
Performance Analysis of AADL 
Models Using 

Real-Time Calculus

Oleg Sokolsky
University of Pennsylvania

UML & AADL Workshop
Potsdam, Germany

June 2, 2009



June 2, 2009 AADL & UML '09 2

Overview

• Background
– From architecture to analysