS aware RTAI scheduler, we
extend the API with a new primitive named
rt_set_preemptive(), consistent with other primi-
tives that can alter parameters of tasks, that accepts a
boolean parameter indicating whether the calling task
should be preemptible, or not. This value will then
be saved inside the task’s control block (TCB) where
it can be referenced by the scheduler when making
scheduling decisions. This preemptible flag inside the
TCB only needs to be set once, e.g. during the cre-
ation of the task and not at every job execution, such
that there is no additional overhead introduced by this
solution.

Execution of the scheduler should be skipped at the
beginning, if the following conditions hold for the cur-
rently running task:

• The (newly added) preemptible boolean variable is
unset, indicating this is a non-preemptive task;

• The delayed task state flag is not set, indicating
that the job has not finished;

• The ready task state flag is set, indicating that the
job is ready to execute and in the ready queue.

We have added these tests to the start of both scheduler
functions rt_schedule() and rt_timer_handler(),
which resulted in the desired FPNS scheduling for non-
preemptible tasks. For preemptive tasks, which have
the default value of 1 in the preemptible variable of
the TCB, the scheduling behaviour is not modified,
such that the existing FPPS functionality remains un-
affected.

5.3 FPDS design

Following the description of FPNS in the previous
section, we move forward to the realisation of a FPDS

scheduler, by building upon these concepts. An FPDS
implementation as outlined in Section 4, where sub-
tasks are modeled as non-preemptive tasks with pre-
emption points in between, has the following important
differences compared to FPNS:

• A job is not entirely non-preemptive anymore;
it may be preempted at predefined preemption
points, for which a scheduler primitive needs to
exist.

• The scheduling of newly arrived jobs can no longer
be postponed until the end of a non-preemptive
job execution, as during a (optional) preemption
point in the currently running job information is
required about the availability of higher priority
ready jobs.

There are several ways to approach handling inter-
rupts which occur during the execution of nonpreemp-
tive subjob. First, the interrupt may be recorded with
all scheduling postponed until the scheduler invocation
from yield() at the next preemption point, similar to
our FPNS implementation, but at much finer granular-
ity.

Alternatively, all tasks which have arrived can be
moved from the pending queue to the ready queue di-
rectly (as is the case under FPPS), with only the con-
text switch postponed until the next preemption point.
This has the advantage that there is opportunity for
optional preemption points to be implemented, if the
information about the availability of a higher prior-
ity, waiting task can be communicated in an efficient
manner to the currently running FPDS task for use at
the next optional preemption point. These two alter-
natives can be described as pull versus push models
respectively. They represent a tradeoff, and the most
efficient model will most likely depend on both the task
sets used, and the period of the timer.

On our platform we could not measure the differ-
ence between these two alternatives; any difference in
efficiency between the two approaches was lost in the
noise of our experiment. Therefore we opted to go with
the last alternative, as this would not require exten-
sive rewriting of the existing scheduler logic in RTAI,
and thereby fit our requirements of maintainability and
our extensions being conservative. The efficiency dif-
ferences between these approaches may however be rel-
evant on other platforms, as described in [10], based
on [8].

5.4 FPDS implementation

It would appear that using a standard yield() type
function, as present within RTAI and many other op-

6

10

erating systems, would suffice for implementing a pre-
emption point. Upon investigation of RTAI’s yield
function (rt_task_yield()) it turned out however
that it could not be used for this purpose unmodified.
This function is only intended for use with round-robin
scheduling between tasks having equal priority, because
under the default FPPS scheduler of RTAI there is no
reason why a higher priority, ready task would not al-
ready have preempted the current, lower priority task.
However with the non-preemptive tasks in FPDS, a
higher priority job may have arrived but not been con-
text switched in, so checking the ready queue for equal
priority processes is not sufficient. An unconditional
call to scheduler function rt_schedule() should have
the desired effect, as it can move newly arrived tasks
to the ready queue, and invoke a preemption if neces-
sary. However, the modified scheduler will evaluate the
currently running task as non-preemptive, and avoid a
context switch. To indicate that the scheduler is being
called from a preemption point and a higher priority
task is allowed to preempt, we introduce a new bit flag
RT_FPDS_YIELDING to the task state variable in the
TCB, that is set before the invocation of the scheduler
to inform it about this condition. The flag is then reset
again after the scheduler execution finishes.

Due to the different aim of our FPDS yield func-
tion in comparison to the original yield function in
RTAI we decided not to modify the existing function,
but create a new one specific for FPDS use instead:
rt_fpds_yield(). The FPDS yield function is sim-
pler and more efficient than the regular yield function,
consisting of just an invocation of the scheduler func-
tion wrapped between the modification of task state
flags. This also removed the need to modify the exist-
ing code which could introduce unexpected regressions
with existing programs, and have a bigger dependency
on the existing code base, implying greater overhead in
maintaining these modifications in the future.

5.4.1 Scheduler modifications

Working from the FPNS implementation of Section 5.1,
the needed modifications to the scheduling functions
rt_schedule() and rt_timer_handler() for FPDS
behaviour are small. Unlike the FPNS case, the ex-
ecution of the scheduler cannot be deferred until the
completion of a FPDS (sub)task if we want to use the
push mechanisms described in Section 5.3, as the sched-
uler needs to finish its run to acquire this information.
Instead of avoiding the execution of the scheduler com-
pletely, for FPDS we only defer the invocation of a con-
text switch to a new task, if the currently running task
is not at a preemption point.

The existing if clause introduced at the start of the
scheduler functions for FPNS is therefore moved to a
section in the scheduler code between parts 3 and 4
as described in Section 3.3, i.e. at which point the
scheduler has decided a new task should be running,
but has not started the context switch yet. At this
point we set a newly introduced TCB integer variable
should_yield to true, indicating that the current task
should allow itself to be preempted at the next pre-
emption point. This variable is reset to false whenever
the task is next context switched back in.

With these modifications, during a timer interrupt
or explicit scheduler invocation amidst a running FPDS
task, the scheduler will be executed and wake up any
timed tasks. If a higher priority task is waiting at
the head of the ready queue, a corresponding noti-
fication will be delivered and the scheduler function
will exit without performing a context switch. To al-
low an FPDS task to learn about the presence of a
higher priority task waiting to preempt it, indicated
by the should yield variable in its TCB in kernel space
which it however does not have permissions for to
read directly, we introduced a new RTAI primitive
rt_should_yield() to be called by the real-time task,
which returns the value of this variable. In the current
implementation this does however come at the cost of
performing a system call at every preemption point.

In a later version of our FPDS implementation in
RTAI, not yet reflected in the measurements in this
paper, we improved the efficiency of preemption points
by removing the need for this system call. The location
of the should yield variable was moved from the TCB
in kernel space to user space in the application’s ad-
dress space, where it can be read efficiently by the task.
Upon initialization, the FPDS task registers this vari-
able with the kernel, and makes sure the corresponding
memory page is locked into memory. The contents of
this variable are then updated exclusively by the ker-
nel, which makes use of the fact that updates are only
necessary during the execution of the corresponding
FPDS task, when its address space is already active
and loaded in physical memory. This design is simi-
lar to the one described in [2] for implementing non-
preemptive sections.

5.5 Abstraction

For simplicity of usage of our FPDS implementa-
tion, we created a dynamic library called libfpds which
can be linked to a real-time application that wants to
use FPDS. A preemption point can then be inserted
into the code by inserting an invocation of fpds_pp(),
which internally performs rt_should_yield() and

7

11

fpds_yield() system calls as necessary. Alternatively,
the programmer can pass a parameter to indicate that
the task should not automatically be preempted if a
higher task is waiting, but should merely be informed
of this fact.

6 Key performance indicators

Our implementation should be checked for the fol-
lowing elements, which relate to the design aspects
mentioned in Section 5:

• The interrupt latency for FPDS. This is intrinsic
to FPDS, i.e. there is additional blocking due to
lower priority tasks. It has been dealt with in the
analysis in [3, 4];

• The additional run-time overhead due to addi-
tional code to be executed. This will be measured
in Section 7;

• The additional space requirements due to addi-
tional data structures and flags. Our current im-
plementation introduces only two integer variables
to the TCB, so the space overhead is minimal;

• The number of added, changed, and deleted lines of
code (excluding comments) compared to the orig-
inal RTAI version. Our extension adds only 106
lines and modifies 3 lines of code, with no lines
being removed;

• The compatibility of our implementation. Because
our extensions are conservative, i.e. they don’t
change any behaviour when there are no non-
preemptive tasks present, compatibility is pre-
served. This is also verified by our measurements
in Section 7.1.

7 Measurements

We performed a number of experiments to measure
the additional overhead of our extensions compared
to the existing FPPS scheduler implementation. The
hardware used for these tests was an Intel Pentium 4
PC, with 3 Ghz CPU, running Linux 2.6.24 with (mod-
ified) RTAI 3.6-cv.

7.1 Scheduling overhead

The goal of our first experiment is to measure the
overhead of our implementation extensions for existing
real-time task sets, which are scheduled by the stan-
dard RTAI scheduler, i.e. following FPPS. For non-
FPDS task sets, scheduling behaviour has not been

Figure 3. Overhead of the modified kernel for
FPPS task sets

changed by our conservative implementation, but our
modifications may have introduced additional execu-
tion overhead.

As our example task set we created a program with
one non-periodic, low priority, long running FPPS task
τl, and one high priority periodic FPPS task τh. τl
consists of a for loop with a parameterized number
of iterations m, to emulate a task with computation
time Cl. The computation time of the high priority
task, Ch, was 0; the only purpose of this empty task
is to allow for measurement of overhead of scheduling
by presenting an alternative, higher priority task to the
scheduler. Th was kept equal to the period of the timer,
such that a new high priority job is released at every
scheduler invocation from the timer event handler.

Since, from the perspective of an FPPS task, the
only modified code that is executed is in the scheduler
functions, we measured the response time of task τl un-
der both the original and the modified FPDS real-time
RTAI kernel, varying the period of the timer interrupt,
and thereby the frequency of scheduler invocations en-
capsulated by the timer event handler. The results are
shown in Figure 3.

As expected, there is no visible difference in the over-
head of the scheduler in the modified code compared
to the original, unmodified RTAI kernel. For an FPPS
task set the added overhead is restricted to a single if
statement in the scheduler, which references 3 variables
and evaluates to false. This overhead is unsubstantial
and lost in the noise of our measurements. We con-
clude that there is no significant overhead for FPPS
task sets introduced by our FPDS extensions.

8

12

7.2 Preemption point overhead

With an important aspect of FPDS being the place-
ment of preemption points in task code between sub-
tasks, the overhead introduced by these preemption
points is potentially significant. Depending on the fre-
quency of preemption points, this could add a sub-
stantial amount of additional computation time to the
FPDS task. In the tested implementation, the domi-
nating overhead term is expected to be the overhead of
a system call (Csys) performed during every preemp-
tion point, to check whether the task should yield for a
higher priority task. The system call returns the value
of a field in the TCB, and performs no additional work.

We measured the overhead of preemption points by
creating a long-running, non-periodic task τl with fixed
computation time Cl implemented by a for loop with
m = 100M iterations, and scheduled it under both
FPPS and FPDS. The division into subtasks of task τl
has been implemented by invoking a preemption point
every n iterations, which is varied during the course of
this experiment, resulting in dm/ne preemption point
invocations.

For the FPPS test the same task was used, except
that every n iteration interval only a counter variable
was increased, instead of the invocation of a preemp-
tion point. This was done to emulate the same low
priority task as closely as possible in the context of
FPPS.

The response time Rl was measured under varying
intervals of n for both FPPS and FPDS task sets. The
results are plotted in Figure 4.

Clearly the preemption points introduced in the
lower priority task introduce overhead which does not
exist in a FPPS system. The extra overhead amounts
to about 440 µs per preemption point invocation,
which corresponds well with a measured value Csys of
434 µs per general RTAI system call overhead which
we obtained in separate testing. This suggests that the
overhead of a preemption point is primary induced by
the rt_should_yield() system call in the preemption
point implementation, which is invoked uncondition-
ally.

7.3 An example FPDS task set

Whereas the previous experiments focussed on mea-
suring the overhead of the individual extensions and
primitives added for our FPDS implementation, we
performed an experiment to compare the worst case
response time of a task set under FPPS and FPDS as
well. The task set of the previous experiment was ex-
tended with a high priority task τh with a non-zero

Figure 4. Overhead of preemption points

computation time Ch. For this experiment we varied
the period of the high priority task. To keep the work-
load of the low priority task constant, we fixed the in-
terval n of preemption points to a value (5000) frequent
enough to allow preemption by τh without it missing
any deadlines under all values of Th ≥ 1.2ms under
test. The response time of the low priority task Rl is
plotted in Figure 5.

The relative overhead appears to depend on the fre-
quency of high priority task releases and the resulting
preemptions in preemption points, as the number of
preemption points invoked in the duration of the test
is constant. The results show an increase in the re-
sponse time of τl for FPDS of at most 17% with a
mean around 3%. The large discrepancy of the results
can probably be attributed to the unpredictable inter-
ference from interrupts and the resulting invalidation
of caches. Considering the relatively low mean over-
head of FPDS, we would like to identify the factors
which contribute to the high variation of the task re-
sponse time, and investigate how these factors can be
eliminated (see Section 8).

8 Conclusions and future work

In this paper we have presented our work on the im-
plementation of FPDS in the real-time operating sys-
tem, RTAI/Linux. We have shown that such an imple-
mentation in a real-world operating system is feasible,
with only a small amount of modifications to the exist-
ing code base in the interest of future maintainability.
Furthermore, a set of experiments indicated that our
modifications introduced no measurable overhead for

9

13

Figure 5. A task set scheduled by FPPS and
FPDS

FPPS task sets, and only small mean overhead intro-
duced by converting a FPPS task set into FPDS.

As a follow up to this work, we would like to further
investigate the tradeoffs between regular preemption
points and optional preemption points. In particular
we would like to gain quantitive results exposing the
tradeoffs in moving tasks to the ready queue during
the execution of a non-preemptive subjob, with respect
to saved system calls, invalidation of caches and other
overheads.

Finally, we would like to research how additional in-
formation about FPDS task structures in the form of a
DAG can benefit the scheduling decisions. A DAG will
specify the worst-case computation times of subtasks
and thus form a sort of contract between the tasks and
the scheduler, allowing to combine FPDS with reser-
vations. Methods for monitoring and enforcing these
contracts need to be investigated.

References

[1] RTAI 3.6-cv - The RealTime Application Interface for
Linux from DIAPM, 2009.

[2] B. B. Brandenburg, J. M. Calandrino, A. Block,
H. Leontyev, and J. H. Anderson. Real-time synchro-
nization on multiprocessors: To block or not to block,
to suspend or spin? In IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 342–
353. IEEE Computer Society, 2008.

[3] R. Bril, J. Lukkien, and W. Verhaegh. Worst-case
response time analysis of real-time tasks under fixed-
priority scheduling with deferred preemption revisited.

In Proc. 19th Euromicro Conference on Real-Time
Systems (ECRTS), pages 269–279, July 2007.

[4] R. Bril, J. Lukkien, and W. Verhaegh. Worst-case
response time analysis of real-time tasks under fixed-
priority scheduling with deferred preemption revisited
– with extensions for ECRTS’07 –. Technical Report
CS Report 07-11, Department of Mathematics and
Computer Science, Technische Universiteit Eindhoven
(TU/e), The Netherlands, April 2007.

[5] A. Burns. Preemptive priority based scheduling: An
appropriate engineering approach. In S. Son, edi-
tor, Advances in Real-Time Systems, pages 225–248.
Prentice-Hall, 1994.

[6] A. Burns. Defining new non-preemptive dispatching
and locking policies for ada. Reliable SoftwareTech-
nologies —Ada-Europe 2001, pages 328–336, 2001.

[7] A. Burns, M. Nicholson, K. Tindell, and N. Zhang.
Allocating and scheduling hard real-time tasks on a
parallel processing platform. Technical Report YCS-
94-238, University of York, UK, 1994.

[8] A. Burns, K. Tindell, and A. Wellings. Effective
analysis for engineering real-time fixed priority sched-
ulers. IEEE Transactions on Software Engineering,
21(5):475–480, May 1995.

[9] R. Gopalakrishnan and G. M. Parulkar. Bringing real-
time scheduling theory and practice closer for mul-
timedia computing. SIGMETRICS Perform. Eval.
Rev., 24(1):1–12, 1996.

[10] M. Holenderski, R. J. Bril, and J. J. Lukkien. Using
fixed priority scheduling with deferred preemption to
exploit fluctuating network bandwidth. In ECRTS ’08
WiP: Proceedings of the Work in Progress session of
the 20th Euromicro Conference on Real-Time Systems,
2008.

[11] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J.
ACM, 20(1):46–61, 1973.

[12] G. Racciu and P. Mantegazza. RTAI 3.4 User Manual,
rev 0.3, 2006.

10

14

Hierarchical Multiprocessor CPU Reservations for the Linux Kernel∗

Fabio Checconi, Tommaso Cucinotta, Dario Faggioli, Giuseppe Lipari
Scuola Superiore S. Anna, Pisa, Italy

Abstract

This paper presents ongoing work in the development
of a scheduling framework that will improve the ser-
vice guarantees for soft real-time applications deployed
on Linux. The scheduler has been designed around the
current kernel infrastructure, trying to keep the changes
minimal, and basing the scheduling policy on strong the-
oretical results. The main goal is to achieve hierarchical
distribution of the available computing power on multi-
processor platforms, avoiding alterations to the existing
user interfaces.

The proposed framework exploits the hierarchical ar-
rangement of tasks within groups and subgroups that is
already possible within the Linux kernel. However, it
adds the capability for each group to be assigned a pre-
cise fraction of the computing power available on all the
processors, using existing uni-processor resource reser-
vation techniques. Tasks are scheduled globally within
each single group, and the partitions assigned to each
group need not to be static, but can be dynamically bal-
anced. Furthermore, the proposed mechanism can be
used to support a variety of possible partitioning schemes
using processor affinities.

1 Introduction

Nowadays, the Linux Operating System is being en-
riched with more and more real-time capabilities. In
the last few years, valuable efforts have been spent for
decreasing the scheduling and interrupt latencies of the
kernel, by embedding such features as full preemption,
priority inheritance, reduced computation complexity of
the scheduler, support for high-resolution timers. Also,
the linux-rt branch adds such experimental features
as running interrupt handlers in dedicated kernel threads

∗The research leading to these results has been supported by the Eu-
ropean Commission under grant agreement n.214777, in the context of
the IRMOS Project. More information at: http://www.irmosproject.eu.

rather than in interrupt context, so as to allow system de-
signers to have an improved control over the interference
of the peripheral drivers with respect to the running ap-
plications.

While such features make the Linux kernel a very ap-
pealing platform for multimedia applications, still the
support for real-time scheduling is somewhat inappropri-
ate for dealing with requirements posed by the challeng-
ing scenarios of the upcoming years, that demand for pre-
dictable scheduling mechanisms able to achieve a good
degree of temporal isolation among complex concurrent
software components, low response times and high in-
teractivity. One such scenario is the one in which mul-
tiple virtual machines run within the same OS, hosting
software components realizing professional services that
need to run with predictable QoS levels and high interac-
tivity requirements, possibly managed through a service-
oriented approach, as discussed for example in [1].

The Linux kernel embodies the POSIX com-
pliant priority-based real-time scheduling classes
(SCHEDFIFO and SCHEDRR). These may be suffi-
cient for dealing with embedded real-time applications,
but they turn out to be inadequate for providing temporal
isolation among complex software components such as
the ones mentioned above. In fact, the implementation
of such policies in Linux has been enriched by non-
standard features such as support for hierarchies of tasks
and throttling. However, lacking of a sound design in
the domain of real-time scheduling, such capabilities
struggle at constituting a solid base for providing an
adequate real-time scheduling support.

This paper makes one step further in this direction,
presenting a novel real-time scheduling strategy for the
Linux kernel, that may be analyzed by means of hierar-
chical real-time schedulability analysis techniques. The
proposed infrastructure has a good degree of flexibility,
allowing for a variety of configurations between two tra-
ditionally antithetic settings: on one side, the perfect
compatibility with the current POSIX compliant priority-

1

15

based semantics, and on the other side an improved usage
of resources by means of a partitioned EDF.

1.1 Paper Contributions

This paper presents a hierarchical multiprocessor
scheduling framework for the Linux kernel. The main
advantages of the presented approach over prior works
are:

• tight integration with the existing Linux code;

• no need for the introduction of new interfaces nor
new scheduling classes;

• support for multiple configuration schemes, includ-
ing fully partitioned approaches;

• strong theoretical background justifying the rele-
vance of the approach, mainly inspired to [2], with
the derivation of an appropriate admission test for
the tasks to be scheduled;

• capability to handle accesses to shared resources.

1.2 Paper Outline

The rest of the paper is organized as follows. Sec-
tion 2 reviews related work in the area, then Section 3
introduces considered system model and scheduling al-
gorithm, summarizing its formal properties. Section 4
describes the implementation of the framework in the
Linux kernel, and Section 5 reports experimental results
that validate the approach. Finally, Section 8 contains a
few concluding remarks.

2 Related Work

The growing interest in having more advanced real-time
scheduling support within the Linux kernel has been wit-
nessed in the last years by various research projects. The
first approach that has been undertaken has been the ad-
dition of a hypervisor to the Linux kernel, so as to ob-
tain a highly predictable hard real-time computing plat-
form where real-time control tasks are scheduled very
precisely, and the entire Linux OS is run in the back-
ground. Such an approach, adopted in the RTLinux [3]
and RTAI [4] projects, however is not adequate for inter-
active nor multimedia applications, due to the high limi-
tations it poses on the services available to real-time ap-
plications.

An alternative trend is constituted by the addition of
a (soft) real-time scheduling policy directly within the
Linux kernel, that allows for a more predictable execu-
tion of unmodified Linux applications. Projects that fall
in this category comprise the following.

The Adaptive Quality of Service Architecture [5]
(AQuoSA) for Linux provides hard CBS [6], an EDF
based real-time policy, which has also been enhanced
with the Bandwidth Inheritance protocol [7] for dealing
with shared resources. However, having been developed
in the context of the FRESCOR1 European Project for
embedded systems,AQuoSAsuffers from the main lim-
itation of not supporting SMP systems.

TheLitmusRT project [8,9] provides (among others)
Pfair [10], a real-time scheduling strategy theoretically
capable of saturating SMP systems with real-time tasks.
However, it contains major changes of the Linux kernel
internals, and it is currently more a testbed for experi-
menting with real-time scheduling within Linux, rather
than something that aims at being integrated in the main-
line kernel.

Recently, an implementation of the POSIX
SCHEDSPORADIC[11] real-time policy for Linux has
been proposed to the Linux kernel community [12].
This scheduler has been developed with the aim of being
integrated into the mainstream kernel, by proposing a
very limited set of modifications to the kernel scheduler,
and exploiting existing user-space APIs such as the
cgroups . The great advantage of such scheduling
policy is the one of having been standardized by POSIX,
however it suffers of the limitations typical of priority-
based policies, such as the well-known utilization limit
of 69% on uni-processor systems.

