
Verification of Redundant

Architectures in AADL

© 2008 Carnegie Mellon University

UML & AADL Workshop 2009
June 2, 2009

Dio de Niz & Peter Feiler

Problem

Redundant Architectures Used for Fault-Tolerance, but…

Assume replicas “reactions” to faults/commands are
synchronous

• E.g. primary switches to backup when backup to primary

What effects do we want to tolerate

2
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

Dual Flight Guidance Systems

Property 1

• At least one FGS shall always be
active

Property 2

• Exactly one side shall be the pilot
flying side

3
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

flying side

Property 3

• If the system is in independent
mode, both FGS shall be active

NASA/CR-2005-213912. S.P. Miller et al. “A Methodology for the Design and Verification of
Globally Asynchronous / Locally Synchronous Architectures

NASA’s Incremental Approach

Fully synchronous

Asynchronous
• Mode-switching signal loss: previous active does not switch to inactive

• Fix: model acknowledgement & relaxing properties

• During mode transition : 2 pilots flying

Asynchronous with failures

4
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

Asynchronous with failures
• Failure modeled as a signal to the still-active component

• Properties needed to relax to account for “failure discovery” time

• Issues:

– The introduction of a failure as a signal is unnatural to model

Suggestions on NASA Approach

Use “proven” asynchronous / fault-tolerant constructs

• E.g. ack in a fault-tolerant communication

Better asynchrony modeling to avoid unbounded clocks

• Known period and drift

Modeling of mode synchronization should be part of system architecture
and not component

Not include logic of component failure

5
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

Not include logic of component failure

Use patterns of common architectural features

Architectural Abstraction Approach using AADL

Modality model at architectural level

Evaluate expected synchrony between distributed modes

Develop synchronous “expected” model

Create new distributed architecture

Evaluate all potential failures

6
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

From Chaos to Order

Non Functional Properties

Systems modeled with two chaotic components
• Execution Platform (Executor)

• Software (Executable)

Model all possible faults
• Executor

7
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

• Executor
– Faulty execution

– Execution Reorder

• Executable: fault intolerant

Chaotic Model (Ormeier et al.)

Non-Functional

8
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

job1,job2,job3 job3,job2, job1

Software: graph of jobs to

execute (includes messages,
dependencies)

Hardware:

executes jobs

Output:

executed jobs

Non-Functional

INPUT OUTPUT

t1 t2 t3 t1 t2 t3 t4

job1 job2 job3 job3 job2 job1

job1 job2 job3 job2 job3 job1

job1 job2 job3 job1 job2 job3

… … … … … … …

Reducing Behaviors

Hardware (Chaos)

• Rule out impossible behaviors

• Add hardware properties

– A single processor cannot execute two jobs at a time

• Add software structure

– E.g. Component does not execute until message delivered

Software (Intolerance)

9
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

Software (Intolerance)

• Order of execution just need to honor precedence

• Some jobs may be optional

• Some messages can be lost

AADL Model

Default model: all behaviors

Reduce Software Intolerance

flows:
f1: end to end flow t1.p1->t2.p1 {tolerate=>loss;};

Reduce Hardware Chaos

• bus: Bus {ensures => no_loss;};

Analysis of Architectural Differences in Alloy

10
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

Analysis of Architectural Differences in Alloy

• Base model assumed to be correct

• Modified model that can introduce problems

– New model with requirements from previous model

• Discover new not tolerated behaviors

Consequences to Modes

Redundant Architecture can mean synchronous modes

• E.g. when node1 in primary, node2 in backup

Loss of transition signal means modes out of sync

Delayed transition means out of sync for a some time

Out-of-sync modes

• Connections not active

• Duplicated connections

11
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

• Duplicated connections

Synchronous Model
(control flow)

thread implementation single.i

calls

s1: {

cf: subprogram controller_function;

pf: subprogram primary_function ;

bf: subprogram backup_function;

12
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

p_pbw: subprogram primary_to_backup_waiting;

b_bpw: subprogram backup_to_primary_waiting;

p_bpw: subprogram backup_to_primary_waiting;

b_pbw: subprogram primary_to_backup_waiting;

auto: subprogram auto_pilot;

};

end single.i;

Asynchronous
Left (Primary) / Right (Backup)
thread implementation primary.i
calls
s1: {

pf: subprogram primary_function;

} in modes (primary_mode, backup_mode);
s2: {

p_pbw: subprogram primary_to_backup_waiting;
} in modes (primary_to_backup_synchronizing);

s3: {
p_bpw: subprogram backup_to_primary_waiting;

