
Potsdam, June 2nd, 2009

-1- SW Dev process -8- Next process -15- “

-2- Methodology -9- Methodologies -16- PBSE
-3- Method -10- ACCORD/UML -17- “
-4- Best Practices -11- “ -18- Next Methodology
-5- RUP to UP -12- AAA -19- A new Method
-6- UP to SPEM -13- “ -20- Conclusions
-7- +/- -14- OMEGA

An Emerging Need for a New Software Engineering
Method

Isabelle Perseil, Laurent Pautet

Isabelle PERSEILpage 1 UML&AADL’2009

The strong convergence of recent modeling languages, development processes and
methodologies for developing real-time systems unde rlines a set of requirements for a
more methodical approach.
This paper presents the issues related to the lack of method in the field of software
engineering for real-time systems (in particular, a vionic systems). We will mainly describe
what converge in the new methodologies that are qui te adopted but not implemented as
methods. The Unified Process is analyzed and revisi ted in order to support the new types
of requirements that we have identified to require the integration of formal methods, a
proof-based system engineering approach in the firs t steps, and a refocusing on the
model-driven development.

Abstract

Isabelle PERSEILpage 2 UML&AADL’2009

The Big picture - Elements

Isabelle PERSEILpage 3 UML&AADL’2009

The Big picture – abstraction levels

Isabelle PERSEILpage 4 UML&AADL’2009

-1- A Software Development Process

� A software development process can be applied with
many methodologies or many methods (or without any)

� The concept of software development process is clos ely
related to the concept of task scheduling, and it i s
essentially a matter of temporal order
• The underlying field is project management .
• How do we manage avionic embedded systems projects?

- Respect of the standards (DO178B and ED-12-B)

- Modularity

- Check lists

Isabelle PERSEILpage 5 UML&AADL’2009

-2- A Methodology

� From a methodology, several methods can be created, a nd this
methodology must refer to a software development proce ss

� The concept of methodology is linked to a particular (and global)
approach used to perform the main activities of software engi neering,
• requirement engineering,
• analysis and design,
• proofs and verifications,
• code generation.

� This approach does not have to be complete and does not necessary
provides any guidelines
• The underlying field is mathematical logic.

� At the level of a methodology, we favor a logic that allows to ease the
definition of the problem and its solutions
• but the way all the issues are going to be solved is not detailed.
• This is an overall logic , with its own structures, rules and theories, most

often justified through practical study cases.

Isabelle PERSEILpage 6 UML&AADL’2009

-3- A Method

� A method is built from a particular methodology and is adopting only
one software development process

� The concept of method is closely related to the conc ept of strategy .
� The method provides means for executing the developme nt process

tasks in an optimal way
• The method refines the methodology with a set of improvements.
• The underlying field is Operations Research .

� This concept goes beyond the development process con cept
• there is not a unique way of performing an activity, whatever is the issue

� At the level of a method, any type of issue has to be considered, with
the optimal way of solving it
• there is a logic that allows us to solve any issue with more efficiency
• the method shows in details how to apply this logic

Isabelle PERSEILpage 7 UML&AADL’2009

-4- Best Practices

� Develop Iteratively
� Manage Requirements
� Use Component Architectures
� Model Visually (UML)
� Continuously Verify Quality
� Manage Change
� Manage languages heterogeneity, integration
� organization in three views, functional, structural and

dynamical

Isabelle PERSEILpage 8 UML&AADL’2009

-5- From RUP to UP

Isabelle PERSEILpage 9 UML&AADL’2009

-6- From UP to SPEM

Isabelle PERSEILpage 10 UML&AADL’2009

-7- UP Advantages

� IBM Rational definitely banished the waterfall proce ss
• Unfortunately this good resolution have not been followed by

everyone, even in the research field.
� The ``use case driven'' approach is definitively a ve ry good

approach that is even kept in the Agile methods
• allows the requirements to be traced

� The ``architecture-centric'' process is adopted for al l
complex and large systems

� The possible customization enables an adaptable proc ess
framework in which each company may choose the most
convenient elements.

Isabelle PERSEILpage 11 UML&AADL’2009

-7- UP Drawbacks

� The homogeneous decomposition between Inception Ela boration and
Construction is too much simplistic
• Because depending on activities types, cycles are more or less complex, therefore

not homogeneous
� The RUP is supported by a very heavy tool, which is not intuitive

• The learning period is long and requires significant investments
� Depending on the environment, the parameterization may also be very long

• the parameterization gives the impression of genericity,
• but the process is not fundamentally different for a any kind of project

(telecommunications, automotive, aeronautics, financial, etc) : the phases and
activities are the very same.

