
Modeling the Implementation
of Stated-Based System
Architectures

© 2009 Carnegie Mellon University

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

Peter H Feiler

June 2009

State-based Systems Are Everywhere

What is a state-based system
• State: discrete, continuous, large, small
• State transition: change, delta, command, event
• Transition conditions & actions

Types of systems
• Control systems
• Autonomous systems

2
State-based Systems

Feiler, June 2009

© 2009 Carnegie Mellon University

• Autonomous systems
• Communication systems
• Resource management systems

What do they do
• Communication of state
• Coordination of state

Voluminous State Systems

State of physical environment
• Example: Tracking of object close to space station

Communication of state
• Series of state transmissions vs. sequence of change

transmissions
• Data stream perspective

— State: High data volume, incomplete stream ok => tolerant

3
State-based Systems

Feiler, June 2009

© 2009 Carnegie Mellon University

— State: High data volume, incomplete stream ok => tolerant
to transient transmission failures

— State change: low volume, complete stream critical =>
requires guaranteed delivery

AADL Modeling
• Sampling of data ports for state vs. queuing event data ports for

state change
• Data stream & protocol QOS properties
• Deployment to hardware

Fail-safe operation
by mixing state & deltas

Embedded Control Systems

Observe and affect state of physical systems

Continuous time state
• Time sensitive data
• Setpoints in absolute vs. relative terms (state vs. delta)
• Periodic sampling of state
• Up/down sampling of data stream across harmonic tasks
• Ordering of send & receive, write/read patterns => frame-level

Shared variables vs. port-
based flow architecture

4
State-based Systems

Feiler, June 2009

© 2009 Carnegie Mellon University

• Ordering of send & receive, write/read patterns => frame-level
jitter in data stream

• Missed sample => aged data

AADL Modeling
• Data ports & periodic threads

• Devices as sensors/actuators

• Input-Compute-Output model (data consistency)

• Deterministic sampling patterns (immediate, delayed)

• End-to-end flows

Time sensitivity of state
impacted by scheduling &
sampling communication

Embedded Discrete State Systems

Examples
• Hybrid control systems

• Systems with operational modes

• Discrete state observations in periodic systems

5
State-based Systems

Feiler, June 2009

© 2009 Carnegie Mellon University

Left leader
Right leader

Dual operation

Sampled Processing of Discrete State Systems

Coordinated state transitions
• Hand shaking protocols
• Replicated distributed state machine

Discrete states in control system
• Predictability of periodic task loads
• Sampled observation of events & binary states due to truth tables

& Simulink
• Non-deterministic sampling leads to missed event/state change

6
State-based Systems

Feiler, June 2009

© 2009 Carnegie Mellon University

Issues with event
observation by sampling

• Non-deterministic sampling leads to missed event/state change
observations

Mirrored state machines
• Watch for external transition events vs. successful state change

of “fraternal twin” (fail-safe)

AADL Modeling
• Events vs. sampling of states
• Modes & synchronized mode transitions
• Failure propagation modeling

Adaptive Systems

Workloads & service levels
• Supervisor
• Observes workload (global system state)
• Controls subsystem service level (assignment of resources)

Service levels as state machines
• Fully connected state machine (goto service level X)
• Linear progression through service level (Increment/decrement

request)

Fail-safe operation by
periodic sampling of

target state

7
State-based Systems

Feiler, June 2009

© 2009 Carnegie Mellon University

request)

Communication of service request
• State change requests: sampled commands => repeated action
• Target state: repeated transfer ensures fail-safe sampling
• Coordinated state transition => transient transition period

AADL Modeling
• Modes & transitions
• State as shared variables vs. communication through data ports
• Deployment, resource capacities & budgets

Autonomous Systems

Multi-layered interacting state machines

Goal networks drive
controller target states

Goal monitoring for early
transition failure detection

8
State-based Systems

Feiler, June 2009

© 2009 Carnegie Mellon University

State variable based design
of flow-based system

Operational commands as
controller modes

Time sensitive control loops

Discrete state & event
observations

Component vs. task hierarchy
Hierarchical AADL modes

Reusable reference architecture

Summary

What matters about the state behavior
• Large vs. small state
• Continuous time vs. discrete state
• State vs. state change
• Absolute vs. relative reference points
• Target state vs. action steps of transition path
• Identical vs. mirrored distribution of state machine

9
State-based Systems

Feiler, June 2009

© 2009 Carnegie Mellon University

• Identical vs. mirrored distribution of state machine

What matters about implementation
• Sampling vs. queued events & message
• Determinism of sampling
• Guaranteed & ordered delivery
• Ports & shared data
• Fail-safe replication, distribution, mirroring

Peter Feiler

phf@sei.cmu.edu

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on
the rights of the trademark holder.

11
State-based Systems

Feiler, June 2009

© 2009 Carnegie Mellon University

This Presentation may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission is
required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract
Number FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. The Government
of the United States has a royalty-free government-purpose license to use, duplicate, or
disclose the work, in whole or in part and in any manner, and to have or permit others to do
so, for government purposes pursuant to the copyright license under the clause at 252.227-
7013.