3 Scheduling Algorithm

The design of the scheduling algorithm started in a quite
unusual way, analyzing the existing Linux scheduler, and
trying to derive a formal model for the policy it is imple-
menting for real-time scheduling, especially concerning
the part of hierarchical scheduling. It turned out that the
model in [2] is not far from matching the Linux imple-
mentation. The work we present in this paper aims to
achieve a convergence between a hierarchical schedul-
ing infrastructure that is minimally invasive as compared
to the current Linux scheduler code base, and a theory of
hierarchical real-time schedulers that is quite generic to
be adapted to the Linux case.

We exploited the current user-space interface for the
throttling mechanism, which offers to applications the
possibility to assign a pair(Qi, Pi) to thei-th group of
tasks. However, these parameters are reinterpreted as the
scheduling parameters (the budget and period, respec-
tively) to be assigned to the group according to the well
known resource reservation paradigm [6]:Qi units of
time are available to the group every period of length

1Framework for Real-Time embedded Systems based on Contracts
(FRESCOR), European Project No. FP6/2005/IST/5-034026, more in-
formation at: http://www.frescor.org.

2

16

π1 π2

ν1,1 ν1,2 ν2,1 ν2,2

τ1,1 τ1,2 τ1,3 τ2,1 τ2,2

Γ1 Γ2

Physical Processors

Figure 1: System Architecture.

Pi. The scheduling guarantee is given to each group as a
whole, including all the tasks attached to the group itself
and to all the nested subgroups. However, the framework
allows each group and subgroup to posses its own set of
scheduling parameters. On multiprocessor systems, the
Qi/Pi assignment is replicated on all the processors in
the system, but the resulting schedulers on the various
CPUs run independently from one another, minimizing
synchronization overheads.

3.1 System Model and Terminology

Throughout the paper we stick to the Linux terminology
as much as possible; when referring to entities that do
not have a counterpart in the current Linux code yet, we
derive our notation and terminology from [2].

In the model we consider, a task groupΓi is composed
by set ofni sporadic tasksΓi = {τi,j}j=1,...,ni

. Each
task is described by its worst-case execution timeCi,j , its
relative deadlineDi,j and its minimum inter-arrival time
Ti,j : τi,j = (Ci,j , Di,j , Ti,j). A task τi,j is a sequence
of jobs τk

i,j , each characterized by its own release time,
computation time and deadline, denoted byrk

i,j , c
k
i,j and

dk
i,j , respectively.
Following [2], we callvirtual platformVi a set ofmi

virtual processorsVi = {νi,l}l=1,...,mi
. Each virtual pro-

cessorνi,l is characterized by a supply functionZi,l(t)
representing the amount of serviceνi,l can provide in any
time interval of durationt.

Tasks are grouped in task groups, organized in a
hierarchical fashion. Each task group is assigned a
virtual platform, one per physical processorπm ∈
{πm}m=1,...,M in the system.

Fig. 1 depicts the global structure of our model, in
the case of two physical processors,π1 andπ2, and five
tasks organised in two groups:τ1,1, τ1,2, τ1,3 insideΓ1

andτ2,1, τ2,2 insideΓ2; each task group is assigned two
virtual processors, one for each physical processor.

3.2 Main Algorithm

The proposed algorithm can be described as a two-layer
hierarchical scheduler, with the first layer scheduler se-
lecting which task group to execute on each processor,
and the second layer selecting which task to run within
the selected task group.

Each task groupΓi is assigned a set of virtual proces-
sors; these virtual processors are scheduled using parti-
tioned resource reservation techniques. Each virtual pro-
cessor is allocated a share of one of the physical proces-
sors in the system. The algorithm used to schedule vir-
tual processors on physical processors is the Hard Con-
stant Bandwidth Server (H-CBS) [6].

In other words, the first layer is composed byM in-
dependent partitioned H-CBS schedulers which manage
all the virtual processorsνi,l assigned to their respective
physical processor. Looking again at Fig. 1, there are
two H-CBS schedulers, one to schedule virtual proces-
sors running onπ1, and one for the ones running onπ2.
The H-CBS onπ1 schedules the first virtual processors
of the groups in the system (ν1,1 andν2,1), while the H-
CBS onπ2 schedules the second ones (ν1,2 andν2,2).

Within each group tasks are kept in a global fixed-
priority queue2, and tasks belonging to the same task
group are scheduled globally according to their priority.
At every time instant, if a virtual platformVi is in execu-
tion onm physical processors, then itsm highest priority
tasks are executing. Note thatm ≤ M changes over time
due to the asynchronous scheduling of virtual processors
over the physical ones.

3.3 Formal Properties

The proposed scheduling strategy falls within the class
of schedulers identified in the theoretical schedulability
analysis framework presented in [2]. Therefore, for pur-
poses related to schedulability analysis, the same system
model and analysis techniques may be adopted, with an
additional extension to support hierarchical scheduling.

When an arbitrary hierarchy is considered, the prob-
lem of scheduling an applicationΓ on a group with band-
width allocated on multiple processors is reduced to the
problem of schedulingΓ on theMα∆ abstraction cor-
responding to the service provided by the given group.
Known techniques can be used to derive the parameters
for theMα∆ abstraction representing the group.

In this section we present well-known results and
adapt them to our framework; a schedulability test will
be derived from Theorem 1 and Theorem 3 in [2].

2As Section 4 will explain, the global policy of the queue is imple-
mented using per-processor queues.

3

17

3.3.1 The Supply Function

An abstraction to model the minimum CPU time pro-
vided in a given interval of time is thesupply func-
tion [2, 13]. To introduce the supply function first we
need the concept oftime partition.

Definition 1 A time partitionP is a countable union of
non-overlapping time intervals

P =
⋃

i∈N

[ai, bi) ai < bi < ai+1. (1)

Without loss of generality, we set the time when the
first virtual processor starts in the system equal to 0.

Given a time partitionP , its supply function [2, 13]
measures the minimum amount of CPU time provided
by the partition in any time interval.

Definition 2 Given a time partitionP , its supply func-
tion ZP(t) is the minimum amount of CPU time provided
by the partition in any time interval of lengtht ≥ 0, i.e.,

ZP(t) = min
t0≥0

∫

P∩[t0,t0+t]

dx. (2)

Since, given a virtual processorν, it is not possible to
determine the time partitionP it will provide, the above
definition cannot be used in practice; the following two
definitions generalize the considered time partition to all
the possible partitions that can be generated by a virtual
processor, and extend Def. 2 to be actually usable.

Definition 3 Given a virtual processorν, legal(ν) is the
set of time partitionsP that can be allocated byν.

Definition 4 Given a virtual processorν, its supply
functionZν(t) is the minimum amount of CPU time pro-
vided by the serverν in every time interval of length
t ≥ 0,

Zν(t) = min
P∈legal(ν)

ZP(t). (3)

A virtual processorν implemented through a H-CBS
with budgetQ and periodP, when active, conforms to
the Explicit Deadline Periodic model [14] with deadline
equal to the period. As a consequence, we can use the
well-known supply function:

Zν(t) = max{0, t − (k + 2)(P − Q), kQ}, (4)

with k =
⌊

t−P+Q
P

⌋

.

3.3.2 The(α, ∆) Abstraction

A simpler abstraction, still able to model the CPU allo-
cation3 provided by a virtual processor, but using fewer
parameters, and easier to derive is the “bounded delay
partition,” described by two parameters: a bandwidthα,
and a delay∆. The bandwidthα measures the rate at
which an active virtual processor provides service, while
the delay∆ represents the worst-case service delay.

The formal definitions ofα and ∆, from [13], are
given below.

Definition 5 Given a virtual processorν with supply
functionZν(t), its bandwidthαν is defined as

αν = lim
t→∞

Zν(t)

t
. (5)

Definition 6 Given a virtual processorν with supply
functionZν(t) and bandwidthαν , its delay∆ν is defined
as

∆ν = sup
t≥0

{

t −
Zν(t)

αν

}

. (6)

Using the two definitions above, the supply function
Zν(t) of a virtual processorν can be lower bounded as
follows:

Zν(t) ≤ max{0, αν(t − ∆ν)}, (7)

which gives an intuitive definition of the(α, ∆) abstrac-
tion, as a way to extract a lower bound for the actual
supply function of a virtual processor;α represents the
share of the physical processor time assigned to the vir-
tual processor, while∆ represents the responsiveness of
the allocation. In the case of a H-CBS virtual processor
of budgetQ and periodP, we have:

α =
Q
P , ∆ = 2P − 2Q. (8)

3.3.3 (α, ∆) Abstractions and Multiprocessors

In [2] an extension of the(α, ∆) abstraction for multipro-
cessors is given, along with the calculation of the(α, ∆)
parameters for several algorithms described in literature.

Definition 7 The Multi-(α, ∆) (Mα∆) abstraction of a
setV = {νj}j=1,...,m of virtual processors, represented
by the m pairs {(αj , ∆j)}j=1,...,m is a multi-supply
function defined by the set of supply functions{Zνj

:
Zνj

(t) = max(0, αj(t − ∆j))}j=1,...,m.

3The same abstraction does not apply to CPU time only [15], but
here we consider only CPU time.

4

18

3.3.4 Schedulability Analysis

We consider the schedulability of a single task group
Γ (composed ofn tasks) over a setV = {νj}j=1,...,m

of virtual processors, with supply functionsZj(t) =
Zνj

(t). First, assuming to know the time partitionPj

provided by eachνj , we definethe characteristic func-
tion Sj(t), defined as follows:

Sj(t) =

{

1 t ∈ Pj

0 t /∈ Pj
. (9)

Without loss of generality, assume the tasks{τk}
within Γ are ordered by non-increasing priority. Con-
sider a single taskτk ∈ Γ. Lℓ denotes the sum of the
duration of all the time intervals over[0, Dk) whereℓ
virtual processors provide service in parallel:

∀ℓ : 0 ≤ ℓ ≤ m, Lℓ =

∣

∣

∣

∣

∣

∣







t ∈ [0, Dk) :

m
∑

j=1

Sj(t) = ℓ







∣

∣

∣

∣

∣

∣

.

(10)
With Wk we denote the workload of jobs with higher

priority interfering withτk, andIk denotes the total du-
ration in [0, Dk) in which τk is preempted by higher pri-
ority jobs. From [16] we know that, for a fixed priority

scheduler, the workloadW
FP

k can be bounded using:

W
FP

k =

k−1
∑

i=1

W k,i, (11)

where

W k,i = Nk,iCi + min{Ci, Dk + Di − Ci − Nk,iTi},
(12)

with Nk,i =
⌊

Dk+Di−Ci

Ti

⌋

.

The following theorems, proved in [2], allow us to
build a schedulability test.

Theorem 1 Given a multi-supply function characterized
by the lengths{Lℓ}ℓ=0,...,m over a window[0, Dk), the
interferenceIk onτk produced by a set of higher priority
jobs with total workloadWk cannot be larger than

Ik = L0+
m

∑

ℓ=1

min



Lℓ,
max

(

0, Wk −
∑ℓ−1

p=1 pLp

)

ℓ



 .

(13)

Now that we know how to calculate an upper bound

to the interferenceI
FP

k , substitutingWk = W
FP

k in the
equation above, we can use the following theorem (again,
from [2]) to derive a schedulability test.

Theorem 2 A task setΓ = {τi}i=1,...,n is schedulable
by a fixed priority algorithm on a set of virtual processors
V = {νj}j=1,...,m modeled by{Zj}j=1,...,m, if

∀k ∈ N : 1 ≤ k ≤ n Ck + I
FP

k ≤ Dk, (14)

using the following values for the lengths{Lℓ}ℓ=0,...,m:

L0 = Dk − Z1(Dk)

Lℓ = Zℓ(Dk) − Zℓ+1(Dk) (15)

Lm = Zm(Dk).

The symmetry of our bandwidth distribution allows
for a simplification in the above test. In fact we assign
the same bandwidth and the same period to all the vir-
tual processors corresponding to the same task group;
thus the intermediate lengthsLℓ are zero, and Eq. (13)
can be simplified, resulting in the following equation for
the interferenceIk:

Ik = L0 + min

(

Lm,
max(0, Wk − mLm)

m

)

. (16)

As a final note, to multiplex different task groups on
the same set of physical processors, the basic (neces-
sary and sufficient) H-CBS admission test over the vir-
tual processors{νi}i=1,...,n executing on the same phys-
ical processors must be verified:

n
∑

i=1

Qi

Pi

≤ 1. (17)

3.4 Shared Resources

In order to support access to shared resources, the prior-
ity inheritance and boosting mechanisms, already present
in the Linux kernel, may be exploited. Within the Linux
kernel, the fact that internal mutexes do not adopt priority
inheritance mechanisms limits the possibility of giving
formal upper bounds to blocking times.

In our implementation, we are exploring the usage of
non-preemptive critical sections, realized raising the pri-
ority of the task executing in critical section to the maxi-
mum one available in the system. We are trying to adapt
the approaches and the analysis in [17] and [18] to our
model; a formal treatment of the topic is left as a future
work.

3.5 Policy and Mechanisms

The proposed scheduling framework can be used as the
basis for implementing several different variations, using
mechanisms already present in the kernel, or introducing
small modifications.

5

19

As an example, consider a user willing to adopt a
purely partitioned approach: said user needs only to use
thecpuset mechanism to specify a CPU affinity for the
task groups, and no changes are required to the scheduler
itself. The partitioned queues make handling this case
quite efficient, while the H-CBS scheduler takes care of
partitioning the bandwidth among the task groups on the
same physical processor, according to the specified tim-
ing constraints.

Another open issue is the optimal bandwidth assign-
ment between virtual processors. We stick to the current
Linux model of using the same assignment on each phys-
ical processor, both for its simplicity and for lack of an
interface to express different assignments. Anyway the
H-CBS scheduler would support asymmetric partitions
too, and exploiting this capability would came at the cost
of adding the user interface to setQi/Pi on a per-virtual
processor basis, again, with no modification to the sched-
uler structure.

4 Implementation

We implemented our framework in the Linux kernel. We
modified the existing real-time scheduling class, chang-
ing how task groups are selected for service.

The existing code represents groups of tasks using
struct task group objects; tasks can be grouped
on the basis of their user id or on the basis of the cgroup
they belong to. Each task group contains an array of
per-processor runqueues and scheduling entities. Each
runqueue contains the scheduling entities belonging to
all its (active) child nodes in the hierarchy. Tasks are
leaf nodes, represented only by their own scheduling en-
tity. Each processor has its own runqueue, containing the
scheduling entities belonging to tasks and groups from
the highest level in the hierarchy; a task group has a dif-
ferent scheduling entity on each processor it can run on.

Fig. 3 shows the main differences introduced to the
kernel data structures: the priority array instruct
rt rq has been substituted with a red-black tree, and
a new field (rt deadline) had to be added. The per-
group high-resolution timer previously used for imple-
menting the throttling limitation was replaced by a per-
runqueue timer. Thert rq s of a same task group are
scheduled independently on the processors with H-CBS,
thus the limitation periods are asynchronous among each
other. If the high resolution tick is enabled on the sys-
tem, the scheduler will use it to deliver accurate end-of-
instance preemptions.

The two arrays added tostruct task group are
used to store all the tasks for the given task group on each
processor. The problem here is that tasks are not sched-
uled using H-CBS, and there is no easy way to mix their
entities with the ones associated to intermediate nodes in

1 s t a t i c i n l i n e i n t
2 r t e n t i t y b e f o r e (s t r u c t s c h e d r t e n t i t y ∗a ,
3 s t r u c t s c h e d r t e n t i t y ∗b)
4 {
5 s t r u c t r t r q ∗ rqa = g r o u p r t r q (a) , ∗ rqb =

g r o u p r t r q (b) ;
6

7 i f ((! r qa && ! rqb) | | (rqa−>r t n r b o o s t e d &&
rqb−>r t n r b o o s t e d))

8 re turn r t s e p r i o (a) < r t s e p r i o (b) ;
9

10 i f (rqa−>r t n r b o o s t e d)
11 re turn 1 ;
12

13 i f (rqb−>r t n r b o o s t e d)
14 re turn 0 ;
15

16 re turn (s64) (rqa−>r t d e a d l i n e −
rqb−>r t d e a d l i n e)< 0 ;

17 }

Figure 2: Entity Ordering.

1 s t r u c t r t e d f t r e e {
2 s t r u c t r b r o o t r b r o o t ;
3 s t r u c t rb node r b l e f t m o s t ;
4 } ;
5

6 s t r u c t r t r q {
7 s t r u c t r t e d f t r e e a c t i v e ;
8 u64 r t d e a d l i n e ;
9 s t r u c t h r t i m e r r t p e r i o d t i m e r ;

10 /∗ . . . ∗ /
11 } ;
12

13 s t r u c t t a s k g r o u p {
14 s t r u c t s c h e d r t e n t i t y ∗∗ r t t a s k s e ;
15 s t r u c t r t r q ∗∗ r t t a s k r q ;
16 /∗ . . . ∗ /
17 } ;

Figure 3: Data Structures.

the hierarchy. Our solution was to add a leaf runqueue to
each intermediate runqueue, to store its tasks.

Just to give a rough sketch of how the active tree is
handled, Fig. 2 shows the function used to order enti-
ties. When inserting into a leaf runqueue both entities
are tasks, so their priorities are compared. When both
entities are runqueues they are ordered by priority if both
of them are boosted (i.e., executing inside a critical sec-
tion), otherwise boosted runqueues are favored over non-
boosted ones. If none of them is boosted, they are or-
dered by deadline.

The cgroup interface exported by the scheduler has
been extended, in order to allow the definition of the CPU
reservation for the tasks belonging to a group. As we pre-
viously said, all the tasks in a group are scheduled using
a “ghost” runqueue, which gets its own CPU share; the
only change we made to the current cgroup user inter-
face was adding the filesystem parameters to specify the
bandwidth allocated to this ghost queue, i.e., the band-
width allocated to the tasks in each given group.

6

20

5 Experiments

This section presents some preliminary results obtained
with our implementation of the scheduler described so
far. Our primary focus is evaluating the overhead intro-
duced by the mechanism, thus we compare it to the cur-
rent throttling implementation.

We measured the time spent by the scheduler inside
each of the class-specific hooks, filtering out the call-
backs registered by the other scheduling classes. For our
measurements we instrumented the scheduler code and
then we used an ad-hoc minimal tracer4, that measured
the time spent in the main scheduling functions using the
timestamp counter present in all the modern x86 CPUs.
The values acquired using the TSC were stored in a per-
processor ring buffer and copied to userspace using a
daemon reading from a character device; the fact that all
the functions we profiled are called under the runqueue
locks assured that measurement errors due to interrupts
or preemptions were avoided.

The functions we measured are:

• check preempt curr rt() , which, given the
current task and a newly woken one, checks if the
latter is entitled to preempt the former;

• task tick rt() , which handles the system tick
for RT tasks (mainly it checks for timeslice expira-
tion of round-robin tasks);

• enqueue task rt() , which adds a task to the
RT runqueues. In our implementation this function
is responsible of updating the deadline according to
the H-CBS rules, if necessary;

• dequeue task rt() , which removes a task
from the RT runqueues;

• put prev task rt() , which moves the running
task back to the ready (but not running) state;

• pick next task rt() , which selects the next
task to run (if any).

The system used was a quad-core Intel Q6600,
clocked at 2.40GHz, equipped with 2GB of RAM. The
synthetic load we chose was the Fixed Time Quanta [19]
benchmark, executed at RT priority.

Fig. 4 shows the execution times for the RT
scheduling-related functions mentioned above, in the
case there are four (one per core) application threads
running. With our approach, the enqueue and dequeue
paths are slower, as one would expect with the substitu-
tion of the previousO(1) priority array implementation.

4We didn’t use theftrace infrastructure because on our configu-
ration it introduced non-negligible overheads.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

check_preem
pt_curr_rt

task_tick_rt

enqueue_task_rt

dequeue_task_rt

put_prev_task_rt

pick_next_task_rt

D
ur

at
io

n
(n

s)

Throttling
EDF Throttling

EDF Thr. + hrtick

Figure 4: Scheduling Overhead—Flat Hierarchy.

 0

 200

 400

 600

 800

 1000

 1200

 1400

check_preem
pt_curr_rt

task_tick_rt

enqueue_task_rt

dequeue_task_rt

put_prev_task_rt

pick_next_task_rt

D
ur

at
io

n
(n

s)

EDF Throttling
EDF Thr. + hrtick

Figure 5: Scheduling Overhead—Full Hierarchy.

It is also worth noting that using the high resolution tick
does not seem to affect the performance of the scheduling
functions, except forpick next task rt() , which
is the function that programs the timer.

Fig. 5 shows the execution times of the RT schedul-
ing class methods when there are more than a single root
group, and with groups using different periods. We could
not show the current scheduler behavior, as it does not
support non-uniform periods. Performance is not too far
from what shown in Fig 4 for native Linux, while in this
case the overhead for posting the high resolution tick is
more evident.

6 Availability

The implementation of the scheduler described in this pa-
per is available as a patch to the Linux kernel, version
2.6.30-rc8, the latest available at the time of writing. It
can be downloaded from

http://feanor.sssup.it/˜fabio/linux/edf-throttling/

7

21

7 Future Work

The scheduler presented in this paper is still a work in
progress. Our final objective is obtaining an implemen-
tation that can be considered for merging by the Linux
community, yet based on sound theoretical principles.

About the implementation, we need a detailed study of
the introduced overheads, along with the analysis of the
computational cost given by keeping partitioned queues
to implement a global scheduling strategy. From the the-
oretical standpoint, the biggest hole that needs to be filled
in our opinion is the analysis of shared resources access.

8 Conclusion

In this paper we introduced a scheduling framework ex-
tending the Linux scheduler in order to improve its sup-
port for real-time workloads on multiprocessor systems.
The main contribution of the paper is the synthesis be-
tween known theoretical results and the simplicity of the
scheduler implementation, along with the specification
of a complete strategy to solve the different issues that
must be considered when designing a CPU scheduler
(i.e., it deals with shared resources, CPU affinities, parti-
tioned data structures and so on).

References

[1] T. Cucinotta, G. Anastasi, and L. Abeni, “Respect-
ing temporal constraints in virtualised services,” in
To appear in Proceedings of the2nd IEEE Inter-
national Workshop on Real-Time Service-Oriented
Architecture and Applications (RTSOAA 2009),
Seattle, Washington, July 2009.

[2] E. Bini, G. Buttazzo, and M. Bertogna, “The
multi supply function abstraction for mul-
tiprocessors,” to appear,available online at
http://feanor.sssup.it/∼marko/RTCSA09.pdf, 2009.

[3] RTLinux homepage, http://www.rtlinux.org.
[4] RTAI homepage, http://www.rtai.org.
[5] L. Palopoli, T. Cucinotta, L. Marzario, and G. Li-

pari, “AQuoSA — adaptive quality of service ar-
chitecture,” Software – Practice and Experience,
vol. 39, no. 1, pp. 1–31, 2009.

