Constraint management in engineering of complex information systems

marie-noelle.terrasse@u-bourgogne.fr
A gap between the semantical and operational organizations:

- Semantical units of knowledge
 small-grain, highly inter-related
 abstract constraints, i.e., compliance, dependencies
A gap between the semantical and operational organizations:

- Semantical units of knowledge
 small-grain, highly inter-related
 abstract constraints, e.g., compliance, dependencies

- Operational units of resources
 coarse-grain, automatically combined
 constraints at various abstraction levels
A gap between the semantical and operational organizations:

- Semantical units of knowledge
 - small-grain, highly inter-related
 - abstract constraints
- Operational units of resources
 - coarse-grain, automatically combined
 - constraints at various abstraction levels

Engineering processes:

- “ETL-like” use of resources:
 - E selection of relevant resources
 - T definition of organization criteria
 - L resource integration
- MDE-approaches
 - models at various abstraction levels

Constraints and architectures of models?
Towards a typology of constraints

<table>
<thead>
<tr>
<th>Modeling Paradigm</th>
<th>Constraints on open-world and close-world assumptions</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling Language</td>
<td>Constraints on multiplicities of multiple associations on one class (UML/OCL)</td>
<td>Context facet-object</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>inv composition: not (self.contains1->isNotEmpty() and self.contains2->isNotEmpty())</code></td>
</tr>
<tr>
<td>Business Context</td>
<td>Functional CNIL-related constraints in France</td>
<td>SecureUML: <code><<secureuml.permission>></code> <code><<secureuml.role>></code></td>
</tr>
<tr>
<td></td>
<td>Non-functional constraints due to security requirements</td>
<td>Mandatory use of the Uniprot accession numbers</td>
</tr>
<tr>
<td>Application Context</td>
<td>Functional multibase search for a protein sequence</td>
<td>Forbidden use of XHTML features</td>
</tr>
<tr>
<td></td>
<td>Non-functional an application’s web-site must have wide-scope</td>
<td></td>
</tr>
</tbody>
</table>

Abstraction versus finding, formulating, validating constraints.
Finding and formulating constraints

- Ontology-based approaches:
 “finding” is an incremental process
 uniform “formulation” carried out at all ontological levels

- Model-based approaches:
 “finding” with **semi-automatic constraint generators**
 - Costal, 2008
 typology of constraints (e.g., path-based, value-based)
 typology of operations (e.g., on instances, on relations)
 - model-checking
 SCR (Heitmeyer & al.), GME (Nordstrom & al.)
 uniform “formulation” of **structural constraints** (OCL)
 “formulation” of **behavioral constraints**
 - OCL *pre*- and *post*- conditions
 - OCL *body* clauses
 - Action Semantics Languages and code snippets
 e.g., EP Kelsen, 2007, ASOQ Hausten, 2004
Polymorphous constraints
a 3D-space (construct, diagram, abstraction level)

- Pre-condition (class diagram)
 context faceted-object::initialization()
 pre: self.contains1->notEmpty()

- Guarding condition (statechart)
 self.contains1->notEmpty()/initialization()

- Stereotypes
 class: facet, faceted, mandatory-facet
 association: facet-def
 operation: faceted-operation
Constraint verification

- **a posteriori**
 - check clauses (relational databases)
 - symbolic model checking (on UML models)

- **step-by-step**
 - a posteriori
 - proof-based

- **a priori**
 - DSL
 - metamodelling

- **OWL engines**
 - on A-boxes
 - "security" is an NF property
 - on T-boxes
 - all NF-properties are quantifiable

- **OCL checkers**
 - SAT-based
 - Kreiger, 2008

- **high-level ontologies**
 - BFO and OBO-RO
An illustrative exemple: XenOnt

an image

and its metadata:
- project structure
- scientific objective
- experimental protocol

FuGE (Common package)

expert knowledge

BFO and OBO-RO

pattern

FBbi
XAD

consensual resources
for annotation

- annotation A1
- annotation A2
- annotation A3
- annotation A4
The XenOnt’s constraints

1. model-level (model transf.)
 - OWL 1.1
 - BFO

2. metamodel and model (use of ODM stereotypes)
 - UML 2.0 & OCL 2.0
 - FuGE
 - FuGE

3. metamodel and model (use of stereotypes)
 - relational DBMS
 - RacerPro

4. instance-level (use of ontologies)
 - RacerPro

5. model-level (model transf.)
 - Protégé

6. metamodel
 - Protégé

7. model-level (model transf.)
 - Protégé

8. metamodel and model
 - Protégé

software

modeling languages, domain standards and ontologies

OBO

XAO

FBbi

GO

Terrasse & al. Constraint management
Conclusion

• A 3D-space for constraint management in Model Driven Engineering
 combination of formal methods Clarke, 96 Lamsweerde, 00
 availability of relevant frameworks

• A major issue
 constraint traceability
 - while changing abstraction levels
 - during model transformations

• A DRE-perspective
 early constraint verification
 high-level ontologies, metamodels and DSLs
 enforcing the use of constructs that embed constraints
 might be easier in domain-specific environments