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m Safety-critical embedded systems should be formally verified

m “Testing can never prove the absence of a bug, only its presence”
(Dijkstra)

Verification of a property means formally proving the presence of that
property

Europe is leading in formal verification research and practice

m Formal verification tools have been successfully commercialized

For example:
Airbus successfully uses formal verification tools in the development
process of avionics software products since 2001
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m Verification of the temporal behavior of an application

Why is this needed?
m Modern embedded systems execute many tasks on a single processor
m Some of these tasks has hard real-time constraints

m They have to be completed before a certain deadline

The tasks are arranged in a schedule such that every task can meet
his deadline

m To this end, we need to know the worst-case execution time (WCET)
of every task
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m Timing analysis is crucial for safety-critical hard real-time systems

m Most modern processor architectures make timing analysis very hard

Being hard for single cores, it is even worse for upcoming multi cores
m We urgently need more predictable architectures

m We need to make hardware manufacturers aware of timing predictability

SoCs have to be composable to ensure predictability
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for Hard Real-Time Systems

The Problem

Given:

m required reaction time
m a software to produce the reaction

m a hardware platform on which the software is executed

Goal:
m Derive a guarantee for timeliness
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m The input ... as usual

m The initial execution state
> not important for the computed result (functional correctness)
> but for timeliness
» caused by caches, pipelines, speculation, etc.
» hardware state is like an additional input

m Interferences from the environment
» preemptive scheduling
> interrupts
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m Methodology:
» Measure execution times of each basic block
» Try to use a comprehensive set of test input data
» Try to combine basic-block measurements to a WCET for the
procedure
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m Methodology:
» Measure execution times of each basic block
» Try to use a comprehensive set of test input data

» Try to combine basic-block measurements to a WCET for the
procedure

m Open questions:
» How can you account for every possible hardware state?

» How do you safely combine the basic-block times to a procedure
WCET?
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m Methodology:
» Measure execution times of each basic block
» Try to use a comprehensive set of test input data

» Try to combine basic-block measurements to a WCET for the
procedure

m Open questions:
» How can you account for every possible hardware state?

» How do you safely combine the basic-block times to a procedure
WCET?

m Conclusions:
» Completely unsound
» No safe timing guarantees can be derived
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m Methodology:
» Have a conservative machine model in software

» Use this and abstract interpretation to determine a WCET bound for
each basic block

» This WCET bound is provably larger or equal to the real WCET

» Use integer linear programming to derive a WCET bound for the
procedure
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m Methodology:
» Have a conservative machine model in software

» Use this and abstract interpretation to determine a WCET bound for
each basic block

» This WCET bound is provably larger or equal to the real WCET

» Use integer linear programming to derive a WCET bound for the
procedure

m Comments:
» The art is to derive tight bounds
» Complex machines result in complex machine models
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» Use this and abstract interpretation to determine a WCET bound for
each basic block

» This WCET bound is provably larger or equal to the real WCET

» Use integer linear programming to derive a WCET bound for the
procedure

m Comments:
» The art is to derive tight bounds
» Complex machines result in complex machine models

m Conclusions:
» Provably sound, and precise WCET bounds
» Proven also in practice: flies in A380
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Architectural abstractions

Value
Analysis,
Control-Flow
Analysis,
Loop-Bound
Analysis

Cache
Abstraction

Pipeline
Abstraction
>

<
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m Started as a research project at Saarland University
m Abstract-interpretation based WCET verification on machine code
m Commercialized by AbsInt startup

m aiT-verified software in production use
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m Sound methods determine upper bounds for all execution times

m They have to explore a huge space of transition paths
» All possible control-flow paths stemming from possible inputs

» All paths through the architecture:
Resulting from the initial execution states
forced by timing anomalies

m Variability in timing often results from the interference on shared
resources!
» Memory, Caches, Pipelines, Buses, /0 Ports
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m Local worst case does not contribute to global worst case

m Consequence: We need to consider all paths through the hardware
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m Local worst case does not contribute to global worst case

m Consequence: We need to consider all paths through the hardware

Resource 1

Resource 2

Resource 1

Resource 2
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Classification of pipelined architectures:

m Fully timing-compositional architectures:
» no timing anomalies
» analysis can safely follow local worst-case paths only
» example: ARM7

m Compositional architectures with constant-bounded effects:
» exhibit timing anomalies, but no domino effects
» example: Infineon TriCore

m Non-compositional architectures
» exhibit domino effects and timing anomalies
» timing analysis always has to follow all paths
» example: PowerPC 755

See Wilhelm et al. Memory Hierarchies, Pipelines, and Buses for Future
Architectures in Time-critical Embedded Systems
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... just to show how bad things are getting

m 32KB L1 data and
instruction cache

m 1MB unified L2 cache with
ECC

m Up to 12 instructions in >
instruction queue Ranama Rorame I PP

Buifars Bufiers DA

Up to 16 instructions
“in flight”

7 pipeline stages

3 issue queues GPR, FPR,
AltiVec

11 independent execution

units 80¢MPX bus interface
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m Out-of-order execution
m Up to 3 levels of speculation due to unknown branch prediction

m Caches
> Different pipeline paths for L1 cache hits/misses
» PLRU replacement policy

m Arbitration between different functional units
» Instructions have different exec times in different integer units

m Connection to the memory subsystem
» Up to 8 parallel accesses on the MPX bus

Several clock domains
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Every hardware component whose state has an influence on the timing
behavior:

m must be conservatively modeled
m may contribute a multiplicative factor to the size of the search space

m Depends on how we can abstract from the component

m Successful abstraction for caches [Reineke'08]:

» For some replacement policies, good abstractions allowing precise
analyses exist (LRU)

» Some have abstractions, but rather imprecise analyses

m No efficient abstraction for pipelines
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m In an experiment, engineers reduced the clock speed of the mentioned
PowerPC

m But the WCET did not change!
m Why?

Sebastian Hack Timing Analysis and Compilers



- . . SAARLAND bt
Complex Architectures in Practice —_—

COMPUTER SCIENCE

m In an experiment, engineers reduced the clock speed of the mentioned
PowerPC

m But the WCET did not change!
m Why?

Several reasons:
m Their certified C compiler has optimizations disabled!
» No register allocation, everyting goes to caches

But, parts of the caches are disabled due to PLRU replacment policy
L1 cache has no ECC!

m Because there is no ECC near the CPU, the engineers do not want to
have data in the caches

The code generated by the design tools is deterimental for I-cache
performance

» Many unrolled loops, code duplication, etc
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Conclusions

Applications are memory intensive

Definitely no need for an out-of-order processor
m The processor basically waits for the memory

m Modern CPUs optimize for average-case performance

Not for predictability of the worst case

Features are not exploited and timing analysis needlessly complicated
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m Certification authorities surrender to the (wrong) architectural
developments

m proving the correctness of modern high-performance processors used
in safety-critical systems is infeasible

m correctness of compilers proved by practice

m current discussion:
“liberalization” of requirements for proving timing correctness
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2
m Certification authorities surrender to the (wrong) architectural
developments

m proving the correctness of modern high-performance processors used
in safety-critical systems is infeasible

m correctness of compilers proved by practice

m current discussion:
“liberalization” of requirements for proving timing correctness

We cannot weaken the verification requirements. Instead, we need:
m Simpler, more predictable CPUs

m Verified optimizing compilers [Leroy '06]
m Architecture-aware code generation techniques
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m Most proposals only concern some architectural feature, e.g.:
» Making the pipeline more predictable [Sainrat,Rochange]
> Freezing (parts of) the cache [Puaut]
> Single-path paradigm [Puschner]
» Deterministic bus protocols w/o consideration of application
characteristics

m Most proposals entail a serious performance loss

m Overall designs: PRET architecture and the JOP Java processor
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Edwards/Lee et al.

THREAD
CONTROLLER
(]

REGISTER FILE

thread0
threadl

II|||M

INST_SPMS

thread2

PRET ) MAIN
MEMORY
PROCESSOR é L ©
I ‘ shared address
Memory Mapped h space

Input/Output WHEEL

scratchpad memories instead of caches
m thread-interleaved pipelines with no bypasses

explicit timing control at the ISA level by deadline instructions

m time-triggered communication with global time synchronization

high-level languages with explicit timing
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Instruction set:

Busy
m Stack-oriented JOP Core ac nairs || oo nieriace
Bytecode BC Data Bytecode /l\,:>
Cach
m Compact, constant length Fetch = \—‘“ 2
ﬁ T
. Data | Control
m Single cycle e . _
. P ---»| Extension
Cachlng: - —
o Muttipli
Decode (2l
m Full method cached ALy
m Cache fill on call and return WD“’ ool
Stack
. . 1/O Interf:
m Relative addressing e ()

m No fast tag memory
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m Hardware architects now understand that they need to consult
compiler developers when they develop new architectures

m For embedded systems, they should also consult people in timing
analysis

m Often, some hardware-component choice impedes timing analysis
heavily

m We build abstract models for these components and can provide
information about their predictability

m An example:
» FIFO caches are much harder to analyze than LRU
» PLRU is even worse
— For predictability, always use LRU
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Multicores
m Composable SoCs
® ... and Timing Analysis
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SoC grow in complexity:

increasing number of applications integrated on a single chip

Individual applications can have different real-time requirements
Some may have hard, some soft real-time constraints

To verify functional and temporal behavior of a single application, the
architecture, the middleware and the mapping has to be modelled

The system designer has to integrate all applications and verify the
combined behavior

Traditionally, verification cannot be done on isolated applications due
to the interference on shared resources, e.g. interconnect and memory

Two ways of coping with the complexity of system design:
Abstraction and Partitioning

Sebastian Hack Timing Analysis and Compilers 29 / 50
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Abstraction:

m trades analysis feasibility for accuracy
m difficult to find a single abstraction for the whole systems

m difficult to find efficient abstractions that do not sacrifice to much
accuracy

Partitioning:
m Split system into independent parts
m Each is simpler to understand than the whole
m also known as ‘“divide and conquer”

m We aim for composability
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Definition
A system is composable of the functional and temporal behavior of an

application does not dependent on the presence or absence of other
applications in the system
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Definition
A system is composable of the functional and temporal behavior of an

application does not dependent on the presence or absence of other
applications in the system

Eliminates interferences between applications

Enables incremental design, integration, and verification

Composability well known in the automotive and avionics industry
Every application runs on one ECU = no sharing

How do we build SoCs that enable composability?
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Definition
A system is composable of the functional and temporal behavior of an

application does not dependent on the presence or absence of other
applications in the system

m Eliminates interferences between applications
m Enables incremental design, integration, and verification

m Composability well known in the automotive and avionics industry
Every application runs on one ECU = no sharing

m How do we build SoCs that enable composability?

Conclusion

We need architectural building blocks that enable composability and tools
that integrate applications by managing the shared resources
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m Automotive and avionics industry experience similar intergration
trends: AUTOSAR and IMA

m Integration of many applications on a powerful platform
instead of of one application per platform/ECU

m More complex development process:
mapping problem: assign set of apps to nodes of the platform

m Expectations:

» IMA: incremental qualification, i.e. modification of one application
integrated with a set of other applications only requires re-certification
of the modified component.

» AUTOSAR: component-based design requiring composability:
timing behavior of one task is independent from others

Sebastian Hack Timing Analysis and Compilers 32 /50



. . . . . SAARLAND
Considering Timing Analysis s e

COMPUTER SCIENCE

]

m We have seen that timing analysis is demanding for modern single
cores

m To derive safe WCET bounds we also need to model access to
resources outside of the CPU: Buses for memory, 1/0

m For a single core this is more or less tractable since there is only one
program running

m For a concurrent system with multiple threads on multiple CPUs
arbitrarily competing for shared resources, it becomes impossible

m We need composability for timing predictability
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PROMPT — A proposal for a more predictable multi-core platform
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m Combination of control loops and finite-state control

m Each control loop fully contained in one application

m little shared code

m global state partly shared between applications

m state transitions influence control parameters

m control loops trigger state transitions

m access to shared state only at beginning end end of task activations

m some applications require high performance but have no sharing with
control applications
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Architecture follows Application

m Starting with a generic multi-node architecture the PROMPT
architecture is parametric in

> the ISAs
the hierarchy of nodes

v

» the memory hierarchies
> the interconnect

m Nodes may:
» have completely private resources
» shared resources if performance requires it

m Nodes on each hierarchy level should be predictable

m We start with predictable cores
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m No interference on shared resources where not needed for performance
m If needed, isolate interfering nodes in a new subnode from the rest

m Harmonious integration of applications without introducing
interferences on shared resources not existing in the applications
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Multi-core Design

Timing Analysis
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Derivation of

Timing Guarantees

Sebastian Hack Timing Analysis and Compilers 38 / 50




SAARLAND

The Traditional Design Process —

COMPUTER SCIENCE

Design of execution
platform

4 v

Software
development
R
Timing
Analysis
No ( Schedulability Ye
L Analysis
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m Hierarchical Privatization

» decomposition of the set of applications according to the sharing
relation on the global state

» allocation of private resources for non-shared code and state

» sound (and precise) determination of delays for accesses to the shared
global state

m Controlled Socialization
» introduction of sharing to reduce costs
» controlling loss of predictability

m Sharing of lonely resources: rarely accessed resources, e.g. 1/0
devices
» Costly lonely resources will be shared
» Access rate is low compared to CPU and memory bandwidth
» analyze the access behavior and determine a TDMA-like (deterministic)
access protocol [Rosen et al. '07]
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m Timing analysis is crucial for safety-critical hard real-time systems

m Most modern processor architectures make timing analysis very hard

Being hard for single cores, it is even worse for upcoming multi cores
m We urgently need more predictable architectures

m We need to make hardware manufacturers aware of timing predictability

SoCs have to be composable to ensure predictability
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m Compilers in the Multi-Core Age
m Correct Compilers
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m We are quite good at generating machine code from programs in
low-level languages (like C) for single cores

m No wonder: we do research on that for over 50 years

Compilers employ many machine-independent optimizations

Basically to:
» Remove redundant computations
» Remove memory accesses

m Machine-code selection well understood for “standard architectures”
= can be done systematically from descriptions

Special-case "hacking” for more exotic architectures

Still room for improvement on “exotic” DSPs, VLIWs
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m Perform optimizations sensitive to the memory hierarchy
» Very important
» The multi-core problem is also a locality problem!

m Gain control over data layout
» All optimizations are very code-centric

» Layout of data is fixed and dictated by the programmer
= bad for multi-cores

m Deep data-dependence analysis
» needed for parallelization

» Is intractable for languages like C
m Auto-tune themselves to new platforms (adaptivity)

Produce verified code
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m Almost every important problem in compilers is at least NP-complete

Especially memory hierarchy related optimizations

Basically stems from discreteness:

» Compiling a function into 4096 or 4097 bytes might make a huge
difference!

» However, 4095 or 4096 might make no difference
» Due to fixed size of caches

Compilers have to solve discrete optimization problems all the time

m Much in compilers is about developing efficient (sub-quadratic!)
heuristics for very hard problems
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Most compiler optimizations focus on single-threaded programs

Concurrency/Parallelization was largely thought of as a programmer's
task

With the advent of multi-cores this changed
There was research on automatic parallelization that is now revived

However, to find the parallelism, these techniques impose severe
restriction on the programs

Furthermore, the multi-core problem is also a locality/granularity
problem:

Many cores share resources, especially memory

Working in parallel is only efficient if the data can be partitioned such
that every processor is utilized
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m The research of the last years suggest that all this is more a language
problem

m Languages like C are too low-level to permit automatic
parallelization /mapping to multi-cores

m They give the programmer too much freedom to access shared state
m Therefore, data dependences are hidden from the compiler

m Data structures and memory layout have to be mapped by the
programmer

m They cannot be touched by the compiler anymore
(the semantics of the language forbids it)
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Parallelism has to come from more abstract programming paradigm
» Stream programming
» Data-flow programming
» Functional programming

Can we convince programmers to use such languages?

m How can we incorporate common programming techniques to such
languages

Can we depart from the human, stateful concept of algorithms?
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Often ignored problem: Can you trust your compiler?

Is the generated machine code semantically equivalent to your source
program?

Some companies need to disable optimizations to get a compiler
certified = That is not the way to go

We need formally verified code generators and optimizers like [Leroy
'06]

Therefore, you need a formal semantics of the machine and the
language

Hence, it would be desirable to

» Describe the semantics of the machine and generate a correct
code-generator automatically

» Correct by construction
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m C is not the language of the multi-core age
m Compilers need to become more sensitive to the memory hierarchy

m We need to shape new languages that allow compilers to efficiently
exploit multi-core systems

m We need correct, formally verified compilers to provide compiler
optimizations to safety-critical systems

Sebastian Hack Timing Analysis and Compilers 50 / 50



	Timing Analysis
	Introduction
	Challenges for Predictability
	Predictable Architectures

	Multicores
	Composable SoCs
	… and Timing Analysis

	PROMPT --- A proposal for a more predictable multi-core platform
	Compilers
	Compilers in the Multi-Core Age
	Correct Compilers


