UML&AADL — June 2, 2009

Constraint management in engineering of complex information systems

MN. Terrasse, M. Savonnet, E. Leclercq,P. Naubourg, A. Da Costa, and T. Grison marie-noelle.terrasse@u-bourgogne.fr

Constraints in information systems with distributed and virtual organizations (1)

- A gap between the semantical and operational organizations:
 - Semantical units of knowledge small-grain, highly inter-related abstract constraints, i.e., compliance, dependencies

Constraints in information systems with distributed and virtual organizations (2)

- A gap between the semantical and operational organizations:
 - Semantical units of knowledge small-grain, highly inter-related abstract constraints, e.g., compliance, dependencies
 - Operational units of resources

coarse-grain, automatically combined

constraints at various abstraction levels

high-level authentification requirements (roles and authorization for confidentiality) SSO/LDAP qualification (LDAP directory)

(max-response-time)

Constraints in information systems with distributed and virtual organizations (3)

- A gap between the semantical and operational organizations:
 - Semantical units of knowledge small-grain, highly inter-related abstract constraints
 - Operational units of resources coarse-grain, automatically combined constraints at various abstraction levels
- Engineering processes:
 - "ETL-like" use of resources:
 - $\boldsymbol{\mathsf{E}}$ selection of relevant resources
 - T definition of organization criteria
 - $\boldsymbol{\mathsf{L}}$ resource integration
 - MDE-approaches

models at various abstraction levels

• Constraints and architectures of models ?

Towards a typology of constraints

modeling paradigm	constraints on open-world and close-world assumptions	application
modeling language	constraints on multiplicities of multiple associations on one class (UML/OCL)	<pre>context faceted-object inv composition: not (self.constains1->isEmpty()</pre>
business context	functional CNIL-related constraints in France non-functional constraints due to security requirements	a Social Security number cannot be used as a primary key SecureUML: < <secureuml.permission>> <<secureuml.role>></secureuml.role></secureuml.permission>
application context	functional multibase search for a protein sequence non-functional an application 's web-site must have wide-scope	mandatory use of the Uniprot assession numbers forbidden use of XHTML features

Abstraction versus finding, formulating, validating constraints

Finding and formulating constraints

- Ontology-based approaches: "finding" is an incremental process uniform "formulation" carried out at all ontological levels
- Model-based approaches:
 - "finding" with semi-automatic constraint generators
 - Costal, 2008

typology of constraints (e.g., path-based, value-based) typology of operations (e.g., on instances, on relations)

- model-checking

SCR (Heitmeyer & al.), GME (Nordstrom & al.)

- uniform "formulation" of structural constraints (OCL)
- "formulation" of behavioral constraints
 - OCL pre- and post- conditions
 - OCL body clauses
 - Action Semantics Languages and code snippets
 - e.g., EP Kelsen, 2007, ASOQ Hausten, 2004

Polymorphous constraints a 3D-space (construct, diagram, abstraction level)

<<mandatory-facet>>

- Pre-condition (class diagram) context faceted-object::initialization() pre: self.contains1->notEmpty()
- guarding condition (statechart) self.contains1->notEmpty()/initialization()
- Stereotypes

```
class : facet, faceted, mandatory-facet
association : facet-def
operation : faceted-operation
```

Constraint verification

An illustrative exemple: XenOnt

The XenOnt's constraints

Conclusion

- A 3D-space for constraint management in Model Driven Engineering combination of formal methods <u>Clarke, 96</u> <u>Lamsweerde,00</u> availability of relevant frameworks
- A major issue

constraint traceability

- while changing abstraction levels
- during model transformations
- A DRE-perspective

early constraint verification

high-level ontologies, metamodels and DSLs enforcing the use of constructs that embed constraints might be easier in domain-specific environments