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Problem

Redundant Architectures Used for Fault-Tolerance, but...

Assume replicas “reactions” to faults/commands are
synchronous
» E.g. primary switches to backup when backup to primary

What effects do we want to tolerate
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Property 1

» At least one FGS shall always be
active

Property 2
» Exactly one side shall be the pilot
flying side
Property 3

« If the system is in independent
mode, both FGS shall be active
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NASA’s Incremental Approach

Fully synchronous

Asynchronous

« Mode-switching signal loss: previous active does not switch to inactive
 Fix: model acknowledgement & relaxing properties

 During mode transition : 2 pilots flying

Asynchronous with failures
 Failure modeled as a signal to the still-active component
» Properties needed to relax to account for “failure discovery” time

* Issues:
— The introduction of a failure as a signal is unnatural to model
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Suggestions on NASA Approach

Use “proven” asynchronous / fault-tolerant constructs
e E.g. ack in a fault-tolerant communication

Better asynchrony modeling to avoid unbounded clocks
» Known period and drift

Modeling of mode synchronization should be part of system architecture
and not component

Not include logic of component failure
Use patterns of common architectural features
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Architectural Abstraction Approach using AADL

Modality model at architectural level

Evaluate expected synchrony between distributed modes
Develop synchronous “expected” model

Create new distributed architecture

Evaluate all potential failures
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From Chaos to Order

Non Functional Properties

Systems modeled with two chaotic components

« Execution Platform (Executor)
« Software (Executable)

Model all possible faults

e Executor

— Faulty execution
— Execution Reorder

e Executable: fault intolerant
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Chaotic Model ormeier et al.)
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Reducing Behaviors

Hardware (Chaos)

* Rule out impossible behaviors
« Add hardware properties
— A single processor cannot execute two jobs at a time
« Add software structure
— E.g. Component does not execute until message delivered

Software (Intolerance)

» Order of execution just need to honor precedence
¢ Some jobs may be optional
e Some messages can be lost
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AADL Model

Default model: all behaviors

Reduce Software Intolerance

flows:
f1: end to end flow t1.p1->t2.p1 {tolerate=>loss;};

Reduce Hardware Chaos
 bus: Bus {ensures => no_loss;};
Analysis of Architectural Differences in Alloy
« Base model assumed to be correct
« Modified model that can introduce problems
— New model with requirements from previous model
 Discover new not tolerated behaviors

— - - - . D. De Niz & P. Feil
=== Software Engineering Institute | CarnegieMellon Jine 2% 2009

— © 2008 Carnegie Mellon University

10



Consequences to Modes

Redundant Architecture can mean synchronous modes
* E.g. when node1 in primary, node2 in backup

Loss of transition signal means modes out of sync

Delayed transition means out of sync for a some time

Out-of-sync modes

e Connections not active
» Duplicated connections

— . . . . D. De Niz & P. Feiler
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Synchronous Model
(control flow)

thread implementation single.i

calls
s1:{
cf: subprogram controller_function;
pf: subprogram primary_function ;
bf: subprogram backup_ function;
p_pbw: subprogram primary_to backup_waiting;
b_bpw: subprogram backup_to primary_ waiting;
p_bpw: subprogram backup_to primary_ waiting;
b_pbw: subprogram primary_to backup_waiting;
auto: subprogram auto_pilot;
}

end single.i;

= i : . . D. De Niz & P. Feil
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Asynchronous

Left (Primary) / Right (Backup)

thread implementation primary.i
calls
s1: {
pf: subprogram primary_function;
} in modes (primary_mode, backup_mode);
s2: {
p_pbw: subprogram primary_to_backup_waiting;
} in modes (primary_to_backup_synchronizing);
s3: {
p_bpw: subprogram backup_to_primary_waiting;
} in modes (backup_to_primary_synchronizing);
connections

kup_synchronizing: mode ;
ary_synchronizing: mode ;
mode ;

-[ transfer ]-> primary_to_backup_synchronizing;

-[ transfer]-> backup_to primary synchronizing;

ary_synchronizing -Jin_switched_mod¢

kup_synchronizing -[ in_switched_mode]-> backup_mode;

-> primary_mode;

thread implementation backup.i
calls
s1: {
bf: subprogram backup_function;
} in modes (backup_mode, primary_mode);
s2: {
b_bpw: subprogram backup_to_primary_waiting;
} in modes (backup_to_primary_synchronizing);
s3: {
b_pbw: subprogram primary_to_backup_waiting;
} in modes (primary_to_backup_synchronizing);
connections
c1: event port b_bpw.switched_mode -> out_switched_mode;
c2: event port b_pbw.switched_mode -> out_switched_mode;
c3: event port bf.outNav -> outNav in modes (backup_mode);
modes
primary_mode: mode ;
primary_to_backup_synchronizing: mode ;
backup_to_primary_synchronizing: mode ;
backup_mode: initial mode ;
backup_mode -[ transfer]-> backup_to_primary_synchronizing;

backup_to_primary_synchronizing -[ in_switched_mode ]-> primary_mode;

primary_mode -[ transfer]-> primary_to_backup_synchronizing;
primary_to_backup_synchronizing -[in_switched_mode ]-> backup_mode;
end backup.i;
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AADL Annotations