� The RUP is only suitable for very big projects
• its intrinsic logic is so much linked to the IBM Rational world that it is mostly

applied with the entire tool suite.
� The entire process is rather a set of good recipes than the result of a rigorous

``rationale'' as the name should suggest
• The inception phase should be global with respect to a systemic approach.

Isabelle PERSEILpage 12 UML&AADL’2009

-8- Towards the next process

Inception Elaboration Validation

Generation Construction

Binding Validation

Simulation Transition

Isabelle PERSEILpage 13 UML&AADL’2009

-9- Methodologies

� A methodology is not a method
• above the method and provides foundations to define a set of

methods
� a method is defined

• when its approach is frozen (set of best practices & guidelines)
• when it is made available for a larger community than this with which it

has been initially created
� New methodologies converge

• allow a full description of real-time features (high level of abstraction
based on standard)

• they are all providing tools that enable a seamless flow from models to
code and vice versa

• full model-driven approach
• more and more reusability, more reliability
• �object modeling techniques and formal methods have to be both

used in the same frameworks
• what formalism is driving the other one and when in the lifecycle ?

Isabelle PERSEILpage 14 UML&AADL’2009

-10- The ACCORD/UML methodology

(Sébastien Gérard, CEA)

Isabelle PERSEILpage 15 UML&AADL’2009

-11- ACCORD/UML Strong points

� This methodology covers the whole lifecycle

� ensure a complementarity and a consistency
between the different models

� It has adopted the organization in three views,
functional, structural and dynamical
• the models are better organized through the

development process

Isabelle PERSEILpage 16 UML&AADL’2009

-11- ACCORD/UML Weak Points

� The support of MARTE by the ACCORD kernel is partial
• does not provide any opportunity to capture formal

requirements
� The action language is not formal (C++)

• it is not possible to formerly check or verify the actions
� The lifecycle is obsolete and not very well adapted to MDD

technologies
� There is no seamless flow between application analys is

models and architecture models
• it is not clear how it is possible to refine the analysis models

� ACCORD/UML favors the use of EAST-ADL to the detrimen t
of all other ADLs, but is not really based upon seve ral
notations

� it appears like a single notation-based methodology

Isabelle PERSEILpage 17 UML&AADL’2009

-11- ACCORD/UML Shortcomings

� The lack of formal methods in the whole lifecycle
is obvious
• It is missing specially because critical real-time

systems need to be formally checked
• to have a support of formal languages in the earliest

steps of the design

� The issue of their integration is not even
discussed

Isabelle PERSEILpage 18 UML&AADL’2009

-12- The AAA methodology

Architecture
graph

Algorithm
graph

Optimization
heuristic

Performance
prediction

Implementation
graph

Executive
generation

compilation
download
execution

Source
code

Execution
graph

Macro-code
generation

Sequences of
Executive
macros

Macro
processor

(Yves Sorel, Inria)

Isabelle PERSEILpage 19 UML&AADL’2009

-13- AAA Strong points

� A perfect integration between algorithms and archit ecture is reached
through a unified model based on oriented graphs

� The implementation is done with graphs transformati ons :
• it distributes the actions on the different processors (the graph is partitioned)
• it distributes the inter-processor communications on the inter-processor link
• it schedules the actions assigned to a processor
• it schedules the communications assigned to an inter-processor link

� AAA/SynDEx provides a lot of interfaces with DSLs a s Scilab/Scicos for the
modeling and simulation of hybrids systems
• UML2/MARTE that allows a high-level modeling with its real-time profile
• all the synchronous languages (Esterel, Lustre and Signal)
• only one ADL : the EAST/ADL which is mostly dedicated to the automotive field,
• the two languages AVS and CamlFlow for image processing and functional

data-flow

Isabelle PERSEILpage 20 UML&AADL’2009

-13- AAA Weak Points

� The methodology coverage on lifecycle is partial
• it has to be integrated to others which may have a totally

different approach
• In particular, the adequation of AAA is based on an

optimized implementation
• � this is something that has to be taken into account as a

feedback in the resulting modeling of the architecture design
� there are only interfaces to a software, and a lot of work

remains to describe a global design method that wou ld be
based on the common use of all these languages

� The optimization process that allows a rapid protot yping
is not easy to extend to the whole lifecycle of big projects

Isabelle PERSEILpage 21 UML&AADL’2009

-13- AAA Shortcomings

� AAA methodology only focuses on a small part of the
lifecycle and is designed to optimize the implement ation
of distributed real-time embedded applications
• describing its shortcomings is not a challenge

� What is a challenge is to integrate this methodology into
a more generic approach that is consistent

� Above all, what is really missing is the requiremen ts
capture phase

Isabelle PERSEILpage 22 UML&AADL’2009

-14- The OMEGA methodology

(Susanne Graf, Verimag)