} in modes (backup_to_primary_synchronizing);
connections
c1: event port p_pbw.switched_mode -> out_switched_mode;
c2: event port p_bpw.switched_mode -> out_switched_mode;
c3: event port pf.outNav->outNav in modes (primary_mode);

modes

thread implementation backup.i
calls
s1: {

bf: subprogram backup_function;

} in modes (backup_mode, primary_mode);
s2: {

b_bpw: subprogram backup_to_primary_waiting;
} in modes (backup_to_primary_synchronizing);

s3: {
b_pbw: subprogram primary_to_backup_waiting;

} in modes (primary_to_backup_synchronizing);
connections
c1: event port b_bpw.switched_mode -> out_switched_mode;
c2: event port b_pbw.switched_mode -> out_switched_mode;
c3: event port bf.outNav -> outNav in modes (backup_mode);

modes

13
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

modes

primary_mode: initial mode ;
primary_to_backup_synchronizing: mode ;
backup_to_primary_synchronizing: mode ;
backup_mode: mode ;
primary_mode -[transfer]-> primary_to_backup_synchronizing;
primary_to_backup_synchronizing -[in_switched_mode]-> backup_mode;
backup_mode -[transfer]-> backup_to_primary_synchronizing;
backup_to_primary_synchronizing -[in_switched_mode]-> primary_mode;

end primary.i;

modes

primary_mode: mode ;
primary_to_backup_synchronizing: mode ;
backup_to_primary_synchronizing: mode ;
backup_mode: initial mode ;
backup_mode -[transfer]-> backup_to_primary_synchronizing;
backup_to_primary_synchronizing -[in_switched_mode]-> primary_mode;
primary_mode -[transfer]-> primary_to_backup_synchronizing;
primary_to_backup_synchronizing -[in_switched_mode]-> backup_mode;

end backup.i;

Modal connections
Mode transition triggers

AADL Annotations

Hardware

system implementation final.i

subcomponents

cpu1: processor cpu {chaotic::Lossless => true;};

cpu2: processor cpu {chaotic::Lossless => true;};

cpu3: processor cpu {chaotic::Lossless => true;};

cpu4: processor cpu {chaotic::Lossless => true;};

Software

connections
c1: event port control.transfer ->

primary_sw.transfer

{chaotic::InOrder => true;};

c2: event port control.transfer ->
backup_sw.transfer

{chaotic::ReorderTolerant => true;
chaotic::LossTolerant => true;};

c3: event port primary_sw.out_switched_mode->
backup_sw.in_switched_mode

14
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

cpu4: processor cpu {chaotic::Lossless => true;};

crnet1: bus net {chaotic::Lossless => true;};

crnet2: bus net {chaotic::Lossless => true;};

crnet3: bus net {chaotic::Lossless => true;};

crnet4: bus net {chaotic::Lossless => true;};

crnet5: bus net {chaotic::Lossless => true;};

c3: event port primary_sw.out_switched_mode->
backup_sw.in_switched_mode

{chaotic::ReorderTolerance => 10 ms;};

c4: event port backup_sw.out_switched_mode ->
primary_sw.in_switched_mode
{chaotic::InOrder => true;};

c5: event port backup_sw.outNav->
auto_sw.inNav

{chaotic::InOrder => true;};

c6: event port primary_sw.outNav->
auto_sw.inNav

{chaotic::InOrder => true;};

Mode Transition Loss

Built-in acknowledge of mode transition

Mode loss due to network message loss

Automatically discovered “out-of-sync” modes

15
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

Automatically discovered connection loss due to “inactive” mode

• No output to autopilot

Loss of communication due to mode transition failure

16
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

Out-of-sync modes

17
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

Quantifying out-of-sync errors

Separate loss from out of sync

Out of sync modes happens due out of sync
communication/execution

• Sampled communication

18
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

• Sampled communication

Modeled in AADL as sampled data communication

Sampled Data Communication

Delayed connection

19
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

Sampled mode
transition

Quantified Out-of-sync Modes

20
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

Mode Transition Disable Period

Quantified delay (instead of “communication step”)

Bounded due to periodicity of threads

Precise worst-case calculation of communication

21
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

Precise worst-case calculation of communication
interruption / duplication

Mode Transition Delay

22
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

Worst-Case Communication Interruptions

23
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

Worst-Case Communication Duplication

24
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

Concluding Remarks

Analysis of Concurrency in AADL model leverages
semantics of AADL

• Processor bindings, failing processors,

• Duration of errors

Keeps analysis at architectural level

Focuses on problems introduced by the runtime architecture

25
SEI Presentation (Basic)
Author, Date

© 2008 Carnegie Mellon University

D. De Niz & P. Feiler
June 2nd, 2009

Focuses on problems introduced by the runtime architecture