Hardware

system implementation final.i
subcomponents

cpul: processor cpu {chaotic::Lossless => true;};
cpu2: processor cpu {chaotic::Lossless => true;};
cpu3: processor cpu {chaotic::Lossless => true;};
cpu4: processor cpu {chaotic::Lossless => true;};

crnet1: bus net {chaotic::Lossless => true;};
crnet2: bus net {chaotic::Lossless => true;};
crnet3: bus net {chaotic::Lossless => true;};
crnet4: bus net {chaotic::Lossless => true;};
crnet5: bus net {chaotic::Lossless => true;};

Software

connections
c1: event port control.transfer ->
primary_sw.transfer

{chaotic::InOrder => true;};

c2: event port control.transfer ->
backup_sw.transfer

{chaotic::ReorderTolerant => true;
chaotic::LossTolerant => true;};

c3: event port %rimary_sw._out_syvitched_mode->
ackup_sw.in_switched_mode
{chaotic::ReorderTolerance => 10 ms;};

c4: event port backup_sw.out_switched_mode ->
rimary_sw.in_switched_mode
chaotic::InOrder => true;};

c5: event port backup_sw.outNav->
auto_sw.inNav

{chaotic::InOrder => true;};

c6: event port primary_sw.outNav->
auto_sw.inNav

{chaotic::InOrder => true;};
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Mode Transition Loss

Built-in acknowledge of mode transition
Mode loss due to network message loss
Automatically discovered “out-of-sync” modes

Automatically discovered connection loss due to “inactive” mode
« No output to autopilot
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Loss of communication due to mode transition failure

£ FullyThreaded_final_ FullyThreaded.aadl =72 £ FullyThreaded. azx| Single Threaded. aad|
“thread implementation backup.i
calls
=1: |

bf: subprogram backup function;
P in modes (bhackup mode, primary wode) ;
=2 i
b bpw: subprogram backup to primary waiting:
} in modes (backup to primary sSynchronizing):
s3: H
b pbw: subprogram primary to bhackup waiting;
P in modes (primsry to backup synchronizing);
connections
z1l: event port b hpw.switched wode —-> out switched mode:
cZ2: event port b phw.switched mode -> out switched mode:;

c3i: event port bf.outlavy —> outlav in modes [(backup mode) ;
modes

[34 Problems &3 = Properties ﬁ AA0L Property Values @ Error Log
3 errors, 27 warnings, 0 infos
Description
= T Errors (8 items)
@ Connection communication can be lost
£ Connection communication can be lost
3 Connection communication can be lost

® cConnection Disabled due ta loss of kransition inko mode backup_made

= i i 1 . D. De Niz & P. Feil
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Out-of-sync modes

o

£ FullyThreaded_final_ Fully Threaded. aadl 22 £ FullyThreaded. aaxl SingleThreaded. aad| 1

end primary replicar

“process implementation primary replica.i
subcomponents

p: thread primary.i:
connections

2l: event port transfer -> p.transfer:
cZ: event port in switched mode -> p.in Switched mode:
ci: event port p.out switched mode -> out switched mode:
c4: event port p.outlav-routMNaw:

end primary replica.i:

“process backup replica
features
tran=sfer: in event port:
in switched mode: in event port:

[fh Problems &3 = Properties E AADL Property Walues @ Error Log

& errors, 27 warnings, 0 infos
Description
= T Errors (3 items)
@ Connection communication can be lost
@ Connection communication can be lost
€ Connection communication can be lost
3 Connection Disabled due to loss of transition inko mode backup_maode
® Mode backup_to_primary_swnchronizing in component p ouk of sync with primary_mode in component b due to m

—— . . . . D. De Niz & P. Feil
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Quantifying out-of-sync errors

Separate loss from out of sync

Out of sync modes happens due out of sync
communication/execution

« Sampled communication

Modeled in AADL as sampled data communication

= i : . . D. De Niz & P. Feil
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Sampled Data Communication

Delayed connection

-
FullyThreaded, aadl (E Fully Threaded., azx|

( SingleThreaded, aadl

}}5 = E

Primary Sw: Process primary replica.i:

~
backup sw: process backup replica.i: -
auULo_3W:!: process auto _pilot process.i;
connections
cl: data port control.transfer -> primary sw.
chaotic: :Indrder => true;
Y
cZ: data port control.transfer -> backup sw.ty
chaotic: :Indrder => true;
3.
ci: data port primary sw.out switched mode|->> *ackup 3wW.1ln switched mode |
chaotic: :IngN\ler => false: e 1
b
P cd: data worf ut sw.out switched mode -> brimarv sw.in switched mwode . |
| |

