
UML AADL 2009 Workshop
Potsdam - Germany

UML Modeling and Formal
Verification of control/data driven

Embedded Systems

Presented by: Fateh Boutekkouk
University Larbi Ben M’hedi of Oum El Bouaghi

– Algeria-

UML AADL 2009 Workshop
Potsdam - Germany

Outlines (1)
Introduction and Motivation
Introduction to Rewriting logic & Maude
Language
Our Approach
Application modeling
Architecture modeling
Mapping modeling
Transformation of UML models to Maude

UML AADL 2009 Workshop
Potsdam - Germany

Outlines (2)

Tasks behaviors specification
Properties specification and verification
Example
Conclusion and perspectives

UML AADL 2009 Workshop
Potsdam - Germany

Introduction and Motivation (1)
• The ever increasing complexity in both applications and integration

density in semi-conductor technology, and strict time to market
have pushed Embedded Systems specialists to:

1. raise the level of abstraction
2. borrow some technologies and ideas from software

engineering such as Object technology and formal
techniques

• UML is the de facto standard for visual object modeling
• UML can be tailored to different application domains by the

definition of profiles
• Since UML does not dictate any particular development process to

be used, it is on designers to define a design flow. We think that
the Y-chart approach is the most appropriate.

UML AADL 2009 Workshop
Potsdam - Germany

Introduction and Motivation (2)
• UML lacks a formal support for early verification and validation
• Transformation of UML models to a language with a well defined

semantics
• We use this formal language to verify the correctness of the system

against some undesirable properties and eventually perform high
level estimations on system performances (eg. Power consumption)

UML AADL 2009 Workshop
Potsdam - Germany

Introduction to Rewriting Logic and
Maude Language (1)

• The rewriting logic (RL) was introduced by Meseguer.
• In RL, the logic formulas are called rewriting rules. They have the

following form: R: [t] -> [t’] if C. Rule R indicates that term t is
transformed into t’ if a certain condition C if verified.

• Term represents a partial state of a global state S of the described
system.

• The modification of the global state S of the system to another state
S’ is realized by the parallel rewriting of one or more terms that
express the partial states.

UML AADL 2009 Workshop
Potsdam - Germany

Introduction to Rewriting Logic and
Maude Language (2)

• Maude is a specification language based on the rewriting logic.
• Two specifications level are defined: the system specification &

properties specification
• The system specification level is provided by the rewrite theory.
• three types of modules are defined in Maude.
• Functional modules allow defining data types and their functions

through equations theory.
• System modules define the dynamic behavior of a system by

introducing rewriting rules.
• Object-Oriented modules

UML AADL 2009 Workshop
Potsdam - Germany

Introduction to Rewriting Logic and
Maude Language (3)

mod BANK-ACCOUNT is
protecting INT .
including CONFIGURATION .
op Account : -> Cid.
op bal :_ : Int -> Attribute .
ops credit debit : Oid Nat -> Msg .
var A : Oid . vars M N :Int
rl [credit]: < A : Account | bal : N > credit(A, M) => < A : Account | bal:N + M >
crl [debit] : < A : Account | bal : N > debit(A, M) => < A : Account | bal : N - M >

If N >= M .
endm

The BANK-ACCOUNT module in system module form.

UML AADL 2009 Workshop
Potsdam - Germany

Introduction to Rewriting Logic and
Maude Language (4)

• The property specification level defines the system properties to be
verified.

• The system is described using a system module.
• The Model-checking supported by Maude's platform essentially uses

the LTL logic for its simplicity and the defined decision procedures it
offers.

• The user can call the modelCheck function while specifying a given
initial state and a formula.

• Maude model-Checker verifies if this formula is valid in this state or
the set of all reachable states form the initial state.

• If the formula is not valid, a counter example (counterexample) is
displayed.

UML AADL 2009 Workshop
Potsdam - Germany

Our approach (1)
Application Modeling

• Separation between data driven and control driven tasks
• Separation between computing and communication
• hierarchy
• Data abstraction
• Definition of a set of stereotypes:
• Module
• Dtask
• Ctask
• CChannel
• DChannel

UML AADL 2009 Workshop
Potsdam - Germany

Our approach (2)
• Data Driven tasks
• we use UML2.0 activity diagrams with Coarse Grained Actions

(CGAs)
• Each CGA belongs to one of the three generic types: Computation

Actions (CAs), Read Actions (RAs), or Write Actions (WAs).
• we define a new stereotype called "Compute“ with ctwo tagged

values : the number of elementary instructions inside a computation,
and the type of the elementary operation (i.e. integer or float).

