Verification of Redundant
Architectures in AADL

UML & AADL Workshop 2009
June 2, 2009

Dio de Niz & Peter Feiler

=== Software Engineering Institute | CarnegieMellon ©2008 Carmegie Mellon Uriversiy

Problem

Redundant Architectures Used for Fault-Tolerance, but...

Assume replicas “reactions” to faults/commands are
synchronous
» E.g. primary switches to backup when backup to primary

What effects do we want to tolerate

— - - - . D. De Niz & P. Feiler
—== Software Engineering Institute | Carnegie Mellon T 2%, 2000

— © 2008 Carnegie Mellon University

Dual Flight Guidance Systems

Control

FMS

Air Data, |«

Surfaces
A
Y
Autopilot
A A
Y
3 * y
5 e e e e |
l ‘ |
FGS, FGS, ||
|
|
Mode Mode !
.) |
Logic |g—! L Logic ;1 - FMSR
A - - A I
|
Y A |
B .
Control Control N »| Alr Datag
Laws Laws |
|
|
A A !
e -
L
FCP

Property 1

» At least one FGS shall always be
active

Property 2
» Exactly one side shall be the pilot
flying side
Property 3

« If the system is in independent
mode, both FGS shall be active

NASA/CR-2005-213912. S.P. Miller et al. “A Methodology for the Design and Verification of

Globally Asynchronous / Locally Synchronous Architectures

Software Engineering Institute

Carnegie Mellon

D. De Niz & P. Feiler
June 2nd, 2009

© 2008 Carnegie Mellon University

NASA’s Incremental Approach

Fully synchronous

Asynchronous

« Mode-switching signal loss: previous active does not switch to inactive
 Fix: model acknowledgement & relaxing properties

 During mode transition : 2 pilots flying

Asynchronous with failures
 Failure modeled as a signal to the still-active component
» Properties needed to relax to account for “failure discovery” time

* Issues:
— The introduction of a failure as a signal is unnatural to model

— - - - . D. De Niz & P. Feil
=== Software Engineering Institute | CarnegieMellon Jine 2% 2009

— © 2008 Carnegie Mellon University

Suggestions on NASA Approach

Use “proven” asynchronous / fault-tolerant constructs
e E.g. ack in a fault-tolerant communication

Better asynchrony modeling to avoid unbounded clocks
» Known period and drift

Modeling of mode synchronization should be part of system architecture
and not component

Not include logic of component failure
Use patterns of common architectural features

— - - - . D. De Niz & P. Feiler
=== Software Engineering Institute | CarnegieMellon Jine 20,2009

— © 2008 Carnegie Mellon University

Architectural Abstraction Approach using AADL

Modality model at architectural level

Evaluate expected synchrony between distributed modes
Develop synchronous “expected” model

Create new distributed architecture

Evaluate all potential failures

— - - - . D. De Niz & P. Feiler
=== Software Engineering Institute | CarnegieMellon Jine 20,2009

— © 2008 Carnegie Mellon University

From Chaos to Order

Non Functional Properties

Systems modeled with two chaotic components

« Execution Platform (Executor)
« Software (Executable)

Model all possible faults

e Executor

— Faulty execution
— Execution Reorder

e Executable: fault intolerant

— - - - . D. De Niz & P. Feil
=== Software Engineering Institute | CarnegieMellon Jine 2% 2009

— © 2008 Carnegie Mellon University

Chaotic Model ormeier et al.)

ON,, ON_ ON;n |OFF;, |Press||ONgyt |OFF ¢
Press » b
OFF, SyStem OFF,,, < X
"""IBCHJruiary""" X X
Press
Press # X X X X
X X X X X

Non-Functional

INPUT OUTPUT

t1 t2 t3 t1 t2 t3 t4

job, |jobs |jobs |jBb, | joby

jobs [, job O

‘ j0b1 ,jObg,jOb;;

job, |jobs |job, |jobs |job,

job, |jobs |joby |job, |jobs

— - - - . D. De Niz & P. Feil
=== Software Engineering Institute | CarnegieMellon Jine 2% 2009

— © 2008 Carnegie Mellon University

Reducing Behaviors

Hardware (Chaos)

* Rule out impossible behaviors
« Add hardware properties
— A single processor cannot execute two jobs at a time
« Add software structure
— E.g. Component does not execute until message delivered

Software (Intolerance)

» Order of execution just need to honor precedence
¢ Some jobs may be optional
e Some messages can be lost

— - - - . D. De Niz & P. Feiler
=== Software Engineering Institute | CarnegieMellon Jine 20,2009

— © 2008 Carnegie Mellon University

AADL Model

Default model: all behaviors

Reduce Software Intolerance

flows:
f1: end to end flow t1.p1->t2.p1 {tolerate=>loss;};