[6] L. Abeni and G. Buttazzo, “Integrating multi-
media applications in hard real-time systems,”
in Proc. IEEE Real-Time Systems Symposium,
Madrid, Spain, 1998.

[7] D. Faggioli, G. Lipari, and T. Cucinotta, “An effi-
cient implementation of the bandwidth inheritance
protocol for handling hard and soft real-time ap-
plications in the Linux kernel,” inProceedings of
the4th International Workshop on Operating Sys-

tems Platforms for Embedded Real-Time Applica-
tions (OSPERT 2008), Prague, Czech Republic,
July 2008.

[8] “Linux Testbed for Multiprocessor Schedul-
ing in Real-Time Systems (LITMUSRT),”
http://www.cs.unc.edu/ anderson/litmus-rt/.

[9] B. Brandenburg, J. M. Calandrino, and J. H. Ander-
son, “On the scalability of real-time scheduling al-
gorithms on multicore platforms: A case study,” in
Proceedings of the Real-Time Systems Symposium,
Barcelona, 2008.

[10] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel,
“Proportionate progress: A notion of fairness in re-
source allocation,”Algorithmica, vol. 6, 1996.

[11] IEEE,Information Technology -Portable Operating
System Interface (POSIX)- Part 1: System Appli-
cation Program Interface (API) Amendment: Addi-
tional Realtime Extensions., 2004.

[12] D. Faggioli, A. Mancina, F. Checconi, and G. Li-
pari, “Design and implementation of a POSIX com-
pliant sporadic server,” inProceedings of the10th

Real-Time Linux Workshop (RTLW), Mexico, Oc-
tober 2008.

[13] A. K. Mok, X. A. Feng, and D. Chen, “Resource
partition for real-time systems,”Real-Time and Em-
bedded Technology and Applications Symposium,
IEEE, vol. 0, p. 0075, 2001.

[14] A. Easwaran, M. Anand, and I. Lee, “Composi-
tional analysis framework using edp resource mod-
els,” Real-Time Systems Symposium, IEEE Interna-
tional, vol. 0, pp. 129–138, 2007.

[15] D. Stiliadis and A. Varma, “Latency-rate servers: A
general model for analysis of traffic scheduling al-
gorithms,” inIEEE/ACM Transactions on Network-
ing, 1996, pp. 111–119.

[16] M. Bertogna, M. Cirinei, and G. Lipari, “Schedula-
bility analysis of global scheduling algorithms on
multiprocessor platforms,”IEEE Transactions on
Parallel and Distributed Systems, 2008.

[17] M. Bertogna, F. Checconi, and D. Faggioli, “Non-
preemptive access to shared resources in hierarchi-
cal real-time systems,” in1st Workshop on Com-
positional Theory and Technology for Real-Time
Embedded Systems, Barcelona, Spain, December
2008.

[18] A. Block, H. Leontyev, B. B. Brandenburg, and
J. H. Anderson, “A flexible real-time locking proto-
col for multiprocessors,” inRTCSA ’07: Proceed-
ings of the 13th IEEE International Conference on
Embedded and Real-Time Computing Systems and
Applications. Washington, DC, USA: IEEE Com-
puter Society, 2007, pp. 47–56.

[19] FTQ http://rt.wiki.kernel.org/index.php/FTQ.

8

22

Threaded IRQs on Linux PREEMPT-RT

Luı́s Henriques
Intel Shannon, Ireland

Email: luis.henriques@intel.com

Abstract

In recent years, usage of GNU/Linux-based systems
in embedded applications has increased and several
Linux-enabled devices are currently available. From network
devices to mobile phones, the Linux kernel is being
adopted by developers and companies as an alternative to
other proprietary operating systems traditionally used in
embedded systems. However, markets grow very fast and
the industry is pushing real-time requirements into the Linux
kernel.

This article presents an overview of a feature called
“Threaded IRQs” that has been used by thePREEMPT-RT

patch for years. This feature, currently being pushed to the
mainline kernel by the patch maintainers, allows interrupt
handlers to be executed as regular kernel threads. Along with
the description of the implementation details of this feature,
some experimental results to measure the effectiveness of
threadedIRQs in the Linux kernel are also presented.

Index Terms

Linux, kernel, real-time,PREEMPT-RT, IRQ, cyclictest.

1. Introduction

In contrast to traditional real-time operating systems
that have been designed from the beginning to provide
predictable response time, the Linux kernel[1], as a
general-purpose operating system, was designed around
fairness and good average performance under sustained load
conditions. There are, however, several attempts to provide
Linux with real-time capabilities[2] and this article will
focus on one of these attempts: thePREEMPT-RT patch[3],
[4].

This article presents an overview of one of the features
implemented in thePREEMPT-RT patch that is not yet
available in the mainline Linux kernel: the ability to
process interrupts in a threaded context. Some experimental
measurements have also been defined in order to evaluate the
impact introduced by threadedIRQs (Interrupt Requests) in
system throughput and system latencies.

The remainder of this paper is structured as follows.
Section 2,Related work, describes some implementations

of the threadedIRQs concept in systems other than Linux.
Section 3, PREEMPT-RT overview, presents an overview
of the main characteristics of thePREEMPT-RT patch.
Section 4,Threaded IRQs inPREEMPT-RT, provides details
on implementation of threadedIRQs in the PREEMPT-RT

patch. Section 5,Experiment description, describes the test
scenarios and benchmark selected to measure the impact of
threadedIRQs in the Linux kernel. Section 6,Experiment
results, provides data collected by tests. Finally, Section
7, Conclusions, summarizes the results obtained and draws
some conclusions.

2. Related work

The usage of threaded contexts in interrupt handling
is a pattern that can be found in several multi-threaded
UNIX R© kernels. Threaded interrupt handlers have been used
with two major purposes: 1) to simplify the programming
model by having an uniform synchronization model both for
processes/threads and interrupts and 2) to improve system
predictability by decreasing the number of times in which
interrupts are masked.

One example of threaded interrupt handling can be found
in the FreeBSD[5][6] kernel. By implementing interrupt
threads, the FreeBSD kernel allows the interrupt handlers
to perform operations typically not allowed in an interrupt
handler’s context, for example, to block on locks. Since full
context-switching is performed whenever an interrupt thread
is to be scheduled, FreeBSD implements these threads with
real-time kernel priorities in order to decrease latencies. This
way, interrupt threads are guaranteed to execute with higher
priority than other user-level threads. Note, however, that
not all the interrupt handlers are executed in a threaded
context on the FreeBSD kernel. Currently, there are two
interrupt handlers that do not have their own context: the
clock interrupt and the serial I/O device interrupts. These
two handlers are called “fast interrupt handlers” and they
are not allowed to acquire blocking locks — they can only
use spin mutexes.

A different approach is implemented in the Solaris 2
kernel [7]: interrupts behave like asynchronously-created
threads. However, since thread creation operations are very
expensive, it is not feasible to create new threads when
interrupts occur. Thus the kernel keeps per-CPU pools of
threads in a pre-initialized state. This way, when an interrupt

23

occurs, the interrupted thread is set into a non-runnable
state (pinned, in Solaris terminology) and the interrupt
thread is executed. Since no context-switch has actually
occurred, apinned thread can not be scheduled while the
interrupt thread is running, not even in a different CPU.
This mechanism avoids the overhead of completely saving
the thread’s state or putting threads on run queues. Full
context-switch actually occurs when the interrupt handler
thread needs to block (e.g., on a mutex). When this occurs,
the handler is changed into a regular thread, capable of
being scheduled. Thepinned thread is set as runnable and
the scheduler is invoked. This mechanism allows the Solaris
kernel to avoid the overhead of creating a full thread if the
interrupt handler does not need to block — this overhead
is postponed to the moment the interrupt thread actually
blocks.

An example of a non-UNIXR© operating system that
postpones the completion of interrupt servicing until after
the ISR returns is the MicrosoftR© WindowsR© operating
system[8][9]. In this system, the interrupt servicing consists
typically of two components: anInterrupt Service Routine
and a Deferred Procedure Call(DPC). The ISR part is
executed at a high priority, while theDPC part is executed at
a lower priority (WindowsR© uses its own interrupt priority
scheme on top of the interrupt priorities imposed by the
interrupt controllers, known asInterrupt Request Levelor
IRQL). For example, anISR registered from a device driver
typically has minimal interaction with the hardware device,
limiting its operation to reading state registers and masking
its interrupts. Then, theISR can request the kernel to
schedule aDPC, which will be executed later, at a lower
IRQL. By scheduling aDPC at a lower IRQL, the device
driver allows interrupts that are set with a higherIRQL to
occur. Although the operations that can be executed from a
DPC are restricted (e.g., aDPC cannot block), aDPC is far
less restrictive than anISR.

The usage of threads to handle interrupts has also
been used in micro-kernel architectures. Micro-kernels
are minimalistic operating system kernels that implement
only a small set of functionalities that require special
privileges, such as address spaces, threads support and
message-based Inter-Process Communication (IPC). All
other functionalities, including device drivers, are left
to be implemented in user-space byservers. The L4
micro-kernel[10][11], for example, abstracts the hardware
itself as being a set of threads. These threads have special
IDs and are responsible for sending a synchronous IPC
message to a user-space thread which previously registered
an interrupt handler for a particular interrupt. Interrupts are
handled by the micro-kernel by simply masking the interrupt
in the interrupt controller and signaling the user-space thread
with an IPC message. The real handler is eventually executed
in user-space with its interrupt masked, but with all other
interrupts enabled. Any other interrupt can occur in the

meantime, preempting the interrupt handler. Finally, when
the handler finishes servicing the interrupt, it will signalthe
micro-kernel which will then unmask the interrupt controller.

3. PREEMPT-RT overview

The roadmap defined forPREEMPT-RT by its initial creator
Ingo Molnar was to gradually add real-time (RT) capabilities
to the Linux kernel1. This was definitely a long-term job
and several functionalities that have been developed for the
PREEMPT-RT patch have already made their way to the
mainline kernel. However, several core characteristics ofthis
patch, such as the threadedIRQs, continue to be developed
outside of the main kernel tree.

The goals of thePREEMPT-RT kernel patch include:
• Fixed priority preemptive scheduling on the kernel.

In POSIX, this is translated into using the scheduling
policiesSCHED_FIFO andSCHED_RR as opposed to
SCHED_OTHER, which is the default policy on Linux.

• No impact on non-RT tasks running on the system,
meaning that the system could have both RT and
non-RT tasks running together.

• User control of the trade-off between latency and
throughput by configuring the kernel in a proper way.

The major changes introduced in the Linux kernel by the
PREEMPT-RT patch include:

• Complete kernel preemption — The vanilla kernel
currently has three preemption configuration options:
No forced preemption, Voluntary kernel preemptionand
Preemptible kernel. The PREEMPT-RT patch introduces
a new configuration option,complete preemption,
which further reduces scheduling latency by replacing
most of the spinlocks with blocking mutexes.

• High-resolution timers — The introduction of
high-resolution timers [12][13] includes the conversion
of the old Linux timer API into two separate
infrastructures: one for high-resolution kernel timers
(e.g.,sleep) and another to handle timeouts. These
modifications lead to user-space POSIXhrtimers.
High-resolution timers is a feature that was initially
implemented in thePREEMPT-RT patch and has now
been pushed to the mainline kernel.

• Priority inheritance — The solution to handle the
priority inversion problem in thePREEMPT-RT kernel
was to implement the Priority Inheritance protocol.
Basically, this protocol defines that, if a high priority
task blocks on a resource that is currently held by a
lower priority task, this task temporarily inherits the
priority of the blocking task. This priority inheritance
change is temporary — as soon as the task releases the
resource, its priority is restored. The priority inheritance

1. Whenever “Linux kernel” is mentioned, this is Linux kernel that can
be obtained from [1], also called the “Vanilla kernel” or “mainline kernel”.

24

High

Priority

Low

Priority

Controlled by

Scheduler

Time-sharing tasks

Real-time tasks

Not controlled by

Scheduler

Soft-IRQs

Interrupt handlers

Figure 1. Execution entities

implementation is currently available in thevanilla
kernel.

For further details on thePREEMPT-RT patch, please refer
to [14], [4].

4. Threaded IRQs in PREEMPT-RT

Let us consider a hypothetical scenario: a low priority
task doing heavy I/O operations (for example, writing huge
amounts of data onto hard-disk). If there is a higher priority
task that keeps preempting the low priority task, it will be
disturbed by interrupts triggered by hardware due to the
lower priority task activity. This is a realistic scenario that
can be easily observed in a Linux system since interrupt
handling routines have the highest priority amongst all
execution entities in the system.

The PREEMPT-RT patch provides a solution for this
problem. However, before describing the solution, it is
necessary to describe how Linux handles the different
execution entities that may be active in the system at each
moment.

4.1. Linux execution entities

Fig. 1 shows several execution entities available on the
mainline kernel2: higher priority entities on the top (Interrupt
Service Routines, orISRs) and lower priority entities on the
bottom (regular user-space tasks). The only entities that are
under the scheduler control are the regular Linux processes
and the real-time processes;ISRs and the soft-IRQs are not
under the scheduler control on thevanilla kernel.

This means that, whenever an interrupt occurs, no matter
what task is being executed, the CPU is preempted and
the ISR is executed.ISRs can be preempted only by other
higher-priority interrupts that may occur. This way, a device

2. The figure does not represent all the execution entities that are
available in Linux systems. For example, it does not make anydistinction
between soft-IRQs and tasklets and it does not show any kernel threads.

driver is expected to do very little work in theIRQ handler
(typically just confirm thatIRQ is to be handled by the
driver and acknowledge the hardware) and to postpone any
time-consuming task to a soft-IRQ.

Soft-IRQs (and tasklets) are routines that are executed
after ISRs have been processed and before the interrupted
process is resumed. These routines are responsible for doing
any task that has been postponed byISRs (for example,
copying data to/from buffers). Although soft-IRQs and
tasklets are very similar, they have some differences:

• One tasklet cannot execute simultaneously on two
different CPUs, while soft-IRQs can.

• It is guaranteed that a tasklet will be executed on the
same processor that scheduled it. This is not guaranteed
for soft-IRQs.

This means that tasklets are much easier to implement
since they do not need to be reentrant.

4.2. PREEMPT-RT solution

The solution provided by thePREEMPT-RT patch to the
problem described at the beginning of Section 4 is to have
all the interrupt handlers running as regular kernel threads —
this way, a high priority thread can avoid being preempted
by the interrupt handler thread by setting its priority to be
higher than the interrupt handler thread priority.

A device driver registers a newIRQ handler with a
PREEMPT-RT patched kernel using the same interface as in
the vanilla kernel, i.e., through routinerequest_irq. A
new thread will be created by the kernel to handle theIRQ

only if that IRQ does not have already one thread associated
— there will only exist one thread for eachIRQ. The device
driver does not need to be designed to take advantage of
threadedIRQs, i.e., device drivers from thevanilla kernel can
be used with thePREEMPT-RT kernel running with threaded
IRQs without modifications.

However, a device driver may not want to have its
interrupt handler being executed in a threaded context. In this
case, when invoking therequest_irq routine, the device
driver has to set the interrupt type flag withIRQ NODELAY.
This way, the kernel will not create anIRQ thread.

SharedIRQs are handled by the kernel by keeping a list,
ordered in aFIFO maner, of all theISRs registered perIRQ.
Thus, when an interrupt occurs, all the registeredISRs for
the correspondingIRQ are invoked from theIRQ thread. Note
that the sharedIRQ ISRs must both be either non-threaded
or threaded, i.e., it is not possible to have a threadedISR

sharing theIRQ of a non-threadedISR.
Fig. 2 is a simplified function call graph that shows what

happens when an interrupt line is asserted. The entry point
for all IRQs is routinedo_IRQ. A more appropriate handler
will then be invoked, depending on the type of interrupt
being handled (for example, edge-triggered interrupt are

25

do_IRQ()

handle_*_irq()

Set IRQ flag
IRQ_INPROGRESS

redirect_hardirq()

IRQ flag ==
IRQ_NODELAY?

handle_IRQ_event

No

wake_up_process()

Yes

Clear IRQ flag
~IRQ_INPROGRESS

Figure 2. Threaded IRQs call graph

handled differently from level-triggered interrupts). This
interrupt type specific handler is set by the kernel during its
initialization and will be responsible for theProgrammable
Interrupt Controller (PIC) low-level operations such as
masking the interrupt and signaling theEnd-of-Interrupt
(EOI) to the PIC.

The status flag in theIRQ descriptor is set to
IRQ INPROGRESSand theredirect_hardirq routine
is invoked. This routine is responsible for checking whether
this IRQ is handled by a thread, i.e., theIRQ descriptor
flag does not containsIRQ NODELAY. If it is handled by a
thread, the thread is woken up, otherwise theIRQ is handled
immediately by sequentially invoking all the registeredISRs
for the correspondingIRQ.

Since edge-triggered interrupts can occur in the falling
and/or rising edge of an hardware signal, these interrupts
need to be acknowledged in order to be re-enabled. If this
is not done, there is a risk of losing an interrupt that
occur while another one is being handled. Thus, for the
edge-triggered interrupts, the interrupt is re-enabled during
the interrupt handler so that the handler is able to recognize
the situation where the sameIRQ occurred while its handler
was already executing.

A simplified version of theIRQ kernel thread body is
shown in Listing 1.

The set_current_state function will
change the state of the currently executing task to
TASK INTERRUPTIBLE. When invoking theschedule
function with the task in this state, the task is removed
from the run queue before any other task is scheduled. This

whi le (! k t h r e a d s h o u l d s t o p ()) {
s e t c u r r e n t s t a t e (TASK INTERRUPTIBLE) ;
d o h a r d i r q (desc) ;
s c h e d u l e () ;

}

Listing 1. IRQ kernel thread body

way, the task is set to sleep and is not scheduled again until
another task wakes it again throughwake_up_process.
Invoking wake_up_process on a task that is in
TASK INTERRUPTIBLE state will result in setting its state
again toTASK RUNNING and inserting it back into the run
queue.

The actual interrupt handling is done in a loop that will
invoke all the handlers that have been previously registered
through routinerequest_irq for the currentIRQ . This
loop is implemented inhandle_IRQ_event.

4.3. Benefits of threaded IRQs

There are several advantages of having threadedIRQs
in the kernel. One of these advantages has already been
mentioned: it allows the user to set tasks with priorities
higher than theIRQ handlers. This way, high priority (RT)
tasks may be configured in a way so that they are not
disturbed by lower priority (non-RT related) interrupts.

Other advantages of having threadedIRQs are:

• Since IRQ handlers are now regular kernel threads, it
is possible to modifyIRQ handler priorities and have
IRQs with priorities different from those enforced by
the hardware.

• System observability is increased since it is much easier
to debug/instrument a thread than a traditional interrupt
handler.

• Interaction between the hard-IRQ handler and the
soft-IRQs/tasklets is simplified, without the usual
locking complexity.

There are, however, some interrupt handlers that are not
desirable to be executed as threads due to the fact that they
execute critical operations to the overall system. The most
obvious example of such interrupts is the timer interrupt.
Thus, the ISR handler for this IRQ is set up using the
IRQ NODELAY flag so that it will force the interrupt handler
to be executed in the interrupt context and not in threaded
context.

The usage of threadedIRQs has also one major drawback:
performance will decrease when interrupts are handled by
threads. The main reason for this is that the number of
context switches between threads is higher due to theIRQ

scheduling. Thus, the overall throughput of a Linux system
using threadedIRQs can be lower when compared with
another system that does not use this feature.

26

Traffic

Generator SUT

Workstation

ethernet

Figure 3. Test environment setup

5. Experiment description

In order to evaluate the effects of having threadedIRQs on
the Linux kernel, a test environment was set up using a board
with an IntelR© EP80579 integrated processor. This processor
is an IntelR© Architecture (IA) based system-on-a-chip (SoC)
processor, based on the IntelR© PentiumR© M processor. The
SoC includes integrated memory controller hub, integrated
I/O controller hub, and flexible integrated I/O support with
three Ethernet MACs, two Controller Area Network (CAN)
interfaces and a local expansion bus interface. The processor
used in these experiments was an 800 MHz clock version,
with 256 Kb cache and 769884 Kb of RAM.

The System Under Test (SUT) was configured to perform
IP traffic forwarding between two different networks,
associated with two ethernet cards (see Fig. 3). These two
ethernet cards were connected to a traffic generator that
injected traffic in one of the networks and received it in
the other network.

The ethernet cards used in the experiments were two
Intel R© 82572EI Gigabit Ethernet Controller for PCI Express,
using thee1000e Linux device driver.

This test environment was controlled from a workstation
which was connected both to the SUT and to the traffic
generator.

Several test experiments were defined in order to evaluate
the effects of having threaded interrupts in the Linux
kernel. These experiments were executed on three different
configurations of Linux kernel version 2.6.29.3:

• Vanilla — This configuration is, basically, the mainline
kernel without anyPREEMPT-RT option. It was used as
a reference for results comparison.

• Threaded IRQs — This configuration uses a
kernel patched with thePREEMPT-RT but only
the configuration options needed to activate the
threadedIRQs have been selected.

• Fully PREEMPT-RT — This configuration activates
all the main features from thePREEMPT-RT patch,
including threadedIRQs and theComplete preemption
option.

Finally, a benchmark application was selected to be
executed on the Linux box. This benchmark,cyclictest[15],
was first written by Thomas Gleixner as a tool
to investigate possible regressions while developing
the PREEMPT-RT patches. It is now considered the
state-of-the-art measurement tool to determine the internal
worst-case latency of a Linux real-time system.

Basically,cyclictestis composed of one thread (or a set of
threads) that sleeps for a certain period of time and measures
the accuracy of this sleep system call. 500µsecs was the
interval selected for these experiments. Thus,cyclictest is
able to measure a full chain of different types of latencies,
namely:

• Timer interrupt
• Scheduler
• User space execution

The cyclictestapplication was executed in the following
test scenarios:

• No load — The system was idle and the benchmark
application was the only application being scheduled.
This scenario was for reference only.

• Low priority — The system was under load with huge
amounts of ethernet traffic being forwarded between
the two networks. Thecyclictest thread was executed
with a priority lower than theIRQs associated with the
ethernet cards.

• High priority — The system was under load with huge
amounts of ethernet traffic being forwarded between
the two networks. Thecyclictest thread was executed
with a priority higher than theIRQs associated with the
ethernet cards.

Each of these scenarios was executed in the three kernel
configurations, with the exception that, for thevanilla kernel
configuration, only two scenarios were executed since it
is not possible to configure an application to have higher
priority than the IRQs. This means that a total of eight
different experiments were executed.

To load the system, a traffic generator equipment was
configured to inject traffic in one of the ethernet cards of the
SUT (eth0). The SUT then forwarded the traffic to the other
ethernet card (eth1). The ethernet packets injected were all
the same size, 64 bytes. Also, different loads were defined
— packets were injected with different frequencies, namely
with 10, 9, 8, 7, 6 and 5 microseconds. Values smaller than
5 microseconds were discarded since at this point the SUT
starts dropping too many packets.

All the tests were executed during a fixed period of time:
10 minutes each test.

6. Experiment results

This section provides the data collected during execution
of the experiments described in the previous section. Each

27

subsection contains the data collected for each of the defined
kernel configurations:vanilla kernel, PREEMPT-RT kernel
with threadedIRQs configuration option andPREEMPT-RT

kernel with threadedIRQs andComplete preemptionoptions.

6.1. Vanilla kernel results

This section provides the results obtained for the mainline
kernel, i.e., the kernel without thePREEMPT-RT patch.

Table 1. Vanilla kernel cyclictest results

Tx Rate cyclictest # IRQs
(µsecs) Min Avg Max eth0 eth1

10 5 48 585 18,076,86313,882,919
9 4 48 1,180 13,912,62311,093,282
8 4 52 1,051 10,644,941 9,791,348
7 4 76 1,435 10,350,929 9,970,528
6 5 94 1,893 7,808,480 8,708,121
5 3 193 6,553 4,556,491 5,172,545
0 3 5 89 - -

Table 1 provides the data obtained from the execution of
the cyclictestbenchmark.

The first column in the table lists the rates (in
microseconds) at which the 64 bytes packets were injected
in the system. The next three columns show the minimum,
average and maximum latencies, i.e., the minimum, average
and maximum times thecyclictestbenchmark took to resume
execution after the sleep of 500µsecs. Finally, the two last
columns show the number of interrupts that occurred in the
two PCIe network cards during the period of time the test
was being executed, i.e. 10 minutes.

Note that the last row in this table contains the results
from an execution of thecyclictest benchmark with a
transmit rate of 0 (zero), i.e., the system was idle and no
packets were being injected. The results in this row are for
reference only.

As we can see from this data, thevanilla kernel has a
high variation in the latencies — comparing, for example,
the difference between the maximum latency value when the
system is not receiving any packets (last row in table) and the
maximum latency value when the system is receiving one
packet every 10µsecs, there is a difference of 496µsecs
(585 minus 89).

Another observation on the data in this table is that
the number of interrupts on the ethernet cards decreases
when the packet transmission frequency increases. This is
probably due to the fact that the ethernet device drivers use
a mechanism for disabling interrupts and start polling the
device when interrupt frequency is too high. The impact of
this mechanism was not in the scope of this analysis and
has not been further investigated.

Fig. 4 shows a graphical representation of thecyclictest
benchmark execution results.

Figure 4. Vanilla kernel cyclictest graphic

Table 2. Vanilla 2.6.29.3 Tx/Rx

Tx Rate Tx/Rx Frames
(µsecs) Tx Rx Lost Lost (%)

10 57,716,382 57,716,382 0 0.00
9 63,260,305 63,260,305 0 0.00
8 70,782,330 70,782,330 0 0.00
7 80,704,937 80,704,937 0 0.00
6 91,873,761 91,873,761 0 0.00
5 124,042,888124,042,888 0 0.00

Table 2 lists statistical data on the amount of traffic that
was transmitted/received by the traffic generator. The first
column shows the packet transmission rates in microseconds.
The second and third columns represents the number of
packets transmitted and packets received, respectively. The
fourth and fifth columns contain the packet loss.

A note on the values on this table (and similar tables for
other kernel configuration results) is that these values are
not synchronized with the data in table 1. This is because
there was no synchronization between the traffic generator
and the SUT — the tests were manually executed and thus
the values in this table are only approximated values.

As the table shows, thevanilla kernel is able to handle
the amount of traffic generated without losing any packets.
This is true even when injecting packets at a 5µsec rate,
where 124,042,888 ethernet frames of 64 bytes each have
been sent, corresponding to more than 8 Gb of data.

6.2. PREEMPT-RT kernel with Threaded IRQs
option results

This section provides the results obtained for the kernel
patched withPREEMPT-RT, configured with threadedIRQs
related options.

As described in Section 5,Experiment description, for
this kernel configuration, thecyclictest benchmark was
executed in two different scenarios: in the first scenario

28

the benchmark is executed with a priority lower than the
interrupt handlers for the ethernet cards, and in the second
scenario the benchmark is executed with a priority higher
than the interrupt handlers.

Since the interrupt handler threads are executed with
priority 50 by default, in the first scenario thecyclictest
was configured to run with priority 40 (lower than interrupt
handler threads). Table 3 shows the results for this scenario.

Table 3. Threaded IRQs kernel cyclictest results (Low
Priority)

Tx Rate cyclictest # IRQs
(µsecs) Min Avg Max eth0 eth1

10 6 128,474,238268,133,3386,170,1395,991,550
9 7 129,139,176269,522,3526,055,5786,000,188
8 7 136,136,357274,904,9685,960,8775,946,526
7 9 139,804,614280,713,6765,405,7715,589,278
6 256 154,922,510310,819,2044,239,1184,350,945
5 - - 607,364,076 29,896 26,134

The first interesting conclusion that can be obtained from
this data is that the number of interrupts in the ethernet cards
is much lower than for thevanilla kernel. The overhead
introduced by the context-switches toIRQ threads forces the
ethernet cards to have their interrupts masked for a longer
time. For this reason, the number of interrupts is actually
lower in this configuration.

Also, the data in the table shows that this scenario has very
high maximum latencies. For example, when transmission
rate is 10µsecs, the maximum latency obtained was greater
than 4 minutes (268,133,338µsecs) and when transmission
rate is 5µsecs, the benchmark is not even able to execute
— maximum value in this row is around 10 minutes,
corresponding to the total execution time for the test. This
means that the CPU load is very high and no cycles are left
for low priority applications.

Fig. 5 shows a graphical representation of thecyclictest
execution results using threadedIRQs at a low priority.

Table 4. Threaded IRQs kernel Tx/Rx (Low Priority)

Tx Rate Tx/Rx Frames
(µsecs) Tx Rx Lost Lost (%)

10 57,001,190 57,001,190 0 0.00
9 63,118,069 63,118,069 0 0.00
8 70,603,675 70,603,675 0 0.00
7 79,494,929 79,494,929 0 0.00
6 91,920,546 91,417,773 502,773 0.55
5 112,119,077103,828,8078,290,270 7.39

Table 4 summarizes the amount of traffic
transmitted/received by the traffic generator. This
configuration is also not able to handle all the traffic
that is injected on the system. Packets start to be dropped
when high transmission rates are used (6 and 5µsecs).

The scenario changes when thecyclictestbenchmark is
executed with higher priority. Table 5 shows the results of

Figure 5. Threaded IRQs kernel cyclictest graphic (Low
Priority)

Table 5. Threaded IRQs kernel cyclictest results (High
Priority)

Tx Rate cyclictest # IRQs
(µsecs) Min Avg Max eth0 eth1

10 4 8 65 6,223,5535,994,708
9 4 8 479 5,780,0335,836,146
8 5 9 74 5,123,0275,277,829
7 6 135,580,508272,452,2384,467,4404,591,824
6 6 140,860,392282,329,9332,830,2942,808,786
5 8 156,278,465313,641,236 16,384 14,435
0 4 5 93 - -

the benchmark execution when its priority is set to 80, which
is a priority higher than theISRs handlers (50, by default).

Although the latencies for higher transmission rates are
still very high, with lower transmission rates these values
are significantly lower than for thevanilla kernel.

Fig. 6 shows a graphical representation of thecyclictest
execution results using threadedIRQs at a high priority.

Table 6. Threaded IRQs kernel Tx/Rx (High Priority)

Tx Rate Tx/Rx Frames
(µsecs) Tx Rx Lost Lost (%)

10 56,920,922 56,920,922 0 0.00
9 62,747,678 62,664,039 83,639 0.13
8 70,389,695 70,389,695 0 0.00
7 79,638,318 79,637,232 1,086 0.00
6 91,039,343 89,535,226 1,504,117 1.65
5 108,608,75498,436,71410,172,040 9.37

Table 6 provides the statistical data collected in the traffic
generator.

6.3. Fully PREEMPT-RT kernel results

This section provides the results for the Linux kernel
patched withPREEMPT-RT, using both the threadedIRQs

29

Figure 6. Threaded IRQs kernel cyclictest graphic (High
Priority)

configuration options and theComplete preemptionoption.
Table 7 presents the results for thecyclictestbenchmark

executing with a priority lower than the priority of theIRQs
threads.

The maximum latencies results for the lower transmit rates
(7 to 10 µsecs) are similar to the results obtained for the
vanilla kernel — around 1,400µsecs. There is, however,
still a very high variation between the minimum and the
maximum values.

Similar to the previous configuration (PREEMPT-RT kernel
with threadedIRQs only), the number of interrupts for the
ethernet cards is lower than the values obtained for the
vanilla kernel. Again, this is due to the overhead introduced
by the context switching toISRs threads.

Table 7. PREEMPT-RT kernel cyclictest results (Low
Priority)

Tx Rate cyclictest # IRQs
(µsecs) Min Avg Max eth0 eth1

10 2 60 1,417 6,094,3905,887,783
9 2 74 1,294 6,053,3765,858,603
8 7 129 1,466 5,553,8515,596,537
7 2 152 1,546 4,810,3295,044,578
6 1 1,610 75,579 3,644,7293,765,491
5 370,627 252,284,884496,880,0981,724,9081,629,418

Fig. 7 shows a graphical representation of thecyclictest
execution results using threadedIRQs at a low priority.

In Table 8, the data collected from the traffic generator
equipment shows that packet drops also occur in this
configuration when transmission rates increase — with
packets being transmitted every 6µsec, around 1.51% of
the packets are lost.

The last configuration used in the experiments was to set
the cyclictestbenchmark with priority 80, which is higher

Figure 7. PREEMPT-RT kernel cyclictest graphic (Low
Priority)

Table 8. PREEMPTRT 2.6.29.3 Tx/Rx (Low Priority)

Tx Rate Tx/Rx Frames
(µsecs) Tx Rx Lost Lost (%)

10 57,077,012 57,077,012 0 0.00
9 62,892,065 62,892,065 0 0.00
8 70,316,148 70,316,148 0 0.00
7 79,491,682 79,491,682 0 0.00
6 91,747,522 90,361,321 1,386,201 1.51
5 108,360,109102,793,1985,566,911 5.14

than the interrupt handlers. Table 9 presents the results of
this configuration.

Table 9. PREEMPT-RT kernel cyclictest results (High
Priority)

Tx Rate cyclictest # IRQs
(µsecs) Min Avg Max eth0 eth1

10 5 9 27 6,158,4865,835,824
9 5 9 29 5,792,2935,617,035
8 5 9 32 5,558,0525,573,145
7 5 9 30 4,774,9984,898,368
6 1 42 25,880 3,398,3593,431,860
5 5 1,249 50,153 454,401 407,200
0 4 5 25 - -

In this configuration, the maximum values for the
latencies reported by thecyclictestwere around the 30µsecs
for transmission rates below 6µsecs. The maximum latency
value varies from 25 (when system is idle, i.e., no traffic is
being injected) to 32µsecs (when transmission rate was set
to a packet every 8µsecs). With a variation of 7µsecs for
these two scenarios, it is possible to state that the system is
quite predictable. For higher transmission rates, values are
again very high.

There is a huge latency of 25 milliseconds when moving
from a packet rate of 7 to 6µsecs. The overhead introduced
by threadedIRQs does not explain such a high latency.

30

Further analysis would be required to identify the kernel
code that is introducing this high latency.

Figure 8. PREEMPT-RT kernel cyclictest graphic (High
Priority)

Table 10 summarizes the data relative to the number of
packets transmitted, received and lost during the experiment.
Once again, packets start to be dropped at high transmission
rates.

Table 10. PREEMPT-RT 2.6.29.3 Tx/Rx (High Priority)

Tx Rate Tx/Rx Frames
(µsecs) Tx Rx Lost Lost (%)

10 62,987,175 62,987,175 0 0.00
9 65,477,551 65,477,551 0 0.00
8 70,477,613 70,477,613 0 0.00
7 84,206,373 84,206,373 0 0.00
6 99,349,545 99,022,298 327,247 0.33
5 110,967,141103,238,8607,728,281 6.96

7. Conclusions

This paper provided an overview of one change introduced
by the PREEMPT-RT patch-set to the Linux kernel: the
threadedIRQs. A description of the implementation details
of this modification has been provided, along with some
experiments that have been conducted to measure the
effectiveness of the threadedIRQs in the Linux kernel.

The implementation of threadedIRQs in PREEMPT-RT

follows the same approach as the FreeBSD implementation.
As described in section 2,Related work, FreeBSD
implements threadedIRQs using full context-switching
whenever an interrupt thread is to be scheduled. This was
also the selected design for thePREEMPT-RT.

No special optimizations have been introduced by the
PREEMPT-RT code in order to improve performance.
Optimizations such as those used in the Solaris kernel

(context-switch to interrupt threads is postponed until a
new context is actually required, i.e., when interrupt thread
blocks) could introduce some improvement in the system
performance.

As the results of the experiments have shown, thevanilla
kernel configuration is the most effective with respect to
performance. None of the other configurations used in the
conducted experiments achieved the same performance as
the vanilla kernel. Also, thevanilla kernel was the only
configuration where packet loss did not occur. In all the
other configurations, packets started to be dropped at the
higher transmission rates.

However, when the focus is predictability, the results
obtained for thePREEMPT-RT kernel, configured with both
threadedIRQs and theComplete preemptionoption, are the
most interesting ones. Values for thecyclictestbenchmark
maximum latencies do not suffer variations from idle
systems to moderately loaded system.

However, with higher packet transmission rates, the
PREEMPT-RT kernel still has very high latencies. It is
possible that the kernel network code is the responsible
for these latencies but further analysis would need to
be performed in order to confirm this and to identify
the exact code. Other possibility is that the network
cards device driver used in the experiments would require
some additional modifications to take advantage of the
improvements introduced to the kernel by thePREEMPT-RT

patch.

The cyclictestbenchmark itself can be configured to use
an in-kernel trace tool,ftrace. This tool can be used to
collect data for latencies tracing, which allows to identify
the functions that are introducing the high latencies. This
analysis would require to use a kernel compiled with the
tracers and the re-execution of the tests. Although not in the
scope of this article, this analysis is being performed and
feedback to thePREEMPT-RT community will be provided.
Eventually, thePREEMPT-RT patch will be modified with
the results of this re-execution in order to improve these
latencies.

Another topic that was out of the scope of this article,
was the analysis of the impact of polling strategies in the
ethernet device drivers used in the experiments. It would
have been interesting to get a better understanding of the
results collected by this analysis. The fact that the number
of interrupts decrease with higher transmit rates indicates
that the device driver uses the kernelNAPI interface (or
similar technique) to poll the device instead of receiving
one interrupt per packet. This technique is usually adaptive,
i.e., traffic analysis is performed by the device driver and the
number of interrupts per second is dynamically set based on
the type of traffic being received.

31

Acknowledgments

I would like to thank all the people that have contributed
to the Linux kernel, and in particular, to thePREEMPT-RT

patch. This includes (but is not limited to): Andi Kleen,
Arnaldo Carvalho de Melo, Daniel Walker, Gregory Haskins,
Ingo Molnar, Luis Claudio R. Gonçalves, Peter Zijlstra,
Steven Rostedt, Sven-Thorsten Dietrich, and Thomas
Gleixner.

References

[1] “The linux kernel repository.” [Online]. Available:
http://www.kernel.org

[2] J. Corbet, “Approaches to realtime linux,”LWN.net, October
2004. [Online]. Available: http://lwn.net/Articles/106010/

[3] “The preempt-rt patch website.” [Online]. Available:
http://www.kernel.org/pub/linux/kernel/projects/rt/

[4] “Wiki page for the preempt-rt patch.” [Online]. Available:
http://rt.wiki.kernel.org

[5] “The freebsd project website.” [Online]. Available:
http://www.freebsd.org

[6] T. F. D. Project, “Freebsd architecture
handbook,” 2006. [Online]. Available:
http://www.freebsd.org/doc/en/books/arch-handbook/index.html

[7] S. Kleiman and J. Eykholt, “Interrupts as threads,”SIGOPS
Oper. Syst. Rev., vol. 29, no. 2, pp. 21–26, 1995.

[8] M. Russinovich and D. A. Solomon,Microsoft Windows
Internals, Fourth Edition: Windows 2000, Windows XP, and
Windows Server 2003, 4th ed. Microsoft Press, 2004.

[9] M. Russinovich, “Advanced dpcs,” 2006. [Online]. Available:
http://technet.microsoft.com/en-us/sysinternals/bb963898.aspx

[10] “The l4 microkernel family website.” [Online]. Available:
http://os.inf.tu-dresden.de/L4/

[11] J. Liedtke, “On microkernel construction,” inProceedings of
the 15th ACM Symposium on Operating System Principles
(SOSP-15), Copper Mountain Resort, CO, December 1995.
[Online]. Available: http://l4ka.org/publications/

[12] T. Gleixner and D. Niehaus, “Hrtimers and beyond:
Transforming the linux time subsystems,” inProc. Linux
Symposium, Ottawa, Ontario, Canada, July 2006.

[13] J. Corbet, “A new approach to kernel timers,”
LWN.net, September 2005. [Online]. Available:
http://lwn.net/Articles/152436/

[14] S. Rostedt and D. V. Hart, “Internals of the rt patch,” inProc.
Linux Symposium, Ottawa, Ontario, Canada, June 2007.

[15] “cyclictest website.” [Online]. Available:
http://www.kernel.org/pub/linux/kernel/people/tglx/rt-tests/

32

Towards Unit Testing Real-Time Schedulers in LITMUSRT

Malcolm S. Mollison, Björn B. Brandenburg, and James H. Anderson

Department of Computer Science, The University of North Carolina at Chapel Hill

Abstract

The problem of unit testing multiprocessor real-time

schedulers in operating systems such as LITMUSRT is

discussed. A tool intended to aid debugging by identi-

fying deviations from an intended scheduling policy and

performance regressions is proposed. This paper gives

a specification for the tool and also discusses ongoing

work on a prototype implementation.

1 Introduction

The advent of multicore computing has led to renewed

interest in real-time scheduling algorithms for multipro-

cessor systems. In research on this topic, the greatest

emphasis has been on purely algorithmic issues. To im-

pact the development of real systems, such work must

be complemented by prototype development, so that

scheduler-related overheads can be measured and the

practicality of proposed scheduling algorithms assessed.

The LInux Testbed for MUltiprocessor Scheduling in

Real-Time Systems (LITMUSRT) project [2, 4, 8] was

launched to enable such prototype-oriented research.

LITMUSRT provides a testbed for multiprocessor real-

time schedulers by extending the Linux kernel to support

the implementation of such schedulers as plugins.

Unfortunately, developers of real-time schedulers, in-

cluding LITMUSRT scheduler plugins, face two press-

ing challenges. First, it is very difficult to ascertain if

a scheduler is actually making correct decisions, and

thus is implemented correctly. For example, mistaken

scheduling decisions may not result in deadline overruns

for a particular benchmark task set, and thus may go un-

noticed. Second, it is easy for scheduler developers to

introduce extra, unwanted scheduling overhead. Such

overhead will increase the degree to which the scheduler

deviates from a desired scheduling policy.

These challenges are exacerbated by serious difficul-

ties associated with multiprocessor operating system de-

velopment. For example, concurrent programming is-

sues such as synchronization, race conditions, etc., must

be properly taken into account. Furthermore, collecting

relevant data to aid debugging can be an obstacle in itself

due to programming limitations commonly encountered

in kernel environments.

Even if scheduler code is believed to produce correct

schedules, each subsequent update to the code can intro-

duce bugs. Therefore, there is a strong need for a tool

that facilitates extensive testing of a scheduler against

a number of developer-specified criteria after each up-

date to the code. This requirement is captured by the

notion of unit testing [6]—that is, programmatically test-

ing the smallest possible units of a software system after

each code revision. This is a widely-followed software-

engineering practice [9]. In order for a testing tool

to be of maximum use to developers, unit-test cover-

age should be as extensive as possible, and unit testing

should be automated. The tool should also produce de-

tailed unit-test results that can help developers identify

and fix problems, including incorrect scheduling deci-

sions, deadline overruns, and regressions in scheduling

overhead.

In this paper, we present a specification for such a

tool, and discuss both the current state of a prototype

implementation and desired extensions.

Prior work. The Linux Test Project [7] has imple-

mented a testing mechanism for the Linux scheduler,

including the two POSIX-mandated real-time schedul-

ing policies included in stock Linux, SCHED FIFO and

SCHED RR. Like the proposed tool, the Linux Test

Project performs scheduling overhead regression test-

ing and conducts a series of checks that can alert de-

velopers to various problems. However, the Linux Test

Project lacks a lightweight event tracing mechanism that

would allow it to analyze individual scheduler decisions

and provide very precise scheduling overhead analysis.

(Our tool makes use of Feather-Trace [1, 5], a toolkit

used by LITMUSRT to record events.) Furthermore,

from a real-time scheduling perspective, the Linux Test

Project’s scope is limited to only static-priority schedul-

ing (SCHED FIFO and SCHED RR).

33

LITMUSRT currently supports a much wider range

of real-time scheduling algorithms, including several

global algorithms that have been the subject of much re-

cent research. The development of LITMUSRT has thus

far relied on purely manual techniques for debugging

and testing of adherence to desired scheduling policies.

Due to the scarcity of developer time, such testing is only

conducted infrequently and involves running only a few

simple, hand-crafted task sets. With the increasing com-

plexity and maturity of LITMUSRT, a more thorough

testing effort is clearly warranted. Therefore, we desire

a high-quality unit-testing tool for use with LITMUSRT.

To the best of our knowledge, the topic of testing of mul-

tiprocessor real-time scheduler implementations has not

been considered in prior work.

The rest of this paper is organized as follows. In Sec-

tion 2, we provide background on real-time scheduling

on multiprocessor platforms, including LITMUSRT and

associated tools. In Section 3, we provide a specification

of the proposed tool. In Section 4, we describe progress

to date on a prototype of the tool and planned future ex-

tensions. Finally, in Section 5, we conclude.

2 Background

The LITMUSRT operating system [2, 4, 8] executes task

sets under a real-time scheduler selected by the user.

Feather-Trace [1, 5] records scheduling decisions made

by LITMUSRT in machine-readable, binary trace files.

Our proposed tool, in turn, reads these files and performs

analysis upon them under a unit-testing paradigm. This

section provides necessary background on these topics.

2.1 Real-Time Task Model

A real-time task set consists of a number of tasks that

are subject to real-time constraints. Tasks are invoked,

or released, repeatedly during their lifetimes; each such

invocation is known as a job. Under the sporadic task

model, each release of a task must be separated by a

minimum interval of time known as the task’s period.

Each task also has an associated worst-case execution

time (WCET), which is an estimate of the execution time

of any job of the task in the worst case. The ratio of each

task’s WCET and period defines its utilization. In this

paper, we limit attention to sporadic tasks with implicit

deadlines, i.e, each job is expected to complete before

the end of its period; otherwise, it has exceeded its dead-

line and is considered tardy. A job is eligible if it has

been released, is unfinished, and the previous job of the

same task has completed execution.

2.2 Real-Time Scheduling Policies

A scheduling policy is an algorithm used by a scheduler

at runtime to determine how to allocate available cores1

to jobs.