UML AADL 2009 Workshop
Potsdam - Germany

Our approach (3)

• Data Driven tasks
• We use UML activity diagrams with croase grained actions (CGAs)

readB
«Read»

computeB2
«Compute»

 to p2

computeB1
«Compute»

UML AADL 2009 Workshop
Potsdam - Germany

Our approach (4)
• Control Driven tasks
• We use UML stateCharts with zero time

state_0

state_1

ok1ok1

request2

state_2

request2

ok2 to p6

UML AADL 2009 Workshop
Potsdam - Germany

Our approach (5)

• Architecture Modeling
• A set of stereotypes are defined: CPU; BUS; BRIDGE; RAM
• CPU
• Task switching time
• the time to go to the “idle” state,
• the number of cycles for an elementary operation,
• the average amount of power consumed per cycle in the running

mode,
• The average amount of power consumed per cycle in the idle mode,

• The scheduling algorithm.

UML AADL 2009 Workshop
Potsdam - Germany

Our approach (6)
HWPlatform

cp2
1 «CPU»

p1

cp1
1 «CPU»

p0

bu1
1 «BUS»

p2

p1p0

ram
1 «RAM»

p4

bridge
1 «BRIDGE»

p3

p2

bu2
1 «BUS»

p5 p4p3

cp3
1 «CPU»

p5

UML AADL 2009 Workshop
Potsdam - Germany

Our approach (7)

• Mapping modeling
• We define a new stereotype called "AllocatedTo".
• This stereotype is applied on the UML constraint and it has two

stereotypes. The first one specifies the name of the hardware
component to which logical component should be allocated. The
second one designates a number that determines the execution

order of the task (the transfer).

UML AADL 2009 Workshop
Potsdam - Germany

Our approach (8)

Modeling using Rhapsody

UML AADL 2009 Workshop
Potsdam - Germany

Passage from UML to Maude (1)
• Transformation of UML models to Maude

UML Maude

Composite class (Module) System Module

Class (Task) Class

SysML Flow (Channel) Class

Tagged value Attribute

CGA Attribute

FSM state Attribute

Activity diagram/FSM Transition Rewriting rule

UML AADL 2009 Workshop
Potsdam - Germany

Passage from UML to Maude (2)
• < A: Dtask | hwname: cpu, state: sta, action: act >
• < B: Ctask | hwname: cpu, state: sta, FSMS: fsms >
• < chd : Dchannel | hwname : hw, source : A, target : B,

available : x >
• < chc : Cchannel | hwname : hw, source : A, target : B,

size : x >
• < cpu : CPU | LinkTo : bus, ContextSwitch : cont, GoIdle

: idl, Iop : iop, Fop : fop, Power : pw, PowIdle : pwd,
TPower : tp >

• <bus : BUS | Speed : sp, Power : pb, TPower : tpb, free :
true >

UML AADL 2009 Workshop
Potsdam - Germany

Tasks Behaviors specification (1)

• rl [start] : ***1
start(A)
< A : Dtask | hwname : cpu, state : ready, > =>
< A : Dtask | hwname : cpu1, state : run, action : readC, token : 5 > .

UML AADL 2009 Workshop
Potsdam - Germany

Tasks Behaviors specification (2)
• crl [readCwait] : ***2
< A : Dtask | hwname : cpu, state : run, action : readC, token : n > < cpu

: CPU | LinkTo : bus, ContextSwitch: cont, GoIdle : idl, Iop : iop, Fop
: fop, Power : pw, PowIdle : pwd, TPower : tp > < ch1 : Dchannel |
hwname : bus1, source : A, target : B, available : x > < C : Dtask |
hwname : cpu, state : s >

=>
< A : task | hwname : cpu, state : wait, action : readC, token : n – x > <

cpu : CPU | LinkTo : bus, ContextSwitch : cont, GoIdle : idl,Iop : iop,
Fop : fop, Power : pw, PowIdle : pwd, TPower : tp + (float(cont) * pw)
> < ch1 : Dchannel | hwname : bus1, source : A, target : B, available
: 0 > < C : Dtask | hwname : cpu, state : s > wakeup(C) if (x < n) and
(s == ready) .

UML AADL 2009 Workshop
Potsdam - Germany

Tasks Behaviors specification (3)

• crl [EV5occurence] : ***3
< A : Dtask | hwname : cpu, state : run, action : waitEV5 >
< ch : Cchannel | hwname : bus1, source : A, target : B, size : sz >
=>
< A : Dtask | hwname : cpu, state : run, action : computeDCT, Nombre :

1000, Type : integer > < ch : Cchannel | hwname : bus1, source : A,
target : B, size : sz – 1 > if sz > 0 .

