
WCET Analysis of Code Parallelized with the
Polytope Method

Björn Lisper
School of Innovation, Design, and Engineering

Mälardalen University

bjorn.lisper@mdh.se
http://www.idt.mdh.se/personal/blr/

2009-01-21

Polytope talk 2009-01-21

WCET Analysis of Parallel Programs

Much harder in general than for sequential programs (which is hard. . .)

New factors that will affect the execution time, and make the analysis harder:

• communication

• synchronization

• Nondeterminism due to race conditions

• Possible deadlock (WCET = ∞)

• Unpredictable low-level timing due to sharing of HW resources

We’d better look for special niches, where one can do better

Polytope talk 2009-01-21 1

Static Parallelization

Computations that can be described by a fixed data dependence graph:

Nodes are tasks (in OR sense, not RT sense), dependences given by data
transfers between tasks

Corresponds to straight-line code

Polytope talk 2009-01-21 2

If we schedule the graph in time, and allocate in space, then a parallel
program can be synthesized:

space

time

1

2

3

1 32 (processor)

Data dependencies must be respected in time (causality)

Mapped computations may not overlap

Polytope talk 2009-01-21 3

Timing Analysis of Static Parallelization

If we can decide (bounds for) the execution times of the parts, then we can
find bounds for the whole parallel computation

space

time

(processor)

WCET WCET

WCET

WCET

WCET

WCET

WCET

WCET

WCET

Similar to timing analysis of straight-line code, but communication time and
possible interference through shared resources must be taken into account

Polytope talk 2009-01-21 4

The Polytope Method

Single-path code need not be straight-line code

Can also contain loops

The Polytope Method is a method to parallelize (possibly nested) loops

Works best for fairly regular loops: array computations, matrix codes etc.

Codes with largely data-independent program- & data flow, suitable for static
scheduling (single-path code, or can be converted to such)

Possible “special niche”: WCET analysis of programs parallelized by the
polytope method

Polytope talk 2009-01-21 5

The Polytope Method Step by Step

1. Determine the iteration space of the loop (one point per iteration)

2. Find the dependencies between different loop iterations

3. Schedule and allocate the loop iterations subject to the dependencies

Each point in the iteration space corresponds to an execution of the loop
body

No dependencies between two executions =⇒ they can be executed in
parallel

Polytope talk 2009-01-21 6

Example: a Loop and its Iteration Space

Matrix-vector multiply, y = Ax:

for i = 1 to n
y[i] := 0
for j = 1 to n
y[i] := y[i] + a[i,j]*x[j]

Iteration space (inner loop):
{ (i, j) | 1 ≤ i, j ≤ n } 1

1 n

n
j

i

Each point corresponds to an execution of the loop body

Polytope talk 2009-01-21 7

Decide Data Dependencies

True dependencies uncovered by turning code into single-assignment form:

for i = 1 to n
y[i,0] := 0
for j = 1 to n
y[i,j] := y[i,j-1] + a[i,j]*x[j]

y[i,j] produced at (i, j) in iteration space

y[i,j] assigned only once, then corresponds to a unique value (functional
semantics)

Basically, the loop now specifies a mathematical recursion equation

Polytope talk 2009-01-21 8

Uniformization of the loop (also treat initializations as computations):

for i = 1 to n
for j = 0 to n
if j=0 then

y[i,0] := 0
else

y[i,j] := y[i,j-1] + a[i,j]*x[j]

Computation of y[i,j] at (i, j) needs y[i,j-1] from (i, j − 1)

Data dependence vector (i, j) − (i, j − 1) = (0, 1)

This single vector characterizes all data dependencies between
computations in the loop!

Polytope talk 2009-01-21 9

Data Dependence Vector

1

i

j

0

(0,1)

n

n

Polytope talk 2009-01-21 10

Scheduling and Allocation

Loop parallelization is now basically a task scheduling problem: each
execution of the loop body is a task

Besides scheduling, we also must allocate tasks (loop body executions) to
processors

Scheduling + allocation can be expressed as a space-time mapping from
iteration space to a space-time with integral time t and a space of processor
coordinates s:

(

s

t

)

= S(~i) =

(

s(~i)

t(~i)

)

Polytope talk 2009-01-21 11

Conditions on Space-Time Mappings

1. Data dependencies must be preserved in time, that is: t(~i) > t(~i′) if data
dependence from ~i′ to~i (causality)

2. Space-time mapping is 1-1 (can be loosened to some extent)

Polytope talk 2009-01-21 12

Linear Space-Time Mappings

Linear mappings interesting due to simplicity, so let’s use them to exemplify

Easy to check causality for them:

t(i, j) > t(i, j − 1) ⇐⇒ t(i, j) − t(i, j − 1) > 0

⇐⇒ t((i, j) − (i, j − 1)) > 0

⇐⇒ t(0, 1) > 0

Necessary and sufficient criterion: all data dependence vectors are mapped
to positive time

A linear mapping S is 1-1 if invertible. Sufficient criterion: det(S) 6= 0

Polytope talk 2009-01-21 13

A Possible Space-Time Mapping

(

s

t

)

=

(

1 0
0 1

)(

i

j

)

1
0 s

t

n

n

Yields in-place computation of each element of the resulting array, one
element per processor (fine-grain parallelism)

Parallel code can be synthesized that implements the mapped computation

Polytope talk 2009-01-21 14

Another Space-Time Mapping

(

s

t

)

=

(

0 1
1 1

)(

i

j

)

s

n

1

0

t

n

Yields a pipelined computation, where computed elements move to the right

Polytope talk 2009-01-21 15

An Observation

This is a kind of static parallelization

Resulting parallel code should be as predictable as for the fixed data
dependence graph

Each processor will execute some kind of single-path loop

Communication is also predictable

Should be possible to calculate WCET with high precision, provided the
system is closed

Also by a measuring time for a single run, if execution time is independent of
initial hardware state

Polytope talk 2009-01-21 16

Predicated Execution

Can do same “tricks” as for sequential programs to obtain parallel
single-path code for loops with conditionally executed loop body parts:

for i = 1 to n
for j = 1 to n
if (dynamic condition) then

The index space will have “holes”. This transformation makes less regular
loop programs parallelizable by the polytope method. Predicated parallel
code can be generated according to the conditions defining the holes

Polytope talk 2009-01-21 17

Conclusions

High precision WCET estimation for some parallel programs seems possible

These are parallelized single-path loop programs

Must assume that the system is closed (no other activities), or sharing of
resources may disturb the result

Can be applicable to control, media and signal processing, etc.

WCET by measuring should work just as for sequential single-path programs

Polytope talk 2009-01-21 18