Under the global earliest-deadline-first (G-EDF) pol-

icy, contending jobs are prioritized in order of non-

decreasing deadlines. Hence, on anm-processor system,

at any time, if there are more than m eligible jobs, then

the m eligible jobs with the earliest deadlines should

be executing, with ties broken consistently according to

some (perhaps implementation-specific) policy. In order

to meet this condition, the scheduler can preempt jobs or

migrate them to different cores.

Our prototype unit-testing tool only supports the

analysis of G-EDF, though support for other policies is

planned. These include partitioned earliest-deadline-

first (P-EDF) scheduling, under which each task is as-

signed to a particular core and only contends for ex-

ecution time with other tasks assigned to the same

core; clustered earliest-deadline-first (C-EDF) schedul-

ing, under which tasks are assigned to user-defined clus-

ters of cores; and the PD2 scheduling algorithm [10],

under which tasks make progress at a rate proportional

to their utilizations.

2.3 LITMUSRT

The LITMUSRT operating system provides a platform

for executing real-time task sets according to a real-

time scheduling policy. LITMUSRT is implemented as a

patch to the Linux kernel,2 modifying its scheduling fa-

cilities to allow for the use of more specialized real-time

scheduling policies than those that are included in stock

Linux. LITMUSRT scheduler plugins have been writ-

ten for the G-EDF, P-EDF, C-EDF, and PD2 scheduling

policies (among others).

2.4 Feather-Trace

Feather-Trace is a light-weight event tracing toolkit.

It allows scheduler code in the kernel to buffer bi-

nary data and make it available for asynchronous ex-

port to userspace, from whence it can be written to disk.

Feather-Trace is designed to incur very little overhead,

so that time-critical code can record data without being

disrupted.

In LITMUSRT, this mechanism can be used to record

scheduler events (for example, the release or completion

of a job) in trace files. Each event record is stored in a

special binary format and includes a precise timestamp.

1In this paper, we denote any logical CPU available for scheduling

by the OS as a “core.”
2The latest release patches kernel version 2.6.24.

34

These records can later be retrieved and examined by

analysis tools, such as our unit-testing tool.

3 Specification

The goal of our proposed tool is to help real-time sched-

uler developers produce correct scheduler code for the

LITMUSRT system. Towards this end, the tool will con-

duct a series of tests to determine if desired criteria are

met by a scheduler. An error will be reported when a

criterion is not met, and details will be provided to help

developers resolve the problem.

In typical unit testing, modules of source code are

executed in a test framework. Each module is executed

with pre-specified input and checked for expected out-

put. If unexpected output is produced, then the test

framework reports an error. This approach works well

for source code that can be factored into small, modu-

lar components that accept well-defined inputs and give

predictable outputs.

Scheduler code is not amenable to such piecemeal

testing. This is due to three fundamental reasons. First,

the absence of errors when testing individual compo-

nents for logical correctness does not imply that the sys-

tem as a whole exhibits temporally correct behavior (for

example, scheduling errors due to race conditions can-

not be found by piecewise testing). Second, schedul-

ing code tends to rely heavily on side effects and exter-

nal entities such as hardware timers; such dependencies

are hard to emulate correctly in a traditional unit-testing

environment. Third, scheduling code is invoked from

many different code paths within the kernel since the

scheduler constitutes the very core of the OS; it is infea-

sible to recreate appropriate system and task state for all

possible invocations. In essence, traditional unit-testing

techniques rely heavily on the tested system being well-

structured and modular, whereas scheduling code tends

to (implicitly) interact with large parts of the whole sys-

tem. Furthermore, testing on a per-module basis would

not allow for accurate sampling of scheduling overhead.

To work around these concerns, the proposed tool

executes unit tests offline against records of scheduler

events as they occurred on real hardware in the actual

system. To automate the testing process, the generation

and execution of task systems can also be automated.

This approach permits testing on any task system for

a supported scheduling policy, alleviating the need to

provide rigid, module-specific test input. It also allows

for accurate measurement of scheduling overhead.

As with typical unit testing, errors will be reported

when desired criteria are not met. Information to help

developers correct bugs will be included with each error.

If all tests complete without errors, developers can con-

clude that the scheduler behaved correctly for the criteria

being tested.

3.1 Architecture

As depicted in Figure 1, the proposed tool consists of

four components: the Driver, the Parser, the Validator,

and the Report Generator.

Driver. The Driver automates the testing process, fa-

cilitating unit testing after each incremental update to

the scheduler code. Each testing session begins with

the Driver reading a developer-supplied configuration

file that specifies task systems to execute and a suite

of unit tests. Any unit-test tuning variables (for exam-

ple, acceptable tardiness bounds) are also specified in

the configuration file. The Driver executes the speci-

fied task system under LITMUSRT with Feather-Trace

recording enabled. When the task system completes ex-

ecution, the Driver invokes the Parser, Validator, and Re-

port Generator in sequence. For more thorough testing,

the Driver can repeatedly generate and test random task

systems (generated according to distributions specified

in the configuration).

Parser. Feather-Trace exports scheduler event records

to a buffer in a compact format to avoid incurring un-

necessary overhead. The contents of this buffer are later

written to a set of trace files. The Parser reads the trace

files, extracting event records and storing them in an

easy-to-use format in memory. The in-memory records

are represented as a “stream” data structure, which the

Validator and Report Generator iterate over in the course

of performing their work.

Feather-Trace records the following types of events.

• Release: A job is released.

• Switch To: A job begins executing.

• Switch Away: A job stops executing.

• Completion: A job completes.

• Block: A job blocks. Even in task systems with-

out synchronization requirements, blocking can be

caused by the Linux I/O subsystem.

• Resume: A job resumes, after being blocked.

Each scheduling event record identifies the job and task

it is associated with and includes a timestamp indicating

the time of the event. Records for events associated with

a particular core include the logical CPU number for that

core.

35

ParserDriver
Report

Generator

trace

files

event stream event and

error stream

LITMUS RT

Feather−Trace

task

system

specification

Validator

Figure 1: Data flow between components of the proposed tool (shaded) and LITMUSRT.

Additional Feather-Trace records specifying the

WCET and period for each task are recorded at the be-

ginning of task system execution.

Validator. The Validator executes each unit test, us-

ing as input the scheduler event stream. Each unit test

produces an error record for each error it finds. Each er-

ror record includes the time of the scheduler event that

triggered the error. This allows the Report Generator

to display errors in the context of surrounding schedul-

ing events. The Validator outputs a stream of all error

records produced by the unit tests.

Report Generator. The Report Generator receives as

input the event and error streams. It generates mean-

ingful output to help developers correct bugs and detect

problematic scheduling latency. A plugin system allows

for output in various formats. For example, plugins to

support HTML output or graphical output could be de-

veloped.

3.2 Unit Tests

The current needs of LITMUSRT have motivated the

creation of algorithms for a number of unit tests.

Completion Test. The Completion Test checks

whether all released jobs actually complete. That is,

for each Release record in the scheduler event stream,

there should be a Completion record corresponding to

the same job. An error is produced for any released jobs

that do not complete.

Sporadic TaskModel Test. The Sporadic Task Model

Test checks whether all jobs of the same task are sepa-

rated by at least the period of the task.

The algorithm for this unit test is straightforward: for

each Release record in the event stream, if there is a pre-

vious Release record of the same task, then a check is

made to ensure that the separation time between them is

at least the corresponding task’s period.

Some premature releases are expected in the case that

periodic releases are desired, since scheduling overhead

will delay releases by a variable, nonzero amount of

time. To accommodate this, a “tolerance” tuning vari-

able can be specified in the Driver configuration file. Re-

leases that are premature by an amount of time less than

the tolerance value will not cause an error to be gener-

ated.

Deadline Test. The Deadline Test checks to see if jobs

meet their deadlines. Once again, the algorithm for the

test is straightforward: for each Release record, there

must be a Completion record for the same job, and the

difference in their timestamps must be at most the period

for the corresponding task.

A tolerance variable, similar to the one used for the

Sporadic Task Model Test, allows developers to specify

an acceptable tardiness bound.

G-EDF Decision Test. No scheduler can achieve true

G-EDF scheduling in practice, due to scheduling over-

head. For example, when a new job becomes eligible

that has an earlier deadline than one of the jobs currently

in execution, the new job should begin executing imme-

diately. However, the overhead of halting the execution

of the job to be preempted and starting execution of the

new job takes a nonzero amount of time. Thus, testing

for true adherence to the G-EDF policy would be an ex-

ercise in futility.

However, it still holds that whenever a scheduler does

decide to switch execution to a particular job, that job

should be one of the m earliest-deadline eligible jobs.

The G-EDF Decision Test checks against this constraint.

Successful validation of an event stream over both the

Completion Test and G-EDF Decision Test assures de-

velopers that the scheduler allocated all eligible jobs in

earliest-deadline-first order.

The G-EDF Decision Test algorithm models the state

of the task system over the course of its execution. The

36

Time

latency

N
ew

 j
o
b
 r

el
ea

se
d

N
ew

 j
o
b
 s

w
it

ch
ed

 t
o

Figure 2: Context 1.

model consists of a list of executing jobs (up to m) and

a list of released jobs that are eligible for execution. The

algorithm progresses by iterating over the event stream,

updating the model for each record. For example, a

Switch To record indicates that a job began execution

on a particular core; upon encountering such a record,

the algorithm would add that job to the list of executing

jobs.

The algorithm generates an error each time it deter-

mines that a job that did not have sufficiently high prior-

ity was scheduled for execution. A job has sufficiently

high priority for execution if it is one of the m earliest-

deadline eligible jobs.

G-EDF Latency Test. The G-EDF Latency Test helps

developers locate areas of high overhead in scheduler

code and quantitatively evaluate their efforts to optimize

code to reduce overhead. It also may help developers

discover bugs that do not violate the decision-making

constraint checked by the G-EDF Decision Test, as these

bugs often contribute to overhead.

Scheduler overhead causes departure from the G-

EDF policy when a job becomes one of the m earliest-

deadline eligible jobs but has not yet begun execution.

Therefore, to measure G-EDF scheduling latency, we

examine each such occurrence, and measure the specific

latency components contributing to overhead. Note that

this condition occurs prior to each switch in execution to

a job, and thus once for each job release.

Which latency components are present depends on

the context of the system when switching to a new job

becomes necessary. There are three such contexts, ex-

plained in the following paragraphs.

In Context 1, as depicted in Figure 2, a job is re-

leased into a system with an idle core and is eligible (i.e.,

the previous job of the same task has completed). The

only latency component—and, thus, the total scheduling

overhead that occurs in this context—is the difference

between the time of the release of the job and the time

Time

N
ew

 j
o
b
 r

el
ea

se
d

N
ew

 j
o
b
 s

w
it

ch
ed

 t
o

P
re

v
io

u
s

jo
b
 s

w
it

ch
ed

 a
w

ay

latencylatency

P
re

v
io

u
s

jo
b
 c

o
m

p
le

te
s

Figure 3: Context 2.

when it is switched to for execution on a core.

In Context 2, as depicted in Figure 3, a job is released

into a system with no idle cores, but it is not one of

the m highest-priority eligible jobs. When it becomes

one of the m highest-priority eligible jobs due to the

completion of another job, that job should be switched

away from execution and the new job should commence

execution. Scheduling overhead is the sum of two la-

tency components. The first is the difference between

the time of completion of the previously-executing job

and the time when it is switched away from execution.

The second is the difference between the time when the

previously-executing job is switched away from execu-

tion, and the time when the new job is switched to for

execution.

In Context 3, as depicted in Figure 4, a job is re-

leased into a system with no idle cores, but it is one of

the m highest-priority eligible jobs. Another job should

be switched away from a core and the new job should

commence execution. Scheduling overhead is the sum

of two latency components. The first is the difference

between the time when the new job is released and the

time when the preempted, previously-executing job is

switched away from execution. The second is the dif-

ference between the time when the previously-executing

job is switched away from execution, and the time when

new job is switched to execution.

The goal of the G-EDF Latency Test is to measure

each instance of overhead, classified as one of the la-

tency components discussed previously. When latency

greater than a desired threshold is discovered, it can be

reported to the developer. Furthermore, statistical anal-

ysis can be performed. For example, a developer could

use the latency measures to calculate the average amount

of latency for a particular latency component over the

course of execution of a task system. Historical data of

this kind, accumulated from past testing, can be used to

37

Time

latency

N
ew

 j
o
b
 r

el
ea

se
d

N
ew

 j
o
b
 s

w
it

ch
ed

 t
o

P
re

v
io

u
s

jo
b
 s

w
it

ch
ed

 a
w

ay

latency

Figure 4: Context 3.

guard against regressions in scheduler performance.

Note that overhead potentially begins being accumu-

lated when a job is released, and ends when the job is

switched to. Thus, the G-EDF Latency Test algorithm

iterates over the event stream, extracting latency infor-

mation each time it encounters a release record.

The algorithm proceeds as follows. For each Release

record, the corresponding Switch To record is found.

This record is used to determine the CPU on which the

events leading up to the beginning of execution of the job

will occur. The events on that CPU from the time of the

release to the time of the switch to execution match one

of the three contexts. Once the context is identified, ex-

tracting the specific latency measures is straightforward.

Fortunately, each context represents a unique set of

scheduler events, making it possible to identify the con-

text for a particular release from the scheduler event

stream.

• Context 1 is indicated by a Release record followed

by a Switch To record.

• Context 2 is indicated by a Release record followed

by a Completion record.

• Context 3 is indicated by a Release record followed

by a Switch Away record.

The Driver configuration file allows developers to

specify a large number of criteria for the G-EDF Latency

Test. In the simplest case, acceptable thresholds for la-

tency components can be provided. An error is gener-

ated each time these values are exceeded.

4 Prototype Description and

Future Extensions

In this section, we provide a summary of ongoing work

on a prototype of the tool, and discuss desired future ex-

tensions of the tool.

4.1 Prototype

Most of the functionality described in the specification

has been successfully implemented in our prototype, in-

cluding each of the unit tests discussed in this paper. The

code has been made available online [3]. The prototype

is implemented in the Python programming language,

which was chosen for its ease of use and will be retained

for the official release version of the tool.

The prototype does not yet support some of the more

advanced proposed features, as discussed below, though

support for them is planned for future releases.

The Driver does not automatically create and test ran-

domized task systems; instead, a specific task system

must be provided by the user. This feature would be

useful for testing schedulers over a wide variety of task

systems, increasing the probability of finding bugs that

occur only in rare or specialized cases.

The Report Generator does not yet provide support

for creating a graphical depiction of scheduling events,

which would aid developers in understanding bugs.

The G-EDF Latency Test does not perform any auto-

matic statistical validation or regression checking. For

example, automatic calculation of average latency for

each latency component over the course of execution of

a task system is desired. These values could automati-

cally be compared to ideal values provided by the user.

4.2 Future Extensions

Significant expansion of the tool beyond the specifica-

tion described in this paper is desired. Most importantly,

support for testing additional scheduling policies be-

yond G-EDF—in particular, C-EDF, P-EDF, and PD2—

is planned.

Supporting C-EDF and P-EDF will be straightfor-

ward. C-EDF unit-test algorithms will not be notably

more complex than the G-EDF algorithms provided in

this paper. As P-EDF is a special case of C-EDF, a sep-

arate unit tests for P-EDF will not be needed.

However, PD2 will present a significant challenge,

and will require the development of a large number of

additional and complex unit tests. The need to debug

PD2 schedulers was the most pressing motivation for the

development of the tool, but G-EDF was chosen as a

more easily achievable initial target. Lessons learned in

developing the overall framework for the unit tester and

the G-EDF unit tests will likely prove invaluable in the

extension of the tool to allow for testing of PD2 sched-

ulers.

38

In addition, the current specification for the tool does

not account for jobs that block. A tool for testing real-

time schedulers running under LITMUSRT needs to ac-

count for blocking, since it can be caused by some syn-

chronization protocols as well as the Linux I/O subsys-

tem. Fortunately, extending the specification to account

for blocking will be straightforward. Most of the unit

tests remain the same, though a slight change to the

model used in the G-EDF Decision Test is necessary.

The most significant change will be the need to analyze

new latency components in the G-EDF Latency Test.

5 Conclusion

We have established the need for an automated

tool for testing multiprocessor real-time schedulers in

LITMUSRT. The tool should uncover incorrect schedul-

ing decisions. It should also allow for rigorous analysis

of scheduling overhead. We have presented a specifica-

tion of such a tool, and have discussed ongoing work on

a prototype. Finally, we have described significant de-

sired extensions of the tool beyond the features provided

for in our current specification.

References

[1] B. Brandenburg and J. Anderson. Feather-Trace: A

Light-Weight Event Tracing Toolkit. In Proceedings of

the Third International Workshop on Operating Systems

Platforms for Embedded Real-Time Applications, pages

20-27, 2007.

[2] B. Brandenburg, A. Block, J. Calandrino, U. Devi,

H. Leontyev, and J. Anderson. LITMUSRT: A Status

Report. In Proceedings of the 9th Real-Time Linux Work-

shop, pages 107-126, 2006.

[3] LITMUSRT Scheduler Testing.

Homepage. http://cs.unc.edu/˜mollison/unit-trace/.

[4] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. An-

derson. LITMUSRT: A Testbed for Empirically Compar-

ing Real-Time Multiprocessor Schedulers. In Proceed-

ings of the 27th IEEE Real-Time Systems Symposium,

pages 111-123, 2006.

[5] Feather-Trace.

Homepage. http://www.cs.unc.edu/˜bbb/feathertrace/.

[6] IEEE Standard for Software Unit Testing. 1986.

[7] The Linux Test Project.

Homepage. http://ltp.sourceforge.net/.

[8] The LITMUSRT Project.

Homepage. http://www.cs.unc.edu/˜anderson/litmus-rt/.

[9] P. Runeson. A Survey of Unit Testing Practices. In IEEE

Software, 23(4):22-29, 2006.

[10] A. Srinivasan and J. Anderson. Optimal rate-based

scheduling on multiprocessors. Journal of Computer and

System Sciences, 72(6):1094-1117, September 2006.

39

Exception-Based Management of Timing Constraints Violations for Soft

Real-Time Applications. ∗

Tommaso Cucinotta, Dario Faggioli

Scuola Superiore Sant’Anna, Pisa (Italy)

{t.cucinotta, d.faggioli}@sssup.it

Alessandro Evangelista

mail@evangelista.tv

Abstract

This paper presents an open-source library for the C lan-

guage supporting the specification and management of tim-

ing constraints within embedded soft real-time applications.

The library provides a set of well-designed C macros that

allow developers to associate timing constraints to code

segments, and to deal with their violations through the well-

established practise of exception-based management.

After a brief overview of the requirements motivating the

work, the exceptions library is presented. Then, the paper

focuses on the specific macros that deal with the specifica-

tion of deadline and execution-time constraints, with a few

notes on how the library has been implemented.

Finally, a few experimental results are shown in order to

discuss the features and limitations of this approach, with

the current implementation (on Linux) that relies almost

completely on POSIX-compliant system calls.

1 Introduction

General Purpose Operating Systems (GOPSes) are be-

ing enriched with more and more support for soft real-time

applications, allowing for an easier development of appli-

cations with stringent timing requirements, such as multi-

media and interactive ones. Still, one of the challenges for

developers is how to specify timing constraints within the

application, and how to properly design the application so

as to respect them.

Furthermore, this kind of systems differ from traditional

hard real-time ones, on a number of different points. First,

a GPOS with a monolithic kernel cannot provide a precise

scheduling of processes. Second, the typical knowledge, by

developers/designers, of the main timing parameters of the

application, such as the execution time of a code segment,

is somewhat limited. In fact, it is not worth to recur to pre-

cise worst-case analysis techniques, and there is a need for

∗The research leading to these results has been supported by the Euro-

pean Commission under grant agreement n.214777, in the context of the

IRMOS Project. More information at: http://www.irmosproject.eu.

using general-purpose hardware architectures (that are opti-

mised for average-case performance, penalising predictabil-

ity) and compression technologies (which cause the execu-

tion times to heavily vary from job to job, depending on

the actual application data). Furthermore, in order to scale

down production costs, a good resources saturation level is

needed. Finally, timing requirements in this context may be

stringent, but they are definitely not safe-critical, therefore

it may be sufficient to fulfil them with a high probability.

Therefore, in such context, timing constraints violations

should be expected to occur at run-time, and developers

need to deal with these events by embedding appropriate re-

covery logic. This usually involves the correct use of timers

and signals, something not always immediate.

This paper presents a framework that allows for adop-

tion of the well-known exception-based management ap-

proach for dealing with timing constraints violations in C

applications. The framework makes it possible to handle

these events similarly to how exceptions are managed in

languages that support such programming paradigm, e.g.,

C++, Java and Ada.

Specifically, two main forms of timing constraints can

be specified: deadline constraints, i.e., a software compo-

nent needs to complete within a certain (wall-clock) time,

and WCET constraints, i.e., a software component needs

to exhibit an execution time that is bounded. Also, the pro-

posed solution allows for an arbitrary nesting of timing con-

straints. In fact, in the expected typical scenario, it is fore-

seen to have one deadline constraint at the outermost level,

and one or more nested WCET constraints.

To the best of the authors’ knowledge, no similar mech-

anism has been previously presented for the C language,

with the same completeness of the one presented here, with

no need to modify the C compiler, and only relying on stan-

dard POSIX features.

Paper outline After a brief overview of the related work

in Section 2, Section 3 identifies the main technical require-

ments that need to be supported by the mechanism, then

1

40

Section 5 describes the POSIX-based implementation re-

alised for the Linux OS, finally a few experimental results

are presented in Section 6 highlighting the impact of the

Linux kernel configuration on the mechanism precision. Fi-

nally, conclusions are drawn in Section 7 along with direc-

tions for future work.

2 Related Work

The need for having more and more predictable tim-

ing behaviour of system components is well-known within

the real-time community, to the point that modern general-

purpose (GP) hardware architectures are deemed as inap-

propriate for dealing with applications with critical real-

time constraints. In fact, there exist such approaches as Pre-

dictable Timed Architecture [3], a paradigm for designing

hardware systems that provide a high degree of predictabil-

ity of the software behaviour. However, such approaches

are appropriate for hard real-time applications, but cannot

be applied for predictable computing in the domain of soft

real-time systems running GP hardware. Yet, the concept

of deadline exception has been actually inspired by the con-

cept of deadline instruction as presented in [9].

Coming to software approaches relying on the services

of the Operating System (OS) and standard libraries, the

POSIX.1b standard [5] exhibits a set of real-time extensions

that suffice to the enforcement of real-time constraints, as

well as to the development of software components exhibit-

ing a predictable timing behaviour. However, working di-

rectly with these very basic building blocks is definitely

non-trivial. The code for handling timing constraints viola-

tions, as well as other types of error conditions, needs to be

intermixed with regular application code, making the devel-

opment and maintenance of the code overly complex. As it

will be more clear later, the proposed framework improves

usability of these building blocks, by enabling the adoption

of an exception-based management of these conditions.

Such an approach is not new, in fact it is used in other

higher-level programming languages, such as Java, with

the Real-Time Specification for Java (RTSJ) [1] extensions.