UML AADL 2009 Workshop
Potsdam - Germany

Tasks Behaviors specification (4)
• rl [computeDCT] : ***4
< A : Dtask | hwname : cpu, state : run, action : computeDCT, Nombre :

1000, Type : integer >
< cpu : CPU | LinkTo : bus ,ContextSwitch : cont, GoIdle : idl, Iop : iop,

Fop : fop, Power : pw, PowIdle : pwd, TPower : tp >
=>
< A : Dtask | hwname : cpu, state : run, action : writeA, token : 5 >
< cpu : CPU | LinkTo : bus, ContextSwitch : cont, GoIdle : idl, Iop : iop,

Fop : fop, Power : pw, PowIdle : pwd, TPower : tp + (float(1000 *
iop)* pw) > .

UML AADL 2009 Workshop
Potsdam - Germany

Properties specification and verification (1)
• At this level of abstraction, we can verify some undesirable or/and

desirable properties.
• Using the Maude command “search in application: initial =>!

X:conf such that TaskEnd(X:conf) == true.”, we can easily verify
whether all tasks reach the idle state (that means there is no
deadlock).

• TaskEnd is a function defined as:
sort conf .
subsort conf < Configuration .
op sta : conf -> states .
op TaskEnd : conf -> Bool .
eq sta (< T1 : Dtask | hwname : cpu, state : st >) = st .
eq sta (< T2 : Ctask | hwname : cpu, state : st >) = st .
eq TaskEnd (T) = if sta(T) == idle then true else false fi .

UML AADL 2009 Workshop
Potsdam - Germany

Properties specification and verification (2)
• We can verify whether the bus is always busy which is a non-

desirable property.
• For this reason we use the command “search in application :

initial =>! X:conf such that BusBusy(X:conf) == true .”
• BusBusy is a function defined as:
op BusBusy : conf -> Bool .
eq BusBusy (< bus : BUS | Speed : sp, Power : pb, TPower : tpb,

free : bool >) = if bool == false then true else false fi .

UML AADL 2009 Workshop
Potsdam - Germany

Properties specification and verification (3)
• Another important property we can verify is the fact that the amount

of data tokens buffered in data channels FIFO does not exceed a
certain threshold in every state of the system.

• Using the command: “red modelCheck(initial, []FIFOsize(initial))
.”, we can easily verify the FIFOsize property

• FIFOsize is defined as:
var cf : configuration .
op FIFOsize : Configuration -> Prop .
ops ch A B bus : -> Oid .
vars x TS : Nat .
ceq < ch : Dchannel | hwname : bus, source : A, target : B,

available : x, threshold : TS > cf |= FIFOsize (< ch : Dchannel |
hwname : bus, source : A, target : B, available : x, threshold :
TS > cf) = true if x < TS .

UML AADL 2009 Workshop
Potsdam - Germany

Example (1)
• Three data driven tasks: A, B, and C
• Two controllers: Controller1 and Controller2

computeA1
«Compute»

 to p1

request1

computeA2
«Compute»

request1

readB
«Read»

computeB2
«Compute»

 to p2

computeB1
«Compute»

readC
«Read»

computeC
«Compute»

ok1 to p5

MODE1

request1 to p3

MODE2

request2 to p4

ok2ok2

state_0

state_1

ok1ok1

request2

state_2

request2

ok2 to p6

UML AADL 2009 Workshop
Potsdam - Germany

Example (2)
• Task A performs a CGA computeA1 including 300 integer

operations, and writes 10 tokens of data over ch1. Then, it waits for
request1 event from Controller1 (via ch3) to perform a second CGA
computeA2 including 120 float operations before it terminates.

• Task B performs a CGA computeB1 including 100 integer
operations and attempts to read 5 data tokens from ch1, then it
performs computeB2 including 50 float operations, and writes 8 data
tokens over ch2 before its termination.

• Task C attempts to read 5 data tokens from ch2, performs a CGA
computeC including 1000 integer operations, then it sends an event
ok1 to Controller2 over ch5, and terminates.

• Before execution starts, we assume that the number of available
tokens for ch1 is equal to 0, and 7 for ch2

UML AADL 2009 Workshop
Potsdam - Germany

Example (3): Rewriting Result

UML AADL 2009 Workshop
Potsdam - Germany

Conclusion and perspectives
• Use of UML as a front-end for Data/Control Driven

Embedded Systems Modeling.
• Transformation of UML models to Maude language.
• The passage from UML to Maude is done into Rhapsody

by mean of its VB interpreter.
• Formal verification of some properties and high level

Performances estimation using Maude rewriting engine.
As a perspective:
• Enrich our model by adding more realistic information

concerning time and power consumption.
• Use of ATL for expression of transformation rules
• Discover other properties for formal verification.

UML AADL 2009 Workshop
Potsdam - Germany

Thank you

