- Energy efficient building climate control -

MANFRED MORARI KIMBERLY CHUNG COLIN N. JONES FRAUKE OLDEWURTEL ALESSANDRA PARISIO PHILIPP ROSTALSKI FABIAN ULLMANN

swisselectric research

Multidisciplinary Team

Use of weather and occupancy forecasts for optimal building climate control

Standards: Keep room temperature in comfort range x % of time

- **Goal:** Satisfy constraints with a minimum amount of energy
- Idea:Low carbon energy sources intermittent, building dynamics slow- use weather forecast for planning

Method: Model Predictive Control using weather and occupancy forecasts

Motivation - Model predictive control for buildings

Motivation - Model predictive control for buildings

Application - Integrated room automation

Integrated room automation means:

Integrated control of the heating and cooling system, the blinds and the electrical lighting of a room

Control task:

Keep the room temperature, illuminance level and CO₂ concentration in prescribed ranges

Research questions

- How much energy can be saved by using advanced control techniques and weather predictions?
- In which buildings and in which weather conditions can savings be achieved?

Approach: Large-scale simulation study

Controller assessment – Concept

Consideration of weather prediction:

- 1. "perfect world, perfect weather prediction"
- 2. "real world, no weather prediction"
- 3. "real world, real weather prediction"

Outline

- Modeling/ Setup simulation study
- Potential analysis
 - → Comparison of current practice with Performance Bound
 - Example 1: Importance of blind control
 - Example 2: Potential of advanced control
 - Example 3: Prediction horizon length
- In-depth analysis
 - → Comparison of advanced control with current practice
 - Stochastic MPC
- Hierarchical control with hybrid MPC

BACLab – Software tool

- Building Automation and Control Laboratory
- MATLAB-based building modeling and simulation environment
- Developed within OptiControl project

BACLab – Software tool

- Building Automation and Control Laboratory
- MATLAB-based building modeling and simulation environment
- Developed within OptiControl project

Building & HVAC system

Database

- Derived from physical building parameters

- Varying parameters in terms of window area fraction, thermal insulation level etc.

Weather

Database:

- 10locations repres. the different weather
- situations in Europe - Historical predictions
- and measurements
- Design reference years

Control

- Basic Rule Based Control

BACLab

- Improved Rule Based Control
- Predictive Control
- Performance Bound

Test Case

Factorial study 5 building systems – 7 parameter sets

- Database of building & HVAC models typical for Europe
- Models validated with TRNSYS

Building systems

	S1	S2	S3	S4	S5
Blinds	Х	Х	Х	Х	Х
Electric lighting	Х	Х	Х	Х	Х
Mech. ventilation flow, heating, cooling	-	Х	Х	Х	Х
Mech. ventilation energy recovery	—	Х	Х	Х	-
Natural ventilation (night-time only)	-	-	-	Х	-
Cooled ceiling (capillary tube system)	Х	X	_	-	-
Free cooling with wet cooling tower	Х	Х	-	-	-
Radiator heating	Х	Х	-	-	-
Floor heating	-	_	_	Х	_
TABS	_	_	_	_	Х

Factorial study 5 building systems – 7 parameter sets

- Database of building & HVAC models typical for Europe
- Models validated with TRNSYS

Parameter Sets:

Building standard	Swiss avera	ge Passive house
Construction type	heavy	light
Window area fraction	high	low
Internal gains (occupancy/equipment)	high	low
Thermal comfort: Setbacks	yes	no
Thermal comfort: Comfort range	wide	narrow
Ventilation	none f	two-stage CO ₂ sensor

960 building cases \cdot 10 locations \cdot 4 orientations = 38.400 cases

BACLab – Software tool

- Building Automation and Control Laboratory
- MATLAB-based building modeling and simulation environment
- Developed within OptiControl project

Building & HVAC system

Database

- Derived from physical building parameters
- Varying parameters in terms of window area fraction, thermal insulation level etc.

Weather

Database:

- 10locations repres. the different weather
- situations in Europe - Historical predictions
- and measurements
- Design reference years

Control

- Basic Rule Based Control

BACLab

- Improved Rule Based Control
- Predictive Control
- Performance Bound

Test Case

Weather predictions

Weather data:

- Historical measurements
- Design reference year: representative annual data sets (according to SIA standard)

Weather predictions:

- Output of weather model by MeteoSwiss
- Persistence: next hour is like 24 hours ago

COSMO 7 weather model

- deterministic forecast
- 2 daily 72 hour forecast
- Region of Europe
- 385 x 325 gridpoints, 7km mesh
- 45 terrain following levels

Zürich Basel-Binningen Genève-Cointrin Lugano Modena Marseille-Marignane Clermont-Ferrand Mannheim

- Hohenpeissenberg
- Wien Hohe Warte

BACLab – Software tool

- Building Automation and Control Laboratory
- MATLAB-based building modeling and simulation environment
- Developed within OptiControl project

Building & HVAC system

Database

- Derived from physical building parameters
- Varying parameters in terms of window area fraction, thermal insulation level etc.