These, beyond overcoming the traditional issue of the un-

predictable interferences of the Garbage Collector with nor-

mal application code, also include a set of constructs and

specialised exceptions in order to deal with timing con-

straints specification, enforcement and violation.

Also, the Ada 2005 language [2] has a mechanism that

is very similar to the one presented in this paper, namely

the Asynchronous Transfer of Control (ATC), that allows

for raising an exception in case of an absolute or relative

deadline miss, and/or of a task WCET violation, that cause

a jump to a recovery code segment.

However, the focus of this paper is on the C language,

probably still the most widely used language for embed-

ded applications with high performance and scarce resource

availability constraints. By making such a mechanism eas-

ily and safely available in C, the work presented in this pa-

per contributes in enriching the C language with an essential

feature useful for the development of real-time systems.

Focusing on the C language, the RTC approach proposed

by Lee et al. [7] is very similar to the one that is introduced

in this paper. They theorised and implemented a set of ex-

tensions to the C language allowing one to express typical

real-time concurrency constraints at the language level, and

deal with the possible run-time violations of them, and treat

these events as exceptions. However, while RTC introduces

new syntactic constructs into the C language, requiring a

non-standard compiler, this paper presents a solution based

on a set of well-designed macros that are C compliant and

may be portable across a wide range of Operating Systems.

Furthermore, RTC explicitly forbids nesting of timing con-

straints, while the approach presented in this paper does not

suffer of such a limitation.

Finally, the concept of time-scope introduced in [8] is

also similar to the “try within” code block that is presented

in this paper. However, that work is merely theoretic and

language-independent, and it does not present any concrete

implementation of the mechanism.

3 Requirements Definition

The basic requirements that drive the work of this pa-

per are presented here as drawn out by a simple example:

a multimedia, component based application, designed as a

single thread of execution1 activated periodically or sporad-

ically. For example, consider the Video Decoder applica-

tion, whose behaviour is outlined in the UML Activity Dia-

gram of Figure 1.

From a design level perspective, as Video Decoder will

be co-scheduled with other applications, it would be highly

desirable to characterise each component with such typical

information: (1) WCET (or an appropriate statistic of exe-

cution time distribution); (2) relative or absolute deadline;

(3) minimum period of activation. Also, it might be desir-

able that Video Decoder actually respects both the declared

WCET and the deadline constraint, also in cases of over-

load, e.g., when a frame is particularly difficult to decode.

Now, assume that a Frame Decoder is used in the main

loop of Video Decoder. Due to the in-place timing require-

ments, it would be useful to characterise Frame Decoder

invocations with the WCET to be expected at run-time.

In fact, as shown in Figure 1, such information, plus the

WCETs of the Stream Parser, Filtering and Visualization

components, sum up to the WCET of the Video Decoder

itself. However, video decoding architectures are highly

modular, and make heavy use of third-party video and au-

dio decoding plug-ins, e.g., depending on the stream format.

1For example, the fflay player, part of the widely used open-source

ffmpeg project, is designed as a single threaded application.

2

41

Figure 1. UML Activity diagram for the example video

decoder thread.

Thus, in order to allow for an appropriate use of Frame

Decoder within real-time applications, it would be highly

desirable for libraries developers to have a WCET estima-

tion such that either: (1) the decoding operation terminates

within the WCET limit, or (2) it is aborted.

The approach that is envisioned in this paper is aimed

at simplifying design of such a complex software, and it is

based on the adoption of an exception-based programming

paradigm. A timing constraint violation is seen as an ex-

ceptional situation whose occurrence must be foreseen by

the programmer, without necessarily subverting the flow of

control that is normally realised.

However, it is clear that the possibility for the program

to jump asynchronously to exception handling code seg-

ments is not something that may be seamlessly incorpo-

rated within an application. The latter should be designed

so as to tolerate this kind of operation abortion, so as to

not introduce memory leaks, and to properly cleanup any

resources that might be associated with the aborting code

segment. For example, a multimedia encoding/decoding li-

brary in which all the needed buffers are allocated at initial-

isation time, and the encoding/decoding functions only op-

erate on these buffers (without any memory allocation nor

mutex locks acquisition), the encoding/decoding functions

may probably be safely asynchronously aborted. If this is

not the case, then one should generally modify the code so

as to catch the deadline exception at appropriate points in

the code, so as to trigger the proper cleanup logic.

From the above sketched example, the following set of

high-level requirements may be identified for the proposed

mechanism.

Requirement 1 it should be possible to associate a dead-

line constraint to a code segment, either specifying relative

or absolute time values;

Requirement 2 it should be possible to associate a WCET

constraint to a code segment;

Requirement 3 when a timing constraint is violated, it

should be possible to activate appropriate recovery logic

that allows for a gracefully abort of the monitored code

segment; also, it should be possible for the recovery code

to either be associated to a generic timing constraint vio-

lation, or more specifically to a particular type of violation

(deadline or WCET);

Requirement 4 it should be possible to use the mechanism

at the same time in multiple applications, as well as in mul-

tiple threads of the same application;

Requirement 5 nesting of timing constraints should be al-

lowed, at least up to a certain (configurable) nesting level.

In fact, this is a key feature for component based design

of real-time applications. For example, not only Video

Decoder should be associated with overall deadline and

WCET constraints, but also Frame Decoder should be as-

sociated with its own WCET constraint;

Requirement 6 it should be possible to cancel a timing

constraint violation enforcement if the program flow runs

out of the boundary of the associated code segment, e.g.,

when it ends normally or when another kind of exception

requests abort of the code segment;

Requirement 7 the latency between the occurrence of the

timing constraint violation and the activation of the appli-

cation recovery code (from here on referred to as handler

activation latency) should be known to the designer/devel-

oper, and it should be possibly negligible with respect to the

task execution time;

Requirement 8 the mechanism should allow the program-

mer to specify some “protected” section of a code segment

that will never be interrupted by a timing constraint viola-

tion notification. Thus, if that happens, the execution of re-

covery code would be delayed while inside such a section;

Requirement 9 the mechanism could provide support for

gathering benchmarking data of the code segments, in-

stead of enforcing their timing-constraints. This opera-

tional mode could be enabled at compile time, and used for

tuning the actual parameters used as timing constraints for

the various code segments;

Requirement 10 the mechanism could be portable to as

many Operating Systems as possible.

3

42

4 Proposed approach

Here a mechanism complying with the above enumer-

ated requirements is presented, with a focus on the program-

ming paradigm and syntax. First, the generic framework for

exceptions handling for the C language is presented. Then,

the extensions for dealing with timing constraints violations

are presented. Finally, for the sake of completeness, a few

implementation details are discussed.

4.1 Exceptions for the C language

The framework for exception-management for the C lan-

guage is distributed as part of the open-source project Open

Macro Library (OML) 2, whose description is out of the

scope of this paper. OML Exceptions supports hierarchical

arrangement of exceptions, where all exceptions must de-

rive from the common “type” exception. The syntax of

such framework (from here on referred to as OML Excep-

tions) comprises the following macros:

define exception...extends: this macro may be

used to define new application-specific exceptions;

try: this macro delimits the code segment subject to ex-

ception handling;

finally: this macro identifies the code segment that will

be executed both in case of exception and normal try

termination;

handle...handle end: these two macros must en-

close the (optional) when clauses;

when: this macro identifies the code segment that is ex-

ecuted in reaction to each particular type of exception

(or sub-type); the first matching when clause is the one

that catches the exception; if no when clause catches

the exception, then it is automatically re-thrown;

re-throw: this macro may be used to explicitly re-throw

an exception from within a when clause, after it has

been caught.

For example, Figure 2 shows an application that de-

fines a custom exception, ENotReady, extending the

exception basic “type”, which is raised by using the

throw() macro within the foo() function. Finally,

the exception is caught by means of the when() macro

within a handle...end block. The hierarchical arrange-

ment of exceptions is useful for allowing a single when

clause to specify a generic type and catch any exception

descending from the specified one. As all exceptions derive

from exception, a clause when(exception) may be

used for catching any type of exception (similarly to the

catch(...) syntax of C++).

2More information at: http://oml.sourceforge.net.

define_exception(ENotReady) extends(exception);

void foo() {

if (cond)

throw(ENotReady);

}

void bar() {

try {

/* Potentially faulty code segment */

foo();

} finally {

/* Clean-up code executed both on normal

* termination _and_ on exception */

}

handle

when (ENotReady) {

/* Handle the ENotReady exception */

}

when (exception) {

/* Handle any exception that is not

of ENotReady type nor sub-type */

}

handle_end;

}

Figure 2. Example code segment

Notice that OML Exceptions is both process and thread

safe. Moreover, it allows exception throwing/catching code

to be nested. However, due to how the macros are defined,

there are a set of limitations in the use of them. For exam-

ple, within try blocks, it is forbidden to use any C mecha-

nism that would cause an attempt to cross the block bound-

ary, such as return statements, goto statements (and

also longjmp calls) with destinations outside the block,

and continue and break statements referring to itera-

tive loops enclosing the try block. The full discussion of

these aspects is omitted for the sake of brevity.

4.2 Timing Constraints Based Exceptions

OML Exceptions includes a support for notifying tim-

ing constraints violations by means of the following con-

structs3:

try within abs: this macro allows for starting a try

block with an absolute deadline constraint;

try within rel: convenience macro macro useful for

specifying a relative deadline constraint, however the

effect of a relative deadline expiring is not distinguish-

able from the one of an absolute deadline expiring (see

note at end of section);

try wcet: this macro allows for starting a try block

with a maximum allowed execution time (WCET);

3This support is available within the dlexception branch on the

CVS repository of the OML project.

4

43

#include <oml_exceptions.h>

void Decoder() {

next_deadline = current_time();

for (;;) {

next_deadline += period;

/* absolute deadline constrained code */

try_within_abs(next_deadline) {

StreamParser();

if (FrameDecoder() == 0)

ImagePostProcessing();

Visualization();

}

handle

when (ex_deadline_violation) {

/* e.g., re-use last decoded frame */

}

handle_end;

/* Wait for next activation */

}

}

int FrameDecoder() {

int rv = 0; /* Normal return code */

try_wcet(12000) {

DecodeAudioFrame();

DecodeVideoFrame();

}

handle

when (ex_wcet_violation) {

/* Notify caller of incomplete decoding */

rv = -1;

}

handle_end;

return rv;

}

Figure 3. Example code of an video/audio player using

the proposed mechanism.

ex timing constraint violation: this is the

common basic type for timing constraint violation

exceptions; it may be used for the purpose of catch-

ing a generic timing constraint violation, without

distinguishing between them;

ex deadline violation: this exception occurs as a

result of a try within rel or try within abs

segment not terminating within the specified relative

or absolute deadline;

ex wcet violation: this exception occurs as a result

of a try wcet segment not terminating within the

specified execution time constraint.

A simple example of how to use these macros is shown in

Figure 3. The Decoder main body is a typical periodic

thread where each activation has the next activation time as

absolute deadline. Also, the FrameDecoder() function

has a nested WCET constraint of 12ms.

As a final remark, consider the particular erroneous

usage of the framework shown in Figure 4. If the

try_within(10) {

...

try_within(50) {

...

}

handle

when (ex_deadline_violation) {

/* handle violation of try_within(50) *

* and not the one of try_within(10) *

* which is the first that is raised. */

}

handle_end;

}

handle

when (ex_deadline_violation) {

/* handle the violation of try_within(10) *

* which has to be captured here and not *

* in the previous when clause. */

}

Figure 4. Typical example where relating each try

clause with its when is needed.

try within statements are used in different components,

then such a situation may occur during development. OML

Exceptions includes a special exception matching rule for

the when clauses involving timing constraint exceptions:

if the raised exception is associated to a try block that is

external (in the run-time sense) to the current try block,

then the exception is propagated instead of being stopped.

In the example, this mechanism allows the outer handler

to correctly detect the deadline violation, because it is not

stopped by the nested handler.

OML Exceptions complies with all of the requirements

introduced in Section 3, with the few notes outlined in the

following section.

5 Implementation

This section provides an overview of how the proposed

mechanism has been implemented, always bearing the out-

lined requirements in mind.

5.1 Time­Scoped Segment Implementation

OML Exceptions has been realized by means of the

POSIX sigsetjmp() and siglongjmp() functions.

The former saves the execution context such that the latter

is able to restore it, and continue program execution from

that point.

For the try within abs and try within rel

constructs, the time reference is the POSIX

5

44

CLOCK MONOTONIC clock. For the try within wcet

macro, the time reference is the POSIX

CLOCK THREAD CPUTIME ID clock. Events are

posted using interval timers (POSIX itimer).

Notification of asynchronous constraint violations is

done by delivering to the faulting thread a real-time sig-

nal (i.e., a POSIX signal with the property of being queued

and guaranteed not to be lost). The OML Exceptions signal

handler performs a siglongjmp to the appropriate con-

text, jumping to the handle...handle end block for

the check of the exception type.

This implementation is portable to any Operating System

providing support for POSIX real-time extensions.

5.2 Deadline and WCET Signal Handling

In case one (or more) specified constraint is violated, a

signal has to be sent to the correct thread, in order to ful-

fil Requirement 4. However, signal delivery to a specific

thread is not covered by POSIX. In fact, when a signal is

sent, it reaches the whole process, and it is not possible to

determine in advance which thread will receive and han-

dle it. Therefore, the standard suggests to have one only

thread receiving the signal, and all the others ignoring it,

so that the receiving thread may notify the correct thread

by means of other inter-thread synchronization primitives.

However, such an approach would imply that every time

a timing constraint is violated, the CPU incurs additional

context switches, not to mention the additional overheads

of managing (creating and destroying) the “signal router”

thread.

On the other hand, Linux supports delivery of signals to

specific threads thanks to an extension of the POSIX se-

mantics built into the kernel. Therefore, OML Exceptions

is implemented by using this extension, which, at the cost

of sacrificing Requirements 10, allows for a much more ef-

ficient implementation of the mechanism on Linux (see also

Figure 5). However, a version of OML Exceptions perfectly

compliant with POSIX is being implemented as well, so that

the framework will be capable of choosing the best imple-

mentation at compile-time.

5.3 Benchmarking Operational Mode

In order to cope with requirement 9, a compile-time

switch has been provided that, when enabled, gathers in-

formation on the duration of all the try...handle code

segments. This allows developers to easily obtain statistics

about execution times of the time-scoped sections.

5.4 Non­Interruptible Code Sections

Requirement 8 is achieved by providing two

additional macros, oml within disable and

oml within enable, within which developers may en-

close atomic code segments that cannot be asynchronously

interrupted by a timing constraint violation. These two

macros simply disable and enable, respectively, delivery of

the time constraint violation real-time signals. If a signal

occurs in the middle of such a protected code region, then

it is enqueued by the OS, and delivered immediately at the

end of the section.

5.5 Precision Limitations and Latency Issues

With respect to the maximum precision with which tim-

ing constraints are checked and enforced, this is limited by

the time-keeping precision of the underlying Operating Sys-

tem. This is true also for the preliminary implementation

on Linux, and thus a description of how timers and task ex-

ecution time accounting are dealt with in the Linux kernel

follows.

From mainstream kernel version 2.6.21, the kernel has

been enriched by the high resolution timers. Thanks to

them, timers are no longer coupled with the periodic system

tick, and thus they can achieve as high resolution as permit-

ted by the hardware platform. Nowadays, large number of

microprocessors, either designed for general purpose or em-

bedded systems, are provided with precise timer hardware

that the OS can exploit, e.g., the TSC cycle counter register

of the CPU. Therefore, if a Linux process or thread posts a

timer to fire at a certain instant, it could expect to be woken

up quite close to that point in time.

Despite this, there still exist Linux kernel subsystems de-

pending on the periodic system tick. With respect to the pre-

sented work, the most relevant one is the time accounting

mechanism, i.e., how the system tracks how much a thread

is executing. In fact, this is done by the kernel at each oc-

currence of the following events:

• at each periodic system tick;

• at each task scheduling event, i.e., enqueue, dequeue

or preemption.

Thus, the time accounting resolution is limited by the sys-

tem tick frequency, which can be configured by the user

at kernel compile time. Typical values are 100, 250 and

1000 Hertz, which means, respectively, 10, 4 and 1 mil-

lisecond resolution. This is also important, since the CPU-

clock based timers used to implement the WCET timing

constraints are not based on high resolution timers, and rely

only on standard Linux accounting.

6 Experimental Evaluation

The proposed mechanism is effective and useful only if

the latency between the occurrence of the timing constraint

violation and the activation of application recovery logic

(handler activation latency) is relatively small (with respect

to the job execution times of the application), and if its value

is known to the designer (Requirement 7).

In Figure 5 the various components contributing to the

total amount of latency introduced between an actual con-

6

45

Figure 5. Various components contributing to the handler activation latency for the POSIX compliant (a) and Linux specific (b)

implementations.

straint violation and its notification to the application are

shown.

The handler activation latency has been measured by

means of two experiments, made on the Linux Operating

System (OS), that also highlight how the latency is affected

by the kernel configuration.

6.1 Experiments Set­Up

A simple test application, built as a single thread of ex-

ecution, has been used in both experiments, and no other

applications have been launched concurrently. This way,

the measurements were not affected by other components

of the handler activation latency, such as the scheduling la-

tency (the latter should be addressed by adopting a real-time

design strategy). Thus, a task τ with WCET, relative dead-

line and period equal to (C, D, T) = (50, 50, 100) msec is

used, and run for 1000 consecutive instances. Experiments

have been performed on commonly available desktop PC

hardware, with 3.0 GHz Intel CPU and 2 GB of RAM. De-

bian GNU/Linux version 4.0, with hand-tailored kernel ver-

sion 2.6.28 was the Operating System used. Kernel config-

uration includes the high-resolution timer subsystem, with

support for high precision hardware timing sources. The

one used by the system while running the experiments was

the HPET [6].

In the first experiment, the latency of a deadline viola-

tion is measured 1000 times. This is done by forcing τ to

execute more than 50 msec inside a try within block,

and then subtracting the ideal deadline violation instance

— i · T + D — from the actual time instant Ḋ at which the

deadline miss signal handler is invoked.

In the second experiment, the task again executes more than

50 msec, this time from inside a try wcet block, so to

cause a WCET violation and measure its latency as well.

Both experiments have been run on three different con-

figurations of the Linux kernel, i.e., with 100, 250 and 1000
Hertz as the periodic tick frequency, to study if and how this

affects the latency.

Common statistics on the measured latency figures have

been computed for both experiments on each configura-

tion, and the corresponding cumulative distribution func-

tions (CDF) are reported below. Minimum achieved latency

values have not been reported since they are highly depen-

dant on how close to a system tick (or, in general, an ac-

counting event) a timing violation event occurs. Thus, since

they depend on the actual alignment of the task and the OS

events, they turn out to be unrelated to the system configu-

ration, thus they provide few information about the perfor-

mance of the mechanism.

6.2 Experiments Results

Results of the experiments are shown in Tables 1 and 2

and in Figures 6 and 7. They show that the latency of the

notification of a deadline violation is both small and inde-

pendent from the system tick frequency. In fact, values in

Table 1 are comparable, and the three CDF in Figure 6 are

completely superimposed. The measured latency values are

in the order of the µs, what constitutes a more than accept-

able performance.

Situation is different for WCET violation results. In fact,

7

46

max mean std. dev.

HZ=100 28610 1724.418 1187.854

HZ=250 17202 1595.095 711.1304

HZ=1000 33394 1602.544 1023.255

Table 1. Deadline latency in ns

max mean std. dev.

HZ=100 18727747 5748948.344 4474771.769

HZ=250 4423164 1233955.255 844593.486

HZ=1000 1999752 522228.673 390837.341

Table 2. WCET latency in ns

as shown by both the values in Table 2 and the three CDF of

Figure 7, the precision achieved in case of a WCET viola-

tion is tightly coupled with the system tick frequency HZ.

Table 2 also shows how the mean WCET latency is close

to HZ

2
, which is exactly what was expected. As it can be

easily seen, for the mechanism to be useful, the value of

HZ = 1000 is strongly suggested.

7 Conclusions

In this paper, an open-source library has been presented

for the management of timing constraints violations accord-

ing to the well-known exception-based paradigm. This con-

stitutes a valuable support for developers of embedded soft

real-time applications.

A set of basic requirements have been identified, and a

mechanism has been presented fulfilling them. The result is

a framework designed as a set of macros for the C language,

integrated in an open-source project that enables exception

management.

Thanks to the proposed framework, developers may fo-

cus on one hand on the main application flow of control,

which will be executed most of the times (or at least with

a high probability, if the system is properly designed). On

the other hand, the framework allows to catch dynamically

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5000 10000 15000 20000 25000 30000 35000

P
ro

b{
D

ea
dl

in
e

La
te

nc
y

<
=

 t}

t

HZ=100
HZ=250

HZ=1000

Figure 6. Cumulative Distribution Function of
the deadline violation latencies. Time on x­
axis is in ns.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07 2e+07

P
ro

b{
W

C
E

T
 L

at
en

cy
 <

=
 t}

t

HZ=100
HZ=250

HZ=1000

Figure 7. Cumulative Distribution Function of

the WCET violation latencies. Time on x­axis
in ns

possible violations of the timing constraints associated to

critical parts of the code, due either to particular input data,

or to the non-perfectly predictable behavior of applications

on a soft real-time platform, such as Linux. The code in

compensation or recovery of this is provided in the form of

an exception handler.

An implementation of the proposed mechanism has been

presented for the Linux Operating System, based on stan-

dard POSIX-class primitives. A few experimental results

have been presented highlighting latencies that the applica-

tions using the framework experience in the activation of the

exception management code, compared to the ideal time of

fire of the exception, and the limitations on the precision of

the current solution have been discussed.

Of course, such a framework should be used in combi-

nation with a real-time design methodology, and advanced

real-time scheduling features, available in various forms for

the Linux kernel, such as the POSIX Sporadic Server [4] or

the Adaptive QoS Architecture for Linux [10].

Concerning possible directions for future work, a kernel-

level mechanism is being investigated for the Linux OS,

leading to a reduction in the handler activation latency. Fur-

thermore, a more ambitious macro-based framework for C

is under design that will enrich OML with generic con-

structs for threads management, synchronization and real-

time scheduling.

References

[1] G. Bollella and J. Gosling. The real-time specification for

java. Computer, 33(6):47–54, 2000.
[2] A. Burns and A. Wellings. Concurrent and Real-Time Pro-

gramming in Ada 2005. Cambridge University Press, 2007.
[3] S. A. Edwards and E. A. Lee. The case for the precision

timed (pret) machine. In Proceedings of the 44
th annual

conference on Design automation (DAC’07), pages 264–265,

New York, NY, USA, 2007. ACM.
[4] D. Faggioli, G. Lipari, and T. Cucinotta. An efficient im-

plementation of the bandwidth inheritance protocol for han-

dling hard and soft real-time applications in the linux kernel.

In Proceedings of the 4
th International Workshop on Operat-

8

47

ing Systems Platforms for Embedded Real-Time Applications

(OSPERT 2008), Prague, Czech Republic, July 2008.
[5] IEEE. Information Technology -Portable Operating System

Interface (POSIX)- Part 1: System Application Program In-

terface (API) Amendment: Additional Realtime Extensions.