Reduce Hardware Chaos
 bus: Bus {ensures => no_loss;};
Analysis of Architectural Differences in Alloy
« Base model assumed to be correct
« Modified model that can introduce problems
— New model with requirements from previous model
 Discover new not tolerated behaviors

— - - - . D. De Niz & P. Feil
=== Software Engineering Institute | CarnegieMellon Jine 2% 2009

— © 2008 Carnegie Mellon University

10

Consequences to Modes

Redundant Architecture can mean synchronous modes
* E.g. when node1 in primary, node2 in backup

Loss of transition signal means modes out of sync

Delayed transition means out of sync for a some time

Out-of-sync modes

e Connections not active
» Duplicated connections

— D. De Niz & P. Feiler
—== Software Engineering Institute | Carnegie Mellon T 2%, 2000

— © 2008 Carnegie Mellon University

11

Synchronous Model
(control flow)

thread implementation single.i

calls
s1:{
cf: subprogram controller_function;
pf: subprogram primary_function ;
bf: subprogram backup_ function;
p_pbw: subprogram primary_to backup_waiting;
b_bpw: subprogram backup_to primary_ waiting;
p_bpw: subprogram backup_to primary_ waiting;
b_pbw: subprogram primary_to backup_waiting;
auto: subprogram auto_pilot;
}

end single.i;

= i : . . D. De Niz & P. Feil
=== Software Engineering Institute | CarnegieMellon i 2200 2

— © 2008 Carnegie Mellon University

Asynchronous

Left (Primary) / Right (Backup)

thread implementation primary.i
calls
s1: {
pf: subprogram primary_function;
} in modes (primary_mode, backup_mode);
s2: {
p_pbw: subprogram primary_to_backup_waiting;
} in modes (primary_to_backup_synchronizing);
s3: {
p_bpw: subprogram backup_to_primary_waiting;
} in modes (backup_to_primary_synchronizing);
connections

kup_synchronizing: mode ;
ary_synchronizing: mode ;
mode ;

-[transfer]-> primary_to_backup_synchronizing;

-[transfer]-> backup_to primary synchronizing;

ary_synchronizing -Jin_switched_mod¢

kup_synchronizing -[in_switched_mode]-> backup_mode;

-> primary_mode;

thread implementation backup.i
calls
s1: {
bf: subprogram backup_function;
} in modes (backup_mode, primary_mode);
s2: {
b_bpw: subprogram backup_to_primary_waiting;
} in modes (backup_to_primary_synchronizing);
s3: {
b_pbw: subprogram primary_to_backup_waiting;
} in modes (primary_to_backup_synchronizing);
connections
c1: event port b_bpw.switched_mode -> out_switched_mode;
c2: event port b_pbw.switched_mode -> out_switched_mode;
c3: event port bf.outNav -> outNav in modes (backup_mode);
modes
primary_mode: mode ;
primary_to_backup_synchronizing: mode ;
backup_to_primary_synchronizing: mode ;
backup_mode: initial mode ;
backup_mode -[transfer]-> backup_to_primary_synchronizing;

backup_to_primary_synchronizing -[in_switched_mode]-> primary_mode;

primary_mode -[transfer]-> primary_to_backup_synchronizing;
primary_to_backup_synchronizing -[in_switched_mode]-> backup_mode;
end backup.i;

i% Software Engineering Institute | Carnegie Mellon

D. De Niz & P. Feiler
June 2n, 2009

© 2008 Carnegie Mellon University

13

AADL Annotations

Hardware

system implementation final.i
subcomponents

cpul: processor cpu {chaotic::Lossless => true;};
cpu2: processor cpu {chaotic::Lossless => true;};
cpu3: processor cpu {chaotic::Lossless => true;};
cpu4: processor cpu {chaotic::Lossless => true;};

crnet1: bus net {chaotic::Lossless => true;};
crnet2: bus net {chaotic::Lossless => true;};
crnet3: bus net {chaotic::Lossless => true;};
crnet4: bus net {chaotic::Lossless => true;};
crnet5: bus net {chaotic::Lossless => true;};

Software

connections
c1: event port control.transfer ->
primary_sw.transfer

{chaotic::InOrder => true;};

c2: event port control.transfer ->
backup_sw.transfer

{chaotic::ReorderTolerant => true;
chaotic::LossTolerant => true;};

c3: event port %rimary_sw._out_syvitched_mode->
ackup_sw.in_switched_mode
{chaotic::ReorderTolerance => 10 ms;};

c4: event port backup_sw.out_switched_mode ->
rimary_sw.in_switched_mode
chaotic::InOrder => true;};

c5: event port backup_sw.outNav->
auto_sw.inNav

{chaotic::InOrder => true;};

c6: event port primary_sw.outNav->
auto_sw.inNav

{chaotic::InOrder => true;};