Sampled mode
transition

D. De Niz & P. Feiler
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Quantified Out-of-sync Modes

FullyThreaded. aadl FullyThreadedDataCam 22 %_ Fully ThreadedDataCom % =0 EE N
end backup replica; E thre:
subp
“process implementation backup replica.i thre:
suhcomponent s subp

b: thread backup.i: subp

m: thread mode triggerd.i; subp
ml: thread mode triggerd.i; I:hre.f
connections E::z:
z0: data port transfer -> m.sampled transition; thre:
cl: event port m.event transition -> b.transfer; thre:
cZ2: data port in switched mode -> ml.sawpled transition: thre:
z3: event port mwl.event trahnsition -> b.in switched mode: thre:
¢4: data port b.out switched mode -> out switched mode; 3 thre:

£
[L Problems &2 1 Propetties E 8401 Property Yalues @ Errar Log }:D

37 errors, 27 warnings, 0 infos

Descripkion
3 Connection Disabled by 2.0EE ns due to loss of transition into mode prims n_backup_synchronizing
&) Made backup_ta_primary_synchronizing in component b ouk of sync by 2 3
() el el (oo o e et o e e e e 2 e e e e Gt el e i s e e e oo [

D. De Niz & P. Feiler
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Mode Transition Disable Period

Quantified delay (instead of “communication step”)
Bounded due to periodicity of threads

Precise worst-case calculation of communication
interruption / duplication

=— i i : . D. De Niz & P. Feil
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Mode Transition Delay

>

FullyThreaded. aad| Fully ThreadedDataCom &2 %_ FullyThreadedCataCom B

c3: event port pf.outMNav -> outlNav in modes (priwary mode) ;
modes

primary mode: initial mode ;

pPrimary to backup syvnchronizing: mode ;

backup to primary syvnchronizing: mode

backup mods: mode ;

primary mode —-[ transfer ]-» primary to hackup synchronizing:

primary to backup synchronizing -[ in switched mwode, in switched mwode

backup mode -[ transfer, transfer ]-> backup to primary synchronizing

backup to primary syhochronizing -[ in switched mwode, in switched mwode
properties

Feriod => 100 HM=:

Dispatch Protocol => Periodic:

4

#

[L Problems 2 T Properties | [ AADL Property Walues @ Erraor Log

37 errors, 27 warnings, 0 infos
Description
& Mode transition to mode backup_mode can be disabled by 2.0ES ns due to message loss

3 Mode transition ko mode backup_mode can be disabled by 2.0E8 ns due ko Message-los
&) Mode transition to mode ba _synchronizing can be disabled b 2.0E8 ns  Jue ko message loss

ckup_to_primary

= . . . . D. De Niz & P. Feil
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Worst-Case Communication Interruptions

FullyThreaded. aad| FullyThreadedDataZom &2 £ FullyThreadedDataCom i = O
b _pbw: subprogram primary to backup waiting:
}in modes (primary to hackup synchronizing);

connections
zl: parameter b bpw.switched mode -> out switched mode in modes (backup
cZ2: parameter b pbw.switched mode -> out switched mode in modes (primary
c3i: event port bf.outlNav —-> outNav in modes [(backup mode) !
modes
primarv mode: mode ; i
>

£

[L Problems &2 ! Properties E 8A0L Property Walues 'Ef| Error Lag

37 errars, 27 warnings, 0 infos
Description

= T Errors (37 ikems)
&) Connection Disabled by 2.0E8 ns due ko loss of transition inkto mode backup_mode

3 Connection Disabled by 2.0E8 ns due ko loss of transition inko mode backup_to_primary_synchronizing

— - - - . D. De Niz & P. Feil
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Worst-Case Communication Duplication

FullyThreaded, aadl FullyThreadedDataCom &2 £ FullyThreadedDataCom 7 :
b phw: subprogram primary to backup waiting:
P in modes (primary to backup synchronizing);
connections
zl: parameter b bpw.switched mode -> out switched mode in modes [(backup
cz2: parameter b phw.switched mode -> out switched mode in modes (primary

c3i: ervrent port bf.outlav —-> outllav in modes [(backup mode) ;
modes
primarvy mode: mode ;
£ >

[L Problems &2 T Properties E AADL Property Yalues @ Error Log

37 errars, 27 warnings, 0 infos

Description
&3 Program pf can be executed out of order with program b_pbw by 2.0ES ns more than allowed From the original model

® Unexpected simultaneously active connections by 2.0E8 ns backup.i.c3 and primary.i.cl
3 Unexpected simultaneously active connections by 2.0ES ns backup.i.c3 and primary.i.c2

— - - - . D. De Niz & P. Feil
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Concluding Remarks

Analysis of Concurrency in AADL model leverages
semantics of AADL

* Processor bindings, failing processors,
e Duration of errors

Keeps analysis at architectural level
Focuses on problems introduced by the runtime architecture
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