2004.
[6] Intel. IA-PC HPET (High Precision Event Timers) Specifi-

cation (revision 1.0a). October 2004.
[7] I. Lee, S. Davidson, and V. Wolfe. RTC: language sup-

port for real-time concurrency. In Proceedings of the IEEE

Real-Time Systems Symposium (RTSS 91), San Antonio, TX,

USA, December 1991. IEEE *** FIXME ***.
[8] I. Lee and V. Gehlot. Language Constructs for Distributed

Real-Time Programming . Technical report, University of

Pennsylvania, May 1985.
[9] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and

E. A. Lee. Predictable programming on a precision timed

architecture. In Proceedings of the International Conference

on Compilers, Architecture, Synthesis for Embedded Systems

(CASES), pages 137–146, Atlanta, Georgia, United States,

October 2008.
[10] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari. AQu-

oSA — adaptive quality of service architecture. Software –

Practice and Experience, 39(1):1–31, 2009.

9

48

1

Hardware Microkernels for Heterogeneous
Manycore Systems

Jason Agron, David Andrews
Computer Science and Computer Engineering

The University of Arkansas
504 J.B. Hunt Building, Fayetteville, AR

{jagron,dandrews}@uark.edu

Abstract— The migration away from power-hungry, specu-
lative execution procesors towards manycore architectures is
good news for the embedded and real-time systems community.
Commodity platforms with large numbers of heterogeneous
processors can be leveraged to meet the stringent real-time
requirements of next-generation embedded systems. Although
promising, the large numbers of heterogeneous cores that can
bring about new levels of performance also bring with them
new challenges for designers of real-time operating systems.
Researchers are already conjecturing that the scalability and
heterogeneity of manycores will result in the retirement of our
existing monolithic operating system structure. In this paper we
first discuss some of the challenges that these manycore chips will
present. We then discuss how hardware-based microkernels can
provide the low latency, low jitter performance envelopes that
are needed within real-time systems. We show how our hthreads
hardware microkernel provides these characteristics for scalable
numbers of threads and processors. A hardware-based micro-
kernel approach also provides ISA-neutral OS services, such as
basic atomic operations, upon which higher-level programming
models can be built.

I. INTRODUCTION

In 2005, Paul Otellini announced Intel’s commitment to
dedicate all future product development to multicore designs.
This announcement represented a key inflection point for the
industry as it acknowledged the migration away from power
hungry speculative execution processors, and the ushering in
of the manycore era. The manycore era is good news for the
embedded and real-time systems community. The manycore
technology infrastructure will be providing new platforms with
multiple, heterogeneous computational components that can
be leveraged to meet real-time requirements. In addition to
performance, power issues which have long been a first class
design constraint for embedded and real-time systems, are now
a driving factor for modern mobile Internet computing device
architectures. The manycore philosophy is even effecting dig-
ital signal processing (DSP) architectures where vendors are
integrating ever larger number of DSP cores within a chip.

Thus the manycore era should yield important economic ad-
vantages for embedded systems designers as it lessens the need
for creating expensive application specific custom hardware
solutions. Embedded systems designers will now have access
to commodity chips with 100’s to potentially 1,000’s of hetero-
geneous components that can be used across wide application
domains. While exciting, the entry of these components raises

the challenge for designers of real-time operating systems.
The real-time community has long been migrating away from
custom towards more general purpose operating systems to
enable portability and reuse. Researchers and practioners have
been modifying general purpose operating systems to provide
the scheduling and latency guarantees critical for real time
systems. Interestingly, manycore architectures are now posing
the same scheduling and latency issues for general purpose
operating systems that have concerned the real-time systems
community. Operating system scheduling and latency issues
are being magnified by the very scalability and heterogenity
benefits of the manycore architecture itself. Experts in both
industry and academia are acknowledging that the manycore
era may well spell the retirement of our historical desktop-
based operating systems along with power-hungry super-scalar
processors. The specific rationale for this viewpoint varies,
but does converge on the limitations of our current operating
system’s monolithic structure. This monolithic structure poses
capacity, scalability, and performance challenges that cannot
be solved by simply adding yet more middleware and virtual-
ization layers on top.

Manycore architectures can only bring about higher per-
formance if parallelism is increased through the creation of
more (and potentially heterogeneous) threads. New and more
efficient implementations of OS services will be fundamental
in enabling these new systems to transition into the real-
time domain. Systems with heterogeneous components will
also require new methods in enabling real-time operating
systems to form a unifying virtual machine representation for
application developers. Unfortunately, many of the proposed
approaches from the general purpose computing domain, such
as remote procedure calls (RPC) for resolving heterogeneity
issues within existing monolithic operatings systems, introduce
additional latency and jitter; two critical issues for real-time
systems. In this paper we show how hardware-based micro-
kernels can resolve the issues that result from our existing
monolithic structure. While it may appear unorthodox, shifting
the hardware/software boundary is a fairly common historical
occurrence. Specialized hardware has replaced less efficient
software emulation to better support virtual memory and
memory protection (MMUs), machine virtualization, graphics
and I/O, transactional memory, and context switching (simulta-
neous multithreading, partitioned register files). The multicore
era has already created an environment where even basic

49

2

systems now contain multiple processors. The manycore era
will accelerate this trend, with each new system promising
a doubling of the numbers of processors. Real-time system
developers will not just want, but need efficient multithreading
support for these systems. History suggests that an increased
demand for low latency and low jitter thread-based operations
can result in their evolution from relatively inefficient software
routines, into more efficient hardware-based primitives.

II. MANYCORE CHALLENGES FOR REAL-TIME SYSTEMS

Manycores will bring about performance improvements
through parallelism instead of increased clock speeds and en-
ergy hungry speculative execution. As researchers conjecture
that Moore’s law will track processor densities in the manycore
era, Amdahl’s law provides a cautionary lesson that speedup
does not simply track the numbers of parallel processors.
Amdahl’s law shows that speedup is confined to sections of
code that can be parallelized. For thread-level parallelism, a
program with 100 threads running on a system with 1,000
processors simply cannot achieve a 1,000x speedup. Perhaps
Moore’s law for manycores should be applied to the number
of threads created; the more threads, the more potential for
parallelism. Unfortunately there is no free lunch. As the
number of threads increases, the operating system must expend
more cycles to create, manage, and control the increased
number of threads. Additionally, if a basic quantum of work
expressed in a single thread is split into multiple, smaller
threads to exploit more parallelism; then the ratio of cycles
of fixed overhead costs for the operating system versus cycles
available for application processing worsens. The growth in
the number of threads can also introduce more jitter into
operating systems with shared data structures. Operations such
as releasing semaphores will cause the scheduler to be invoked
to update thread contexts, even if no scheduling decision
results.

Moore’s law, when applied to threads, will clearly affect the
efficiency and overhead incurred by the operating system. Op-
erating system overhead can certainly be reduced by flattening
the hierarchical software protocol stack. However latency and
overhead is still incurred when sharing data structures within
a monolithic kernel across multiple processors. Contended
access to common structures in systems with 100’s to 1,000’s
of processors will not be helped by flattening the protocol
stack as this does not eliminate the potential for starvation
and high contention-induced overhead.

A. Introducing Heterogeneity

Real-time embedded systems routinely integrate different
cores to handle mixes of streaming real-time signal, image,
and audio data along with general-purpose data processing
requirements. Researchers within the manycore domain are
following this approach calling for heterogeneous mixes of
cores to better exploit the parallelism of next-generation ap-
plications.

At run-time, applications call operating system library code.
This code is typically assembly language for a specific ISA.
This poses no compatibility issues for homogeneous systems.

However this does prevent, a processor with a different ISA
from directly invoking this library code. Inter-processor syn-
chronization implemented using ISA-specific atomic opera-
tions is particularly problematic, as atomic operations are
not uniform across different processor families [1]. This
mismatch is further compounded on modern SMP systems
that rely on the underlying snoopy cache coherency protocols
to guarantee atomicity of the operations. The Cell as well
as Intel’s EXOCHI [2], [3] resolve these differences using
remote-procedure call (RPC) mechanisms. Slave processors
request operating system services that run on a host processor.
While flexible, the mechanisms used to implement RPCs
usually involve interrupt/exception processing routines which
introduce considerable overhead and jitter; 2 very undesirable
traits.

A second popular approach to solving processor heterogene-
ity is to use interpretation techniques and virtual machines.
Similar to RPC mechanisms, interpretation and virtualization
techniques come at the cost of additional overhead. History has
shown that these software emulation techniques become part
of a more efficient hardware infrastructure when the demand
for such services go from niche to mainstream. As an example,
the demand for x86-based virtualization for servers has rapidly
accelerated in recent years. However, the x86 was simply
not designed with virtualization in mind, thus making it very
difficult to virtualize in the classical sense [4]. The lack of
proper virtualization abstractions at the hardware level forced
developers to rely on a complex software run-time system;
responsible for binary translation, code-caching, and just-in-
time compilation [5].

Chip-makers soon realized that they could eliminate the
complex run-time system by making small changes to the
underlying hardware platform. Within a short period of time,
chip-makers and virtualization experts developed a hard-
ware/software co-designed solution that provided full x86
virtualization, and a vastly simpler run-time system. The
solution was achieved by intelligently considering the hard-
ware/software interface from the perspective of both hardware
designers and software programmers. We began exploring the
same HW/SW co-design approach for real time operating
systems for embedded systems implemented within hybrid
CPU/FPGA platforms.

III. HTHREADS MICROKERNEL

We began our investigation of hardware based microkernels
by exploring how to bring modern programming model ab-
stractions into the domain of real-time systems using hybrid
CPU/FPGA components. Our goal was to bring custom ac-
celerators created within the FPGA fabric under the control
of a real-time Linux kernel. We rationalized that starting with
an existing Linux kernel, and then modifying it as necessary,
would be expedient and foster portability. Our first goal
was to enable the FPGA-based co-processors to synchronize
with software tasks running on the CPU using semaphores.
Unfortunately, the CPU that was chosen, a stripped down
PowerPC processor that was embedded in a Xilinx Plat-
form FPGA, did not expose the pins necessary for cache

50

3

CPU
Software Interface

Software
Thread

Software
Thread

Software
Thread

Hardware
Interface
Hardware

Thread

Hardware
Interface
Hardware

Thread

Thread
Manager

Thread
Scheduler

Shared
Memory

Conditional
Variables

Synch.
Manager

System Bus

Fig. 1. Hthreads System Block Diagram

coherence bus protocols. This eliminated the ability to syn-
chronize CPU-and FPGA-based tasks using load-linked/store-
conditional (LL/SC) operations as the coherence information
was not accessible within the FPGA.

To resolve this we replaced the use of atomic assembly in-
structions with a simple, hardware-based, mutex state machine.
Although the implementation of the mutex hardware was quite
simple, integration into Linux became slightly more complex.
The Linux scheduler needed to be notified when threads
became un-blocked. This required the use of an external
interrupt in order to invoke the Linux scheduler from the mutex
hardware. The use of interrupts produced unpleasant results as
any change in state of a mutex resulted in the invocation of a
CPU interrupt even when this state change did not result in a
new scheduling decision. This introduced additional overhead,
latency, and jitter to the application program running on the
CPU. Additionally, synchronization events between dedicated
hardware tasks would interrupt the CPU for bookkeeping
reasons, even though these tasks did not utilize the CPU for
execution purposes.

To reduce the latency and jitter, we then decided to migrate
the operating system scheduler into hardware. It became
obvious that attempting to break up the monolithic Linux
kernel would require significant modifications to the kernel
itself. As we continued down this path, it quickly became clear
that we were essentially peeling away the layers of an onion.
The presence of global data structures made it very difficult
to discern which pieces of kernel state were owned solely by
the scheduler. We then switched tactics, and set out to create
a stand-alone microkernel composed of independent, low-
overhead services, equally accessible by threads running on a
CPU or in hardware. We focused on flattening the software
protocol stack and the structure of the operating system,
instead of only targeting the operating system internals. We
adopted a POSIX threads (PThreads) compatible model [6],
and created a HW/SW co-designed set of system services to
support this model.

The resulting hthreads operating system consists of 4 major
hardware cores that provide OS services: the Thread Manager,
Scheduler, Synchronization Manager, and Condition Variables
as shown in Figure 1 [7], [8]. This modular partitioning
broke up the traditional monolithic kernel structure allowing
us to separate concerns between different OS service cores.
Each OS IP core fully encapsulates its internal data structures
and serves as the sole interface to its internal data. This
fosters explicit inter-service communications and eliminates
shared data structures within the operating system itself. The
basic control structure of each OS core is independent of

the numbers and types of processor resources and active
threads in the system. This decoupling is advantageous as
each generation of manycore chips will provide performance
increases through the addition of cores. The operating system
must provide a framework that allows application programs to
be seamlessly ported between generations as well as vendor
platforms.

Each core has a simple memory-mapped interface that is
accessed via traditional load/store instructions. This allows any
processor that can master the bus to directly request services.
This circumvents the need for slower remote-procedure call
(RPC) mechanisms to provide a uniform set of efficient system
services to all heterogeneous cores. Allowing each core to
operate independently enables different processors to simul-
taneously request system services. This reduces both latency
and jitter as simultaneous requests for different services do
not compete for centralized services. The internal functions
of each OS IP core have been parallelized, also providing
low latency system calls with minimal jitter through efficient
hardware implementations. More detailed analysis is provided
in the following sections of each hthreads component. Timing
results are provided that were obtained on two development
platforms: a Xilinx Virtex-II Pro XC2VP30 FPGA, and a
Xilinx Virtex-5 FXT 70 FPGA. All timing results were ob-
tained using built in free running counters for cycle accurate
measurements during run time.

IV. THREAD MANAGEMENT

A block diagram of the thread manager is shown in Figure 4.
The thread manager core serves as a centralized repository of
thread state, regardless of the location of the thread in the sys-
tem. The state of a thread indicates if the thread is used, exited,
running, suspended, or ready-to-run. Thread state also includes
if the thread was created as a separate detached thread, or
has a parent/child relationship with another active thread. This
information is used in scheduling decisions for both the parent
and child threads across heterogeneous processors. The thread
manager serves as the interface for creation and allocation of
thread IDs within the OS. The steps taken to create both a
native and a heterogeneous thread within hthreads is shown
in Figures 2 and 3 respectively. Important for scalability
and processor heterogeneity, the thread manager separates the
concern of thread state information from the physical numbers
and types of processors. The state information is maintained
and updated without needing to know where the thread is
currently in the system. This includes threads that become
ready-to-run after being unblocked from mutual exclusion
primitives. Important for real-time systems, the thread manager
reduces system jitter by fielding external interrupts. In a typical
system, the CPU will receive interrupt requests from sources
such as timers or external devices. The arrivals of these re-
quests are outside of the control of the scheduler and interrupt
the normal execution of applications. In hthreads, the thread
manager fields requests, and the appropriate interrupt handler
is scheduled as another thread. This puts the overhead of
interrupt handling under scheduler control. Also, it makes the
interrupt service routine running on the CPU very lightweight,

51

4

Hetero CPUCPU
Software Interface

Software
Thread

Software
Thread

V-HWTI HAL
ID: 6

Thread
Manager

Scheduler Shared
Memory

Mutexes

System Bus

ID: 3 ID: 4

Ready
4

Hetero
Thread

A F

C

B

A: Thread 3 calls pthread_create which interacts with the Thread Manager.
B: Thread manager allocates a fresh thread identifier (TID 4).
C: Thread manager submits an ENQ request of TID 4 to the scheduler
D: Scheduler handles ENQ request by querying the attributes for TID 4.
E: Scheduler finds that ID 4 is a native thread, and adds it to the R2RQ.
F: If ID 4's priority is better than that of the currently running thread (ID 3):
 * Then a preemption interrupt will be fired by the scheduler.
 * Otherwise, TID 4 will remain in the R2RQ.

D,E

Conditional
Variables

HWTI
ID: 8

Custom
Hardware

Thread

TID Stack
4,5,6

Fig. 2. Hthreads Native Thread Creation Sequence

Hetero CPUCPU
Software Interface

Software
Thread

Software
Thread

V-HWTI HAL
ID: 4

Thread
Manager

Scheduler Shared
Memory

Mutexes

System Bus

ID: 3 ID: Idle

Ready
4

Hetero
Thread

A
F

C

B

A: Thread 3 calls pthread_create which interacts with the Thread Manager.
B: Thread manager allocates a fresh thread identifier (TID 4).
C: Thread manager submits an ENQ request of TID 4 to the scheduler
D: Scheduler handles ENQ request by querying the attributes for TID 4.
E: Scheduler finds that ID 4 is a heterogeneous thread, and prepares to signal
F: Scheduler sends a SIGNAL to TID 4's V-HWTI.
G: Heterogeneous thread begins execution

D,E

G

Conditional
Variables

HWTI
ID: 8

Custom
Hardware

Thread

TID Stack
4,5,6

Fig. 3. Hthreads Heterogeneous Thread Creation Sequence

requiring only a register read to determine the next thread and
a context switch.

A. Performance Analysis

Raw timing of the hardware execution times of thread
management operations are provided in Table I. Several
thread management operations directly result in schedul-
ing operations, namely add-thread, next-thread, and
yield-thread. The times shown for these operations ac-
knowledge that additional latencies are incurred when the
scheduler enqueues and dequeues thread ids. The remaining
operations deal solely with allocation, creation, and status
of threads. All timings show the efficiency of a hardware
resident microkernel. Table II also shows how end-to-end
execution times can vary between heterogeneous processor
families. These on-chip tests were measured at the application
(user-thread) level on an Xilinx Virtex-5 FXT 70 FPGA
clocked at 125 MHz with all data caches turned off. This
variance is due to differences in the operating system kernel
implementation on each processor family as well as slight

join thread

I
P
I
F

I
N
T
E
R
F
A
C
E

detach thread

exit thread

clear thread

create thread

add thread

next thread

current thread

idle thread

debug stop

debug start

debug reset

scheduler
connection

P
L
B

Thread Table

Fig. 4. Thread Manager Block Diagram

TABLE I
RAW (HW-ONLY) TIMING RESULTS OF THREAD MANAGEMENT

OPERATIONS

Operation Time (clock cycles)
Add Thread 10 + ENQ
Clear Thread 10
Create Thread Joinable 8
Create Thread Detached 8
Current Thread 3
Detach Thread 10
Exit Thread 17
Join Thread 10
Next Thread 10 + DEQ
Yield Thread 10 + ENQ + DEQ

differences in how the scheduler manages heterogeneous cores.
Although execution times vary between processor families,
system call overhead is still quite low within each family.
We also show the performance degradations that can occur
when calls, such as create and join, are implemented
with RPC mechanisms. To illustrate this, we implemented a
custom hardware component that requests OS services from
a delegate software thread running on the PowerPC processor
clocked at 300 MHz (approximately 2x faster than the 125
MHz tests). Even on a faster CPU, the RPC approach clearly
suffers a significant performance degradation. This is due
to a dependence on high overhead interrupts and additional
communications requirements. Although not shown, these
same RPC approaches can and do introduce unwanted and
unpredictable jitter to a user’s application.

V. SCHEDULER

The main function of the scheduler is to determine if a
new scheduling decision is required for any processor in the
system. A scheduling decision can result from both implicit
and explicit events. Explicitly, a thread running on a processor
may exit or yield. This frees up the processor, allowing
another thread that is ready-to-run to execute. Implicitly, any
thread in the system can release a resource that results in the
unblocking of a different thread that may preempt a currently

52

5

System Call Execution
Time (from
HW)

Execution
Time (from
PPC)

Execution
Time
(µBlaze)

create 160µs * 40.8µs 12.5µs
join 130µs * 65.7µs 13.9µs
mutex lock 0.36µs 12.0µs 2.7µs
mutex unlock 0.36µs 11.9µs 3.0µs

TABLE II
SYSTEM CALL PERFORMANCE. (*) INDICATES CALL IS IMPLEMENTED

USING RPC MODEL.

Thread Manager Thread Scheduler

current thread reg

next thread reg

current thread reg

next thread reg

current cpu thread id

next cpu thread id

State Table B-Port Interface

opcode

data in
request

busy

data out

next id valid

THREAD_DATA

PARAM_DATA

PRIORITY_DATA

Priority Encoder

system bus

bu
s

in
te

rfa
ce

bu
s

in
te

rfa
ce

128-bit Priority Field

Highest Active Priority

Fig. 5. Block Diagram of Scheduler Module

running thread. In general, a classic monolithic operating
system scheduler is invoked for any potential scheduling
decision regardless of the outcome. This can occur even
when the priority of an unblocked thread will not result in
a new scheduling decision. In this case, the CPU running the
scheduler is interrupted so that the unblocked thread can be
added back to the ready-to-run queue. This is a classic source
of jitter in software-based systems as the scheduler must be
invoked to determine if the release of the unblocked thread
should trigger a new scheduling decision. An independent,
hardware-based scheduler can evaluate the complete system
state and determine if any new scheduling decisions are needed
for all system resources without interrupting any particular ap-
plication. Our hardware based scheduler makes all scheduling
decisions a priori, in parallel with the application programs
running on the CPUs. A processor is only interrupted when
a thread entering the ready-to-run queue has a higher priority
than both the thread currently running on that processor, as
well as any other threads within the ready-to-run queue.

The scheduler is implemented as a single finite-state ma-
chine along with a set of three Block RAMs and a 128-bit
priority encoder as shown in Figure 5.

The 128-bit priority encoder is used to calculate the highest
priority level with active threads in the system at any given

idle

DEQ_begin

lookup_dequeue_entry_idle

lookup_dequeue_entry_finished

lookup_deq_pri_entry_idle

lookup_deq_pri_entry_finished

wait_for_encoder_0

lookup_old_head_ptr_idlewait_for_encoder_1

lookup_old_head_ptr_finishedwait_for_encoder_2

write_back_entries

check_encoder_output

lookup_highest_pri_entry_idle

lookup_highest_pri_entry_finished

Fig. 6. Scheduler Dequeue Operation

time. Its input is a 128-bit register in which each bit signifies
whether or not active threads exist at a given priority level. The
priority encoder has been implemented as a small FSM that
multiplexes each 32-bit section of the 128-bit input field onto
a 32-bit priority encoder. The output of the 128-bit priority
encoder is a 7-bit value that represents the highest priority
level with active threads in the system. In hthreads the best
priority level is 0, while the worst is 127. The priority encoder
always generates a new output in four clock-cycles.

Together, the priority encoder and the partitioned ready-to-
run queue structure allow for all of the scheduler’s operations
to complete in constant time. The priority encoder allows the
scheduler to find the highest priority thread without having
to traverse the ready-to-run queue. The partitioned ready-to-
run queue structure is logically a set of 128 FIFOs, one FIFO
for each priority level, on which constant time enqueue and
dequeue operations occur. It is important to note that the
scheduler will recalculate the next scheduling decision at any
time the ready-to-run queue is changed; i.e., when threads
are added or removed from the queue, or when scheduling
parameters change for individual threads.