=== Software Engineering Institute

Carnegie Mellon

D. De Niz & P. Feiler
June 2nd, 2009

© 2008 Carnegie Mellon University

14

Mode Transition Loss

Built-in acknowledge of mode transition
Mode loss due to network message loss
Automatically discovered “out-of-sync” modes

Automatically discovered connection loss due to “inactive” mode
« No output to autopilot

— - - - . D. De Niz & P. Feiler
—== Software Engineering Institute | Carnegie Mellon T 2%, 2000

— © 2008 Carnegie Mellon University

15

Loss of communication due to mode transition failure

£ FullyThreaded_final_ FullyThreaded.aadl =72 £ FullyThreaded. azx| Single Threaded. aad|
“thread implementation backup.i
calls
=1: |

bf: subprogram backup function;
P in modes (bhackup mode, primary wode) ;
=2 i
b bpw: subprogram backup to primary waiting:
} in modes (backup to primary sSynchronizing):
s3: H
b pbw: subprogram primary to bhackup waiting;
P in modes (primsry to backup synchronizing);
connections
z1l: event port b hpw.switched wode —-> out switched mode:
cZ2: event port b phw.switched mode -> out switched mode:;

c3i: event port bf.outlavy —> outlav in modes [(backup mode) ;
modes

[34 Problems &3 = Properties ﬁ AA0L Property Values @ Error Log
3 errors, 27 warnings, 0 infos
Description
= T Errors (8 items)
@ Connection communication can be lost
£ Connection communication can be lost
3 Connection communication can be lost

® cConnection Disabled due ta loss of kransition inko mode backup_made

= i i 1 . D. De Niz & P. Feil
=== Software Engineering Institute | CarnegieMellon e 2% 2009 16

— © 2008 Carnegie Mellon University

Out-of-sync modes

o

£ FullyThreaded_final_ Fully Threaded. aadl 22 £ FullyThreaded. aaxl SingleThreaded. aad| 1

end primary replicar

“process implementation primary replica.i
subcomponents

p: thread primary.i:
connections

2l: event port transfer -> p.transfer:
cZ: event port in switched mode -> p.in Switched mode:
ci: event port p.out switched mode -> out switched mode:
c4: event port p.outlav-routMNaw:

end primary replica.i:

“process backup replica
features
tran=sfer: in event port:
in switched mode: in event port:

[fh Problems &3 = Properties E AADL Property Walues @ Error Log

& errors, 27 warnings, 0 infos
Description
= T Errors (3 items)
@ Connection communication can be lost
@ Connection communication can be lost
€ Connection communication can be lost
3 Connection Disabled due to loss of transition inko mode backup_maode
® Mode backup_to_primary_swnchronizing in component p ouk of sync with primary_mode in component b due to m

—— D. De Niz & P. Feil
—== Software Engineering Institute | Carnegie Mellon Jine 2% 2009

~— © 2008 Carnegie Mellon University

Quantifying out-of-sync errors

Separate loss from out of sync

Out of sync modes happens due out of sync
communication/execution

« Sampled communication

Modeled in AADL as sampled data communication

= i : . . D. De Niz & P. Feil
=== Software Engineering Institute | CarnegieMellon Jume 2 2008 "

— © 2008 Carnegie Mellon University

Sampled Data Communication

Delayed connection

-
FullyThreaded, aadl (E Fully Threaded., azx|

(SingleThreaded, aadl

}}5 = E

Primary Sw: Process primary replica.i:

~
backup sw: process backup replica.i: -
auULo_3W:!: process auto _pilot process.i;
connections
cl: data port control.transfer -> primary sw.
chaotic: :Indrder => true;
Y
cZ: data port control.transfer -> backup sw.ty
chaotic: :Indrder => true;
3.
ci: data port primary sw.out switched mode|->> *ackup 3wW.1ln switched mode |
chaotic: :IngN\ler => false: e 1
b
P cd: data worf ut sw.out switched mode -> brimarv sw.in switched mwode . |
| |

Sampled mode
transition

D. De Niz & P. Feiler

== Software Engineering Institute ‘ CarnegieMellon june 2%, 2009

© 2008 Carnegie Mellon University

19

Quantified Out-of-sync Modes

FullyThreaded. aadl FullyThreadedDataCam 22 %_ Fully ThreadedDataCom % =0 EE N
end backup replica; E thre:
subp
“process implementation backup replica.i thre:
suhcomponent s subp

b: thread backup.i: subp

m: thread mode triggerd.i; subp
ml: thread mode triggerd.i; I:hre.f
connections E::z:
z0: data port transfer -> m.sampled transition; thre:
cl: event port m.event transition -> b.transfer; thre:
cZ2: data port in switched mode -> ml.sawpled transition: thre:
z3: event port mwl.event trahnsition -> b.in switched mode: thre:
¢4: data port b.out switched mode -> out switched mode; 3 thre:

