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Safety-critical embedded systems should be formally verified

“Testing can never prove the absence of a bug, only its presence”
(Dijkstra)

Verification of a property means formally proving the presence of that
property

Europe is leading in formal verification research and practice

Formal verification tools have been successfully commercialized

For example:
Airbus successfully uses formal verification tools in the development
process of avionics software products since 2001
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Verification of the temporal behavior of an application

Why is this needed?

Modern embedded systems execute many tasks on a single processor

Some of these tasks has hard real-time constraints

They have to be completed before a certain deadline

The tasks are arranged in a schedule such that every task can meet
his deadline

To this end, we need to know the worst-case execution time (WCET)
of every task
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Timing analysis is crucial for safety-critical hard real-time systems

Most modern processor architectures make timing analysis very hard

Being hard for single cores, it is even worse for upcoming multi cores

We urgently need more predictable architectures

We need to make hardware manufacturers aware of timing predictability

SoCs have to be composable to ensure predictability
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for Hard Real-Time Systems
The Problem

Given:

required reaction time

a software to produce the reaction

a hardware platform on which the software is executed

Goal:

Derive a guarantee for timeliness
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The input . . . as usual

The initial execution state
I not important for the computed result (functional correctness)

I but for timeliness

I caused by caches, pipelines, speculation, etc.

I hardware state is like an additional input

Interferences from the environment
I preemptive scheduling

I interrupts
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Notions in Timing Analysis
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Methodology:
I Measure execution times of each basic block

I Try to use a comprehensive set of test input data

I Try to combine basic-block measurements to a WCET for the
procedure

Open questions:
I How can you account for every possible hardware state?

I How do you safely combine the basic-block times to a procedure
WCET?

Conclusions:
I Completely unsound

I No safe timing guarantees can be derived
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Methodology:
I Have a conservative machine model in software

I Use this and abstract interpretation to determine a WCET bound for
each basic block

I This WCET bound is provably larger or equal to the real WCET

I Use integer linear programming to derive a WCET bound for the
procedure

Comments:
I The art is to derive tight bounds

I Complex machines result in complex machine models

Conclusions:
I Provably sound, and precise WCET bounds

I Proven also in practice: flies in A380

"
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the Timing Analyzer
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Started as a research project at Saarland University

Abstract-interpretation based WCET verification on machine code

Commercialized by AbsInt startup

aiT-verified software in production use
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Sound methods determine upper bounds for all execution times

They have to explore a huge space of transition paths
I All possible control-flow paths stemming from possible inputs

I All paths through the architecture:
Resulting from the initial execution states
forced by timing anomalies

Variability in timing often results from the interference on shared
resources!

I Memory, Caches, Pipelines, Buses, I/O Ports
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Local worst case does not contribute to global worst case

Consequence: We need to consider all paths through the hardware

4
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Fig. 2. Scheduling anomaly.
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Fig. 3. Speculation anomaly. A and B are prefetches. If A hits B can also
be prefetched and might miss the cache.

branch prediction, cache-like structures, and branch history
tables increase history dependence even more.

All these features influence execution time. To compute a
precise bound on the execution time of a basic block, the
analysis needs to exclude as many timing accidents as possi-
ble. Such accidents are data hazards, branch mispredictions,
occupied functional units, full queues, etc.

Abstract states may lack information about the state of
some processor components, e.g. caches, queues, or predictors.
Transitions of the pipeline may depend on such missing
information. This causes the abstract pipeline model to become
non-deterministic although the concrete pipeline is determin-
istic. When dealing with this non-determinism, one could be
tempted to design the WCET analysis such that only the
locally most expensive pipeline transition is chosen. However,
in the presence of timing anomalies [25], [8] this approach
is unsound. Thus, in general, the analysis has to follow all
possible successor states.

B. Timing anomalies and domino effects

The notion of timing anomalies was introduced by
Lundqvist and Stenström in [25]. In the context of WCET
analysis, [8] presents a formal definition. Intuitively, a timing
anomaly is a situation where the local worst-case does not
contribute to the global worst-case. For instance, a cache
miss–the local worst-case–may result in a globally shorter
execution time than a cache hit because of scheduling effects.
See Figure 2 for an example. Shortening instruction A leads
to a longer overall schedule, because instruction B can now
block the “more” important instruction C. Analogously, there

are cases where a shortening of an instruction leads to an even
greater decrease in the overall schedule.

Another example occurs with branch prediction. A mispre-
dicted branch results in unnecessary instruction fetches, which
might miss the cache. In case of cache hits the processor may
fetch more instructions. Figure 3 illustrates this.

A system exhibits a domino effect [25] if there are two
hardware states s, t such that the difference in execution time
(of the same program starting in s, t respectively) may be
arbitrarily high, i.e. cannot be bounded by a constant. E.g.,
given a program loop, the executions never converge to the
same hardware state and the difference in execution time
increases in each iteration. The existence of domino effects is
undesirable for timing analysis. Otherwise, one could safely
discard states during the analysis and make up for it by adding
a predetermined constant.

Unfortunately, domino effects show up in real hardware.
In [26], Schneider describes a domino effect in the pipeline
of the PowerPC 755. Another example is given by Berg [27]
who considers the PLRU replacement policy of caches. In
Section IV we will present sensitivity results of replacement
policies, which quantify the maximal extent of domino effects
in caches, i.e. by determining the maximal factor by which
the cache performance may vary.

C. Classification of architectures

Architectures can be classified into three categories de-
pending on whether they exhibit timing anomalies or domino
effects.

• Fully timing compositional architectures: The (abstract
model of) an architecture does not exhibit timing anoma-
lies. Hence, the analysis can safely follow local worst-
case paths only. One example for this class is the ARM7.
Actually, the ARM7 allows for an even simpler timing
analysis. On a timing accident all components of the
pipeline are stalled until the accident is resolved. Hence,
one could perform analyses for different aspects (e.g.
cache, bus occupancy) separately and simply add all
timing penalties to the best case execution time.

• Compositional architectures with constant-bounded
effects: These exhibit timing anomalies but no domino
effects. In general, an analysis has to consider all paths.
To trade precision with efficiency, it would be possible
to safely discard local non-worst-case paths by adding
a constant number of cycles to the local worst-case
path. The Infineon TriCore is assumed, but not formally
proven, to belong to this class.

• Non-compositional architectures: These architectures,
e.g., the PowerPC 755 exhibit domino effects and timing
anomalies. For such architectures timing analyses always
have to follow all paths since a local effect may influence
the future execution arbitrarily.

IV. CACHES

Caches are employed to hide the latency gap between mem-
ory and CPU by exploiting locality in memory accesses. On
today’s architectures a cache miss may take several hundred
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Classification of pipelined architectures:

Fully timing-compositional architectures:
I no timing anomalies

I analysis can safely follow local worst-case paths only

I example: ARM7

Compositional architectures with constant-bounded effects:
I exhibit timing anomalies, but no domino effects

I example: Infineon TriCore

Non-compositional architectures
I exhibit domino effects and timing anomalies

I timing analysis always has to follow all paths

I example: PowerPC 755

See Wilhelm et al. Memory Hierarchies, Pipelines, and Buses for Future

Architectures in Time-critical Embedded Systems
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. . . just to show how bad things are getting

32KB L1 data and
instruction cache

1MB unified L2 cache with
ECC

Up to 12 instructions in
instruction queue

Up to 16 instructions
“in flight”

7 pipeline stages

3 issue queues GPR, FPR,
AltiVec

11 independent execution
units
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Out-of-order execution

Up to 3 levels of speculation due to unknown branch prediction

Caches
I Different pipeline paths for L1 cache hits/misses

I PLRU replacement policy

Arbitration between different functional units
I Instructions have different exec times in different integer units

Connection to the memory subsystem
I Up to 8 parallel accesses on the MPX bus

Several clock domains
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implies Analysis Complexity

Every hardware component whose state has an influence on the timing
behavior:

must be conservatively modeled

may contribute a multiplicative factor to the size of the search space

Depends on how we can abstract from the component

Successful abstraction for caches [Reineke’08]:
I For some replacement policies, good abstractions allowing precise

analyses exist (LRU)

I Some have abstractions, but rather imprecise analyses

No efficient abstraction for pipelines
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In an experiment, engineers reduced the clock speed of the mentioned
PowerPC

But the WCET did not change!

Why?

Several reasons:

Their certified C compiler has optimizations disabled!
I No register allocation, everyting goes to caches

But, parts of the caches are disabled due to PLRU replacment policy

L1 cache has no ECC!

Because there is no ECC near the CPU, the engineers do not want to
have data in the caches

The code generated by the design tools is deterimental for I-cache
performance

I Many unrolled loops, code duplication, etc
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Conclusions

Applications are memory intensive

Definitely no need for an out-of-order processor

The processor basically waits for the memory

Modern CPUs optimize for average-case performance

Not for predictability of the worst case

Features are not exploited and timing analysis needlessly complicated
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Certification authorities surrender to the (wrong) architectural
developments

proving the correctness of modern high-performance processors used
in safety-critical systems is infeasible

correctness of compilers proved by practice

current discussion:
“liberalization” of requirements for proving timing correctness

We cannot weaken the verification requirements. Instead, we need:

Simpler, more predictable CPUs

Verified optimizing compilers [Leroy ’06]

Architecture-aware code generation techniques
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Most proposals only concern some architectural feature, e.g.:
I Making the pipeline more predictable [Sainrat,Rochange]

I Freezing (parts of) the cache [Puaut]

I Single-path paradigm [Puschner]

I Deterministic bus protocols w/o consideration of application
characteristics

Most proposals entail a serious performance loss

Overall designs: PRET architecture and the JOP Java processor
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Edwards/Lee et al.

exclusion between the threads. We call this a memory wheel.

The goal of the Virtual Simple Architecture of Mueller et al. [1] is to enable hard real-time operation of

unpredictable processors. They run real-time tasks on a fast, unpredictable processor and a slower, more-

predictable one simultaneously, and switch over if the slow ever overtakes the fast. The advantage is that the

faster processor will have time to run additional, non-time-critical tasks. By contrast, our PRET approach

guarantees detailed timing, not just task completion times, allowing timing to be used for synchronization.

Scratchpad memories have long been proposed for embedded systems because they consume less power

than caches [3], but here we adopt them purely because they enable better predictability. Since scratchpad

memories are software managed, the issue of memory allocation schemes become important. Our future

work is to build on top of the current PRET architecture and develop a memory allocation scheme.

4 Our Architecture

In this section, we present the design of the PRET processor, its memory system, and ISA extensions to

support deadline counters. We have prototyped the PRET architecture (block diagram shown in Figure 1)

with a cycle-accurate SystemC [21] model that executes programs written in C and compiled with the GNU

C compiler. Our simulator implements an extended SPARC v8 ISA [26].
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Figure 1: Block Diagram of PRET Architecture

The PRET PROCESSOR

component in Fig-

ure 1 implements

a six-stage thread-

interleaved pipeline

in which each stage

executes a separate

hardware thread to

avoid the need for

bypasses [9,18]. Each

hardware thread has its own register file, local on-chip memory, and assigned region of off-chip memory.

The THREAD CONTROLLER component is a simple round-robin thread scheduler—at any time, each thread

occupies exactly one pipeline stage. To handle the stalling of the pipeline predictably, we introduce a replay

4

scratchpad memories instead of caches

thread-interleaved pipelines with no bypasses

explicit timing control at the ISA level by deadline instructions

time-triggered communication with global time synchronization

high-level languages with explicit timing
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Schöberl

Instruction set:

Stack-oriented

Compact, constant length

Single cycle

Caching:

Full method cached

Cache fill on call and return

Relative addressing

No fast tag memory
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Hardware architects now understand that they need to consult
compiler developers when they develop new architectures

For embedded systems, they should also consult people in timing
analysis

Often, some hardware-component choice impedes timing analysis
heavily

We build abstract models for these components and can provide
information about their predictability

An example:
I FIFO caches are much harder to analyze than LRU

I PLRU is even worse

=⇒ For predictability, always use LRU
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SoC grow in complexity:
increasing number of applications integrated on a single chip

Individual applications can have different real-time requirements

Some may have hard, some soft real-time constraints

To verify functional and temporal behavior of a single application, the
architecture, the middleware and the mapping has to be modelled

The system designer has to integrate all applications and verify the
combined behavior

Traditionally, verification cannot be done on isolated applications due
to the interference on shared resources, e.g. interconnect and memory

Two ways of coping with the complexity of system design:
Abstraction and Partitioning
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Abstraction:

trades analysis feasibility for accuracy

difficult to find a single abstraction for the whole systems

difficult to find efficient abstractions that do not sacrifice to much
accuracy

Partitioning:

Split system into independent parts

Each is simpler to understand than the whole

also known as “divide and conquer”

We aim for composability

Sebastian Hack Timing Analysis and Compilers 30 / 50



computer science

saarland
universityComposability

Definition

A system is composable of the functional and temporal behavior of an
application does not dependent on the presence or absence of other
applications in the system

Eliminates interferences between applications

Enables incremental design, integration, and verification

Composability well known in the automotive and avionics industry
Every application runs on one ECU =⇒ no sharing

How do we build SoCs that enable composability?

Conclusion

We need architectural building blocks that enable composability and tools
that integrate applications by managing the shared resources
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Automotive and avionics industry experience similar intergration
trends: AUTOSAR and IMA

Integration of many applications on a powerful platform
instead of of one application per platform/ECU

More complex development process:
mapping problem: assign set of apps to nodes of the platform

Expectations:
I IMA: incremental qualification, i.e. modification of one application

integrated with a set of other applications only requires re-certification
of the modified component.

I AUTOSAR: component-based design requiring composability:
timing behavior of one task is independent from others
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We have seen that timing analysis is demanding for modern single
cores

To derive safe WCET bounds we also need to model access to
resources outside of the CPU: Buses for memory, I/O

For a single core this is more or less tractable since there is only one
program running

For a concurrent system with multiple threads on multiple CPUs
arbitrarily competing for shared resources, it becomes impossible

We need composability for timing predictability
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Combination of control loops and finite-state control

Each control loop fully contained in one application

little shared code

global state partly shared between applications

state transitions influence control parameters

control loops trigger state transitions

access to shared state only at beginning end end of task activations

some applications require high performance but have no sharing with
control applications

Sebastian Hack Timing Analysis and Compilers 35 / 50



computer science

saarland
universityThe PROMPT Principle

Architecture follows Application

Starting with a generic multi-node architecture the PROMPT
architecture is parametric in

I the ISAs

I the hierarchy of nodes

I the memory hierarchies

I the interconnect

Nodes may:
I have completely private resources

I shared resources if performance requires it

Nodes on each hierarchy level should be predictable

We start with predictable cores
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cont’d

No interference on shared resources where not needed for performance

If needed, isolate interfering nodes in a new subnode from the rest

Harmonious integration of applications without introducing
interferences on shared resources not existing in the applications
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Generic PROMPT
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Hierarchical Privatization
I decomposition of the set of applications according to the sharing

relation on the global state

I allocation of private resources for non-shared code and state

I sound (and precise) determination of delays for accesses to the shared
global state

Controlled Socialization
I introduction of sharing to reduce costs

I controlling loss of predictability

Sharing of lonely resources: rarely accessed resources, e.g. I/O
devices

I Costly lonely resources will be shared

I Access rate is low compared to CPU and memory bandwidth

I analyze the access behavior and determine a TDMA-like (deterministic)
access protocol [Rosen et al. ’07]
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Timing analysis is crucial for safety-critical hard real-time systems

Most modern processor architectures make timing analysis very hard

Being hard for single cores, it is even worse for upcoming multi cores

We urgently need more predictable architectures

We need to make hardware manufacturers aware of timing predictability

SoCs have to be composable to ensure predictability
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We are quite good at generating machine code from programs in
low-level languages (like C) for single cores

No wonder: we do research on that for over 50 years

Compilers employ many machine-independent optimizations

Basically to:
I Remove redundant computations

I Remove memory accesses

Machine-code selection well understood for “standard architectures”
=⇒ can be done systematically from descriptions

Special-case “hacking” for more exotic architectures

Still room for improvement on “exotic” DSPs, VLIWs
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Perform optimizations sensitive to the memory hierarchy
I Very important

I The multi-core problem is also a locality problem!

Gain control over data layout
I All optimizations are very code-centric

I Layout of data is fixed and dictated by the programmer
=⇒ bad for multi-cores

Deep data-dependence analysis
I needed for parallelization

I Is intractable for languages like C

Auto-tune themselves to new platforms (adaptivity)

Produce verified code
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Almost every important problem in compilers is at least NP-complete

Especially memory hierarchy related optimizations

Basically stems from discreteness:
I Compiling a function into 4096 or 4097 bytes might make a huge

difference!

I However, 4095 or 4096 might make no difference

I Due to fixed size of caches

Compilers have to solve discrete optimization problems all the time

Much in compilers is about developing efficient (sub-quadratic!)
heuristics for very hard problems
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Most compiler optimizations focus on single-threaded programs

Concurrency/Parallelization was largely thought of as a programmer’s
task

With the advent of multi-cores this changed

There was research on automatic parallelization that is now revived

However, to find the parallelism, these techniques impose severe
restriction on the programs

Furthermore, the multi-core problem is also a locality/granularity
problem:

Many cores share resources, especially memory

Working in parallel is only efficient if the data can be partitioned such
that every processor is utilized
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The research of the last years suggest that all this is more a language
problem

Languages like C are too low-level to permit automatic
parallelization/mapping to multi-cores

They give the programmer too much freedom to access shared state

Therefore, data dependences are hidden from the compiler

Data structures and memory layout have to be mapped by the
programmer

They cannot be touched by the compiler anymore
(the semantics of the language forbids it)
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cont’d

Parallelism has to come from more abstract programming paradigm
I Stream programming

I Data-flow programming

I Functional programming

Can we convince programmers to use such languages?

How can we incorporate common programming techniques to such
languages

Can we depart from the human, stateful concept of algorithms?
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Often ignored problem: Can you trust your compiler?

Is the generated machine code semantically equivalent to your source
program?

Some companies need to disable optimizations to get a compiler
certified =⇒ That is not the way to go

We need formally verified code generators and optimizers like [Leroy
’06]

Therefore, you need a formal semantics of the machine and the
language

Hence, it would be desirable to
I Describe the semantics of the machine and generate a correct

code-generator automatically

I Correct by construction
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C is not the language of the multi-core age

Compilers need to become more sensitive to the memory hierarchy

We need to shape new languages that allow compilers to efficiently
exploit multi-core systems

We need correct, formally verified compilers to provide compiler
optimizations to safety-critical systems
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