The dequeue operation of the scheduler is used to consume
the current scheduling decision by removing the thread that is
scheduled to run next from the ready-to-run queue, followed
by the calculation of the next scheduling decision. The next
scheduling decision can be calculated by first examining the
output of the priority encoder to find the highest active priority
level in the system. Once this priority level is found, the next
scheduling decision, or next thread to run, is the head of this
priority level’s queue. The control flow graph of the dequeue
operation is shown in Figure 6.

The enqueue operation of the scheduler is used to add a

53

6

idle

ENQ_begin

lookup_enqueue_entry_idle

lookup_enqueue_entry_finished

lookup_enqueue_pri_entry_idle start_hw_thread_begin

lookup_enqueue_pri_entry_finished start_hw_thread_ACK_read

start_hw_thread_wait_for_ack

start_hw_thread_finished

init_head_pointer lookup_old_tail_ptr

init_tail_pointer lookup_old_tail_ptr_idle

wait_for_encoder_0

write_back_entries

lookup_highest_pri_entry

lookup_old_tail_ptr_finished

lookup_highest_pri_entry_idle

lookup_highest_pri_entry_finished

preemption_check

Fig. 7. Scheduler Enqueue Operation

thread to the ready-to-run queue, followed by a calculation of
the next scheduling decision. The newly-scheduled thread is
added to the end of its priority level’s queue, then the priority
encoder recalculates the highest active priority level in the
system. The next scheduling decision is chosen and its priority
is compared to that of the currently-running thread (or threads,
in SMP mode) in order to determine if preemption should
occur. If it is determined that the thread to be scheduled next
is of better priority than the currently-running thread, then
the scheduler will assert the preemption interrupt. Otherwise,
the system will continue to run uninterrupted until the next
scheduling event occurs, such as a blocking system call or
another change in the ready-to-run queue. The control flow
graph of the enqueue operation is shown in Figure 7.

The adjustment of a thread’s scheduling parameter is the
composition of the enqueue and dequeue operations. If a
thread is not currently queued, adjusting the thread’s schedul-
ing parameter is merely an adjustment of a single thread’s
state. However, if the thread is currently queued this operation
could result in the change of that thread’s location in the queue;
i.e. a different priority level. Essentially, the scheduler first
performs a dequeue of the selected thread, followed by an
enqueue of that thread with its updated scheduling parameter.

A. Performance Analysis

The raw (HW-only) performance of the scheduler’s oper-
ations are shown in Table III. One can see that all of the
scheduling operations execute in 500 ns (50 clock cycles) or
less. These execution times are extremely fast, especially when
considering how many cycles many of these operations would
take within software.

It is also important to note that the scheduler has been
implemented as an FSM in which all internal data structures
have constant access time, and as such, has completely deter-
ministic behavior. The predictable behavior of this FSM paired

TABLE III
RAW (HW-ONLY) TIMING RESULTS OF SCHEDULING OPERATIONS

Operation Time (clock cycles)
Enqueue(SWthread) 28
Enqueue(HWthread) 20 + (1 Bus Transaction)
Dequeue 24
Get Entry 10
Is Queued 10
Is Empty 10
Set Idle Thread 10
Get Sched Param 10
Check Sched Param 10
Set Sched Param(NotQueued) 10
Set Sched Param(Queued) 50

with the constant-time execution behavior of the partitioned
ready-to-run queue makes for a scheduling subsystem whose
performance does not vary with the number of active (queued)
threads. This in turn makes for jitter-free scheduling operations
at the base hardware-level, and thus more predictable and
precise scheduling of threads within the OS.

The only exception, which can be seen in Table III is the
amount of time it takes to perform the master bus transaction
when a HW thread is being enqueued. The jitter in this
operation is inherent to any bus architecture, as bus arbitration
times vary depending on the instantaneous contention for the
shared bus.

Integrated performance testing of the scheduler focuses
on two major metrics: end-to-end scheduling delay, and raw
interrupt delay. End-to-end scheduling delay is defined as the
time delay between the firing of a timer interrupt to when
the context switch to a new thread is about to complete (old
context saved, new context is about to be switched to). The
end-to-end scheduling delay is measured using a dedicated
hardware counter that begins counting immediately after a
timer interrupt fires, and stops counting as soon as measures
this delay in the context switch is complete. This measurement
is collected in a non-invasive way, as the hardware counter
directly monitors the interrupt lines attached to the CPU;
allowing for clock-cycle accurate measurements to be made
without bias. Raw interrupt delay is defined as the time delay
from when an interrupt signal fires to when the CPU actually
enters its ISR. The raw interrupt delay is also measured using
a dedicated hardware counter that begins timing immediately
after a timer interrupt goes off and would stop timing when
the CPU sent a signal to the hardware timer from its ISR (a
single memory-mapped read).

On-board testing of the raw interrupt delay of this system
with 250 active threads is shown in Figure 9. After being
synthesized and fully integrated into the hthreads system, the
scheduler has an average end-to-end scheduling delay of 1.9
µs with 1.4 µs of jitter with 250 active threads as shown in
Figure 8. Where the jitter is defined as being the difference
between the maximum and mean delays, making the worst-
case end-to-end scheduling delay 3.4 µs. The results of both
the worst-case end-to-end scheduling delay and jitter are quite
low when compared to the 1.3 ms worst-case scheduling delay
and 200 ms scheduling jitter of Linux [9], the 40 µs scheduling
delay of Malardalen University’s RTU [10]. Even RTLinux, a

54

7

Fig. 8. Histogram of Integrated End-To-End Scheduling Delay, (250 Active
SW Threads, 100 MHz)

Fig. 9. Histogram of Raw Interrupt Delay, (250 Active SW Threads, 100
MHz)

commercial real-time OS, has an order of magnitude higher
scheduling jitter: 12 µs of scheduling jitter for a 1.2 GHz
desktop CPU, and 32 µs of jitter for a 200 MHz embedded
CPU [11], [12]. Further tests have shown that the scheduling
jitter within hthreads is primarily caused by cache misses
during context switching.

During a context switch, the CPU does not interact with
the scheduler module, which gives the scheduler module the
perfect opportunity to calculate the next scheduling decision.
This scheduling decision is calculated in parallel with CPU
execution, thus eliminating much of the processing delays
normally incurred by calculating a new scheduling decision.
Also, the scheduling decision being calculated is for the
next scheduling event so that when a timer interrupt goes
off, the next thread to run has already been calculated. This
pre-calculation of the scheduling decision allows the system
to react very quickly to scheduling events because when a
scheduling event occurs, the OS simply reads the next thread
to run out of a register and performs a context switch, and
then during this context switch, the register is refreshed with
the thread that should run at the next scheduling event by
the hardware scheduler module. The overhead of making a
scheduling decision is hidden because it occurs during a
context switch and it is able to complete before a context
switch completes.

VI. SYNCHRONIZATION

Modern processors use ISA-specific atomic instructions to
perform mutual exclusion. Originally, atomic instructions such
as test and set, required locking the system bus to ensure
operation atomicity. This resulted in performance degradations
for other processors attempting to access global memory. Bus
locking can be circumvented by using a two-phase atomic
operation such as the load-linked/store conditional (LL/SC,
or more specifically lwarx and stwcx) instructions found with
IBM’s PowerPC architecture. These instructions rely on the
snoopy cache protocol to maintain atomicity between proces-
sors. The reliance on processor-specific atomic operations and
the snoopy cache protocol make it difficult to perform atomic
operations between different processor types [1], [13].

Our hardware synchronization core is designed to allow any
type of processor to synchronize in a heterogeneous system
using a single, traditional load instruction. The synchronization
manager hosts a set of mutexes, in which each mutex is
associated with an address offset from the base address of
the IP core. The offsets of each mutex are separated by a
stride indicated by the number of bits used to represent thread
identifiers in hthreads. This allows an entire mutex lock/unlock
command to be encoded in a single load instruction. This
structure allows a processor to use a single load instruction to
pass parameters to the synchronization manager in the address
field, and to receive the return value of the call in the loaded
value. The command contains the thread’s identifier, the mutex
number, as well as the type of command. The loaded value, or
return value of the command, tells the requester the result of
the mutex lock/unlock operation. For a mutex lock command,
this return value states whether the lock is now owned by the
requester or not. If the thread did not become the owner, then
the synchronization manager adds this thread to its internal
blocked queue. Upon unlock operations, the synchronization
manager sends the identifier of the new owner thread to the
thread manager to become runnable again.

This simple protocol allows any processor that can master
the bus to engage in synchronization with any other proces-
sor, regardless of ISA differences, thus supporting processor
heterogeneity. Reducing mutex operations down to a single
load instruction provides very fast synchronization primitives
without the need for a snoopy cache coherence protocol. A
mutex unlock operation is illustrated in Figure 10. This figure
shows the processing steps performed to release a mutex,
make a scheduling decision, and resume the execution of a
thread. In a traditional operating system, steps A through E
are performed completely in software on the CPU. These steps
would require a context switch from the application thread
to the system services, and must be performed before the
scheduler considers if a new scheduling decision is required
based on the queuing of the unblocked thread. In our hthreads
system, steps B through G are performed in hardware, allowing
the CPU to continue executing the application thread. For sys-
tems with heterogeneous processors, migrating this processing
off a single CPU is advantageous, as significant overhead
and jitter are introduced when a CPU performs speculative
processing for threads being unblocked on other processors.
Another example of mutex operations is shown in Figure 11.
This example demonstrates the OS-level processing that occurs
when a native software thread attempts to lock a mutex that is
already owned by a heterogeneous thread. The calling thread
ends up blocked within the synchronization manager’s wait
queue, and will become unblocked following the steps in
Figure 10 when the heterogeneous thread releases the mutex.

The synchronization manager provides support for the three
standard PThreads lock types: fast, error checking, and re-
cursive. Additionally, the synchronization managers maintains
mutex waiting lists for blocked threads waiting for access to a
mutex. The basic operations for the synchronization manager
are listed in Table IV. Figure 12 shows the top-level design of
the synchronziation manager. The design consists of six finite
state machines, and two Block RAMs.

55

8

TABLE IV
SM OPERATIONS AVAILABLE THROUGH BUS INTERFACE

Operation Type Description
Lock Read-only, depth = MxT Attempts to lock a mutex for a given thread.
Try-lock Read-only, depth = MxT Attempts to try-lock a mutex for a given thread.
Unlock Read-only, depth = M Unlocks a mutex.
Owner Read-only, depth = M Returns the current owner’s TID of a given mutex.
Kind Read/Write, depth = M Returns or updates the kind of a given mutex. Where kind is one

of the following: FAST, RECURSIVE, or ERROR.
Count Read-only, depth = M Returns the current lock count of a given mutex.

Only valid for RECURSIVE mutexes.

Hetero CPUCPU
Software Interface

Software
Thread

Software
Thread

V-HWTI HAL
ID: 6

Thread
Manager

Scheduler Shared
Memory

Mutexes

System Bus

ID: 3 ID: 4 ID: 7
Software
Thread

M2: Queue
6
7

Ready
4

Hetero
Thread

A F

D

C

B

A: Thread 3 unlocks mutex M2 by calling hthread_mutex_unlock(M2), which
sends signal to Mutex Manager.
B: Mutex Manager inspects M2's queue and decides ID 6 will own mutex next.
C: Mutex Manager sends add_thread(6) to Thread Manager.
D: Thread Manager gives ID 6 to Scheduler to add to Ready to Run queue.
E: Scheduler finds that ID 6 is a hetero. thread, does not add ID 6 to queue.
F: Scheduler instead sends SIGNAL command to ID 6's V-HWTI.
G: Hetero thread 6 resumes execution, now owner of mutex M2.

E

G

Conditional
Variables

Hetero CPU
V-HWTI HAL

ID: 8
Hetero
Thread

Fig. 10. Hthreads Mutex Unlock Sequence (Heterogeneous)

Hetero CPUCPU
Software Interface

Software
Thread

V-HWTI HAL
ID: 6

Thread
Manager

Scheduler Shared
Memory

Mutexes

System Bus

ID: 3 ID: 4
Software
Thread

M2: Queue
6
3

Ready
4

Hetero
Thread

A

F

E

B,C

A: Thread 3 locks mutex M2 by calling hthread_mutex_unlock(M2), which
 sends signal to Mutex Manager.
B: Mutex Manager inspects M2's queue, sees that ID 6 owns the mutex.
C: Mutex Manager blocks TID 3 by placing it in M2's blocked queue, and
 returns blocked status to the caller.
D: Software interface receives blocked status, must now context switch.
E: Software interface asks for the next thread from Thread Manager.
F: Thread Manager requests a DEQ operation from the Scheduler.
G: Scheduler tells Thread Manager that TID 4 should run next.
H: Software Interface receives the next thread, context switches to TID 4.

G

Conditional
Variables

Hetero CPU
V-HWTI HAL

ID: 8
Hetero
Thread

D

H

Fig. 11. Hthreads Mutex Lock Sequence (Heterogeneous)

LOCK
FSM

KIND
FSM

OWNER
FSM

COUNT
FSM

UNLOCK
FSM

TRY
FSM

Mutex BRAM

Thread BRAM

Fig. 12. Synchronization Manager

The lock command is used to request ownership of a mutex.
It operates using a 3-state FSM pattern: idle, read, and modify.
In the read state, the FSM will examine the lock count of
the mutex; if it is zero, the FSM will grant the mutex to the
requesting thread. If the lock count is not zero then the thread
is placed on the waiting list for the mutex and the thread is
blocked. The trylock command is a simple variation on the
lock command which does not queue or block the requesting
thread when the mutex cannot be granted.

The unlock command uses a slightly more complex 5-state
FSM pattern: idle, read mutex, modify mutex, read next, and
send next. This command examines the lock count in the read
state and performance one of three possibilities:

1) If the value is zero then, then an error will be returned
to the requesting thread.

2) If the value is one, then the mutex is granted to the next
thread on the mutex’s waiting queue.

3) If the value is greater than one, the lock count will be
decremented and the command will finish successfully.

If the mutex must be granted to the next thread in the waiting
queue, the unlock command must perform the read next and
send next states. These states simply remove the next thread
from the waiting queue and place it onto the send queue. The
send queue is processed in FIFO order, and simply performs
an add thread command to the scheduler. This will wake the
next thread from its blocked state.

The remaining three state machines, get owner, get/set kind,
and get count, are all simple state machines which either
access or modify mutex status. These three state machines
access the requested information in the read state and then
return it to the requesting thread. If a set operation is occurring
then the modify state will update the mutex status to the new
value.

A. Performance Analysis

The performance for the SM is shown in Table V. This
table shows that the SM completes its task in five clock
cycles (50 ns) or less. This level of performance is achievable
with standard synchronization primitives only when processors
implement caches with complex memory coherency protocols,
such as snoopy caches.

Like the scheduler, the SM has been implemented using
FSMs with internal data structures accessed through BRAM.
This gives the SM its high performance and deterministic
behavior. Due to this and the determinism of the scheduler, the

56

9

TABLE V
HW TIMING OF SYNCHRONIZATION OPERATIONS

Operation Time (cycles)
Lock Mutex 4
Unlock Mutex 5
Try Lock Mutex 3
Get Mutex Owner 3
Get Mutex Count 3
Get/Set Mutex Kind 3

TABLE VI
INTEGRATED TIMING OF SYNCHRONIZATION OPERATIONS

Operation Avg Time (ns) Std. Dev. (ns)
Lock Mutex 1524.54 52.19
Unlock Mutex 1097.63 27.33

hthreads operating system has very low jitter, and is suitable
for use in real-time systems.

The only variable execution time inside the SM is caused by
a bus transaction, which must occur when a thread is woken
up when it is given ownership of a mutex. This occurs during
an unlock operation if there are any threads waiting for the
lock. The effects of this variable execution time are not visible
in the execution time of the unlock command, because bus
transactions are placed on a FIFO queue which is processed
in parallel with the SM commands. The design of the unlock
FSM guarantees that there will always be space in the queue
for the next bus transaction. Thus, the unlock command needs
only to queue the transaction in order to finish its operation
and this can be completed in a deterministic single clock cycle.

Integrated performance testing of the synchronization man-
ager measures how long it takes the software APIs in the
operating system to complete a synchronization operation on
behalf of a software thread. These numbers time how long the
system call takes. Thus, they do not measure any additional
overhead which would be required to make the user mode to
kernel mode switch.

Table VI shows the integrated timing results for the syn-
chronization operations. Only the lock and unlock opera-
tions are shown, as they are the most commonly executed
synchronization operations. Other synchronization operations
are substantially similar. The results show that the lock and
unlock commands execute in approximately 1.5 µs and 1.1 µs
respectively. These averages have a standard deviation of
approximately 0.05 µs and 0.02 µs respectively. The hardware
overhead for these commands is 0.04 µs and 0.05 µs respec-
tively, which means that the majority of the software side
execution time is due to overhead from the bus transactions
and software processing.

VII. CONCLUSION

Manycore architectures are bringing a welcome convergence
of hardware platform capabilities with the requirements of
real-time and embedded systems. The performance capabilities
of these platforms can bring significant economic benefits
by reducing the need to create application specific custom
hardware. To realize these benefits new approaches to oper-
ating systems within both the general purpose and real-time

systems domains will likely evolve. Manycores can only bring
about higher performance if parallelism is increased through
the creation of more threads. Efficient implementations of OS
services will be fundamental in the success of these new
systems. If services are inefficient, contention will result in
severe latencies for threading operations challenging the very
success of the manycore approach. Hardware microkernels,
such as hthreads, show that hardware-resident system services
have the potential to provide services with latencies that
are minimal and constant, ideal for systems with scalable
numbers of processors and threads. The minimal latency of
the system services will allow programmers to create finer-
grained threads to expose additional parallelism and still
meet strict latency requirements. The distributed nature of the
microkernel breaks up the bottleneck of shared data structures
and enables parallelism within the kernel itself. The access
and invocation mechanisms, including fundamental atomic
operations, provide a system framework that resolves many of
the uniformity and scalability issues that arise from processor
heterogeneity.

The hthreads microkernel discussed in this paper is a stable
set of system services that has been used for exploring pro-
gramming models for MPSoC systems comprised of mixes of
both general-purpose heterogeneous CPUs, and CPUs paired
with custom accelerators. All timing metrics reported in this
paper are actual on-chip, run-time measurements obtained
using free running hardware counters within the system. The
timing numbers are generated from tests running on Xilinx
Virtex-II Pro and Virtex-5 FXT platforms. The Xilinx Virtex-
II Pro XC2VP30 FPGA systems clock the PowerPC clocked
at 300 MHz, while the FPGA components are clocked at 100
MHz (10 ns cycle time). Whereas the Virtex-5 FXT platform
runs both the PowerPC and FPGA components at a uniform
125 MHz clock rate. Our comparisons do not adjust for the
disparaties in clock frequencies between the slower running
FPGA and faster desktop machines. Even at these slower clock
rates the performance of the microkernel components were
better than those reported on the faster desktop machines. The
hthreads microkernel required only 18% of the logic gates
and 6% of the embedded BRAM of the Xilinx Virtex-II Pro
XC2VP30 FPGA. This represents a modest requirement for
embedded systems implemented on modern platform FPGAs,
or for inclusion in future manycore chips. Importanlty, the
performance and jitter envelopes of the hthreads microkernel
are tight enough for use in real-time, embedded systems
and the structure of the microkernel supports large numbers
of heterogeneous processors and threads with no additional
performance penalties.

Acknowledgment
The work in this article is partially sponsored by National

Science Foundation EHS contract CCR-0311599.

REFERENCES

[1] B. Senouci, A. Kouadri M, F. Rousseau, and F. Petrot, “Multi-
CPU/FPGA Platform Based Heterogeneous Multiprocessor Prototyp-
ing: New Challenges for Embedded Software Designers,” The 19th
IEEE/IFIP International Symposium on Rapid System Prototyping, 2008.
RSP ’08, pp. 41–47, June 2008.

57

10

[2] C. H. Crawford, P. Henning, M. Kistler, and C. Wright, “Accelerating
Computing with the Cell Broadband Engine Processor,” in CF ’08:
Proceedings of the 2008 Conference on Computing Frontiers. New
York, NY, USA: ACM, 2008, pp. 3–12.

[3] P. H. Wang, J. D. Collins, G. N. Chinya, H. Jiang, X. Tian, M. Girkar,
N. Y. Yang, G.-Y. Lueh, and H. Wang, “EXOCHI: Architecture and Pro-
gramming Environment for a Heterogeneous Multi-Core Multithreaded
System,” ACM SIGPLAN Notices, vol. 42, no. 6, pp. 156–166, 2007.

[4] G. J. Popek and R. P. Goldberg, “Formal Requirements for Virtualizable
Third Generation Architectures,” Communications of the ACM, vol. 17,
no. 7, pp. 412–421, 1974.

[5] K. Adams and O. Agesen, “A Comparison of Software and Hardware
Techniques for x86 Virtualization,” in ASPLOS-XII: Proceedings of the
12th International Conference on Architectural Support for Program-
ming Languages and Operating Systems. New York, NY, USA: ACM,
2006, pp. 2–13.

[6] D. R. Butenhof, Programming with POSIX threads. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1997, last accessed June
8, 2009.

[7] J. Agron, W. Peck, E. Anderson, D. Andrews, E. Komp, R. Sass,
F. Baijot, and J. Stevens, “Run-Time Services for Hybrid CPU/FPGA
Systems On Chip,” in Proceedings of the 27th IEEE International Real-
Time Systems Symposium (RTSS), December 2006.

[8] D. Andrews, R. Sass, E. Anderson, J. Agron, W. Peck, J. Stevens,
F. Baijot, and E. Komp, “Achieving Programming Model Abstractions
For Reconfigurable Computing,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 16, no. 1, pp. 34–44, January 2008.

[9] C. Williams, “Linux Scheduler Latency,” Red Hat Inc. Technical
Paper. [Online]. Available: http://www.linuxdevices.com/files/article027/
rh-rtpaper.pdf

[10] T. Samuelsson, M. Akerholm, P. Nygren, J. Starner, and L. Lindh,
“A Comparison of Multiprocessor RTOS Implemented in Hardware
and Software,” in Proceedings of the 15th Euromicro Workshop on
Real-Time Systems, 2003. [Online]. Available: http://www.mrtc.mdh.se/
publications/0662.pdf

[11] V. Yodaiken, “The RTLinux Manifesto,” in Proceedings of The 5th
Linux Expo, Raleigh, NC, 1999. [Online]. Available: citeseer.ist.psu.
edu/yodaiken99rtlinux.html

[12] V. Yodaiken, C. Dougan, and M. Barabanov, “RTLinux/RTCore
Dual-Kernel Real-Time Operating System,” FSMLabs Inc. Technical
Paper. [Online]. Available: http://www.yodaiken.com/papers/rtlpro.pdf

[13] T. Suh, D. Blough, and H.-H. Lee, “Supporting Cache Coherence in
Heterogeneous Multiprocessor Systems,” Design, Automation and Test
in Europe Conference and Exhibition, 2004. Proceedings, vol. 2, pp.
1150–1155 Vol.2, February 2004.

58