£
[L Problems &2 1 Propetties E 8401 Property Yalues @ Errar Log }:D

37 errors, 27 warnings, 0 infos

Descripkion
3 Connection Disabled by 2.0EE ns due to loss of transition into mode prims n_backup_synchronizing
&) Made backup_ta_primary_synchronizing in component b ouk of sync by 2 3
() el el (oo o e et o e e e e 2 e e e e Gt el e i s e e e oo [

D. De Niz & P. Feiler

== Software Engineering Institute | CarnegieMellon jine 2 2000 20

~— © 2008 Carnegie Mellon University

Mode Transition Disable Period

Quantified delay (instead of “communication step”)
Bounded due to periodicity of threads

Precise worst-case calculation of communication
interruption / duplication

=— i i : . D. De Niz & P. Feil
=== Software Engineering Institute | CarnegieMellon i 2200 o

— © 2008 Carnegie Mellon University

Mode Transition Delay

>

FullyThreaded. aad| Fully ThreadedDataCom &2 %_ FullyThreadedCataCom B

c3: event port pf.outMNav -> outlNav in modes (priwary mode) ;
modes

primary mode: initial mode ;

pPrimary to backup syvnchronizing: mode ;

backup to primary syvnchronizing: mode

backup mods: mode ;

primary mode —-[transfer]-» primary to hackup synchronizing:

primary to backup synchronizing -[in switched mwode, in switched mwode

backup mode -[transfer, transfer]-> backup to primary synchronizing

backup to primary syhochronizing -[in switched mwode, in switched mwode
properties

Feriod => 100 HM=:

Dispatch Protocol => Periodic:

4

#

[L Problems 2 T Properties | [AADL Property Walues @ Erraor Log

37 errors, 27 warnings, 0 infos
Description
& Mode transition to mode backup_mode can be disabled by 2.0ES ns due to message loss

3 Mode transition ko mode backup_mode can be disabled by 2.0E8 ns due ko Message-los
&) Mode transition to mode ba _synchronizing can be disabled b 2.0E8 ns Jue ko message loss

ckup_to_primary

= D. De Niz & P. Feil
—== Software Engineering Institute | Carnegie Mellon Jine 2% 2009

— © 2008 Carnegie Mellon University

22

Worst-Case Communication Interruptions

FullyThreaded. aad| FullyThreadedDataZom &2 £ FullyThreadedDataCom i = O
b _pbw: subprogram primary to backup waiting:
}in modes (primary to hackup synchronizing);

connections
zl: parameter b bpw.switched mode -> out switched mode in modes (backup
cZ2: parameter b pbw.switched mode -> out switched mode in modes (primary
c3i: event port bf.outlNav —-> outNav in modes [(backup mode) !
modes
primarv mode: mode ; i
>

£

[L Problems &2 ! Properties E 8A0L Property Walues 'Ef| Error Lag

37 errars, 27 warnings, 0 infos
Description

= T Errors (37 ikems)
&) Connection Disabled by 2.0E8 ns due ko loss of transition inkto mode backup_mode

3 Connection Disabled by 2.0E8 ns due ko loss of transition inko mode backup_to_primary_synchronizing

— - - - . D. De Niz & P. Feil
—== Software Engineering Institute | Carnegie Mellon Jine 2% 2009

© 2008 Carnegie Mellon University

23

Worst-Case Communication Duplication

FullyThreaded, aadl FullyThreadedDataCom &2 £ FullyThreadedDataCom 7 :
b phw: subprogram primary to backup waiting:
P in modes (primary to backup synchronizing);
connections
zl: parameter b bpw.switched mode -> out switched mode in modes [(backup
cz2: parameter b phw.switched mode -> out switched mode in modes (primary

c3i: ervrent port bf.outlav —-> outllav in modes [(backup mode) ;
modes
primarvy mode: mode ;
£ >

[L Problems &2 T Properties E AADL Property Yalues @ Error Log

37 errars, 27 warnings, 0 infos

Description
&3 Program pf can be executed out of order with program b_pbw by 2.0ES ns more than allowed From the original model

® Unexpected simultaneously active connections by 2.0E8 ns backup.i.c3 and primary.i.cl
3 Unexpected simultaneously active connections by 2.0ES ns backup.i.c3 and primary.i.c2

— - - - . D. De Niz & P. Feil
—== Software Engineering Institute | Carnegie Mellon Jine 2% 2009

— © 2008 Carnegie Mellon University

24

Concluding Remarks

Analysis of Concurrency in AADL model leverages
semantics of AADL

* Processor bindings, failing processors,
e Duration of errors

Keeps analysis at architectural level
Focuses on problems introduced by the runtime architecture

=— - - - . D. De Niz & P. Feil
=== Software Engineering Institute | CarnegieMellon Jume 2 2008 25

— © 2008 Carnegie Mellon University