Isabelle PERSEILpage 23 UML&AADL’2009

-15- OMEGA Strong points

� The most mature methodology
• It has been taken into account almost all the real-time design issues

� if any important issues have been properly (but sep arately) addressed (with different
and adequate languages), there still remains some u naddressed issues
• the integration of a simple and understandable language for requirements
• the use of a specific ADL
• the overall process development orientation is not specific (the proposed process

development is quite the RUP)

� It goes further than most other methodologies
• it really provides a consistent set of languages and tools

- allows model-checking

- interactive verification based on the PVS theorem prover

� The semantics of the OMEGA kernel model is expresse d in PVS and the TLPVS
package is also used for properties that are expres sed in LTL.

Isabelle PERSEILpage 24 UML&AADL’2009

-15- OMEGA Weak Points (1)

� Too much ``tool-oriented'‘
• use of OMEGA / use of the IF language and toolset
• IFx ,extended version of IF

� The methodology is not really driven by formal requireme nts
• Partial mapping between OCL and PVS

� The IF specifications : a good intermediate representa tion between
the user level modeling (SDL,UML, SCADE) and a seman tic model
that allows formal simulation and verifications
• far from being proved-based, makes the simulation and verification

phases the main phases of a project
• The earliest steps of requirements are not taken into account

Isabelle PERSEILpage 25 UML&AADL’2009

-15- OMEGA Weak Points (2)

� One of the major drawbacks is the ``push'' of verif ication techniques to the detriment
of other formal approaches
• The concepts are tackled by the middle of the lifecycle (as the ``meet in the middle'' of the

AAA/SynDEx methodology)

� UML is the main language of the methodology (the st andard and the OMEGA profile)
• in the requirement capture phase, nothing more than the use cases is exhibited
• �we deduce that the proposed use cases are not formal
• the scenarios are depicted using Live Sequence Charts, initially, the specification of the

problem domain is not formal

� There are no stated differences between the real-ti me families domains, which do not
have the same constraints/goals

� There is no specific proposition concerning a concr ete syntax for the action
semantics

Isabelle PERSEILpage 26 UML&AADL’2009

-15- OMEGA Shortcomings

� does not uniformly cover the whole lifecycle
• some parts are more formal
• is too much verification-oriented

� The communication, simplification and planning aspe cts of the
modeling activities are ignored
• Models may provide a way forward but are not necessary built with a

more abstract language that allows to execute actions
• Models are here to show how the actions could be executed, which is

totally different

� With such a plethora of languages, the methodology does not
provide anything like guidelines or any starting poin t to automate the
different lifecycle phases

� The use of standards (MARTE, AADL) is not taken into account, and
OMEGA is not standardized

Isabelle PERSEILpage 27 UML&AADL’2009

-16- The PBSE methodology

(Gérard Le Lann, Inria)

Isabelle PERSEILpage 28 UML&AADL’2009

-17- Strong points/ Weak Points / Shortcomings

Isabelle PERSEILpage 29 UML&AADL’2009

-18- The next methodology
� The next methodology will provide a seamless flow , as the ACCORD/UML does

� The ACCORD/UML methodology has shown its capabilities to integrate ADLs notations (EAST-
ADL), and the ``AAA'‘ methodology for the algorithm architecture adequation
• It provides a preliminary Analysis model with analysis modeling rules, an intrisic action language, a

prototyping model with prototyping rules that respectively allows model-checking and code generation
• More of it, the ACCORD/UML have always based the modeling activities on the UML profiles for real-

time, even the MARTE profile is not yet Integrated

� These features are sufficient to base any method framework on the ACCORD/UML methodo logy
• So far, all the formal aspects are missing in the ACCORD/UML. Nothing more than the OCL allows

verification (and the OCL is a very restricted language)
• The action language is not formal, and no formal language is proposed in the first steps of the

development process, so the critic non-functional properties cannot be proved

� All the integration techniques that are used in the OMEGA m ethodology in order to take benefit of
the formal methods have to be adapted in the ACCORD /UML methodology
• It does not necessary means that a language such as IF is to be inserted
• but ``intermediate'' languages have to be used in order that the end-user have easily access to the

provers and model-checking techniques without spending too much time on formal methods
engineering.

Isabelle PERSEILpage 30 UML&AADL’2009

-19- A new software engineering method

Isabelle PERSEILpage 31 UML&AADL’2009

Conclusions and Future Works

� Several modeling languages
• Functional aspects
• Architectural aspects
• Behavioral aspects

� Modeling languages
• Models that make systems less complex
• Executable models

� Iterations are not performed with the same type and number
of activities
• A growing complexity of languages integration

� Languages integration
• What are the best practices ?