Weather

Database:

- 10locations repres. the different weather
- situations in Europe - Historical predictions
- and measurements
- Design reference years

Control

- Basic Rule Based Control

BACLab

- Improved Rule Based Control
- Predictive Control
- Performance Bound

Test Case

		realistic <	> theoretical
Based on rules	Based on MPC		Performance Bound

				realistic <	> theoretical
<u>:</u> !	Based on rule	es	Based on MPC		Performance
	Current Practice	Improved Rule Based Control			Bound

				realistic <	> theoretical	
51	Based on rule	es	Based on MPC		Performance	
	Current Practice	Improved Rule Based Control	Deterministic MPC	Stochastic MPC	Bound	

				realistic <	> theoretical
::	Based on rul	es	Based on MPC	2	Performance
	Current Practice	Improved Rule Based Control	Deterministic MPC	Stochastic MPC	Bound
Model based	no	no	yes	yes	yes
Weather pred.	none	none	realistic	realistic	perfect
120 100 80 60 40 20 0 Referent (today's practice	s non-	gies Transiti	ion from perfect wea dictions to real weather predictio	Ň	realistic

Outline

- Modeling/ Setup simulation study
- Potential analysis
 - → Comparison of current practice with Performance Bound
 - Example 1: Importance of blind control
 - Example 2: Potential of advanced control
 - Example 3: Prediction horizon length
- In-depth analysis
 - → Comparison of advanced control with current practice
 - Stochastic MPC
- Hierarchical control with hybrid MPC

Potential analysis - Example 1: Importance of blind control

<u>.</u> '	Current Practice	Current Practice modified (more blind freedom)	Improved Rule Based Control (more info)	Imp. Rule Based Control modified (blinds hourly)
avail. position	open, 50%,closed	continuous	continuous	continuous
movement frequency	hourly	continuous	continuous	hourly
measurements used	current	current	current + past	current + past

Importance of solar gain area

Specific solar gain area

Large savings potentials:

- with high solar gains and heavy building
- with low solar gains and light building

Potential analysis

- Example 2: Potential for advanced control

Goal: Comparison:

.0

Isolate effect of advanced control Performance Bound vs. Improved Rule Based Control

- Blind control perfect (continuous)
- 250 cases considered

80

70 60 50 Cases 40 30 20 10 0 0-5 5-10 10-15 15-20 20-25 25 - 3035-40 Potential energy savings (RBC-PB)/RBC [%]

→ Even with Improved Rule Based Control and perfect blind control: Large potential in many cases!

Potential analysis - Example 3: Prediction horizon length

Goal:Choose horizon length, get error to Performance Bound to 5%Comparison:Performance Bound vs. Performance Bound with shorter
horizon lengths

 \rightarrow In the following investigations we use a horizon of 24h.

Outline

- Potential analysis
 - \rightarrow Comparison of current practice with Performance Bound
 - Example 1: Importance of blind control
 - Example 2: Potential of advanced control
 - Example 3: Prediction horizon length
- In-depth analysis
 - \rightarrow Comparison of advanced control with current practice
 - Stochastic MPC
- Hierarchical control with hybrid MPC

			realistic <	> theoretical
Based on rule	Based on rules		2	Performance
Current Practice	Improved Rule Based Control	Deterministic MPC	Stochastic MPC	Bound

Simulations

= 1

Tradeoff curve energy vs. violations

- comfort level can be adjusted
- standards: 70Kh/a

Energy use [kWh/m²]

70Kh/a

Simulations

Simulation results

Goal:Investigate improvement with Stochastic MPCComparison:Stochastic MPC vs. Improved Rule Based Control
with hourly blind movement

- Difference in energy use as % savings of improved rule based control
- Difference in violations (amount & number) as absolute values

→ Stochastic MPC outperforms Improved Rule Based Control!

Simulation results

Room temperature behavior

Room Temperature [degC]

→ Diurnal temperature variations are more favorable with Stochastic MPC!

Dimitrios Gyalistras & Markus Gwerder (Eds.)

Use of Weather and Occupancy Forecasts For Optimal Building Climate Control (OptiControl): Two Years Progress Report

Reporting Period May 2007-April 2009

Available December 2009!

Terrestrial Systems Ecology ETH Zurich R&D HVAC Products, Building Technologies Division, Siemens Switzerland Ltd., Zug

Summary

- Large-scale simulation studies carried out
- Large potential for advanced control strategies in many cases
- **Stochastic MPC** can significantly **improve performance**
- **Hybrid MPC** solution for **hierarchical control** can significantly **improve performance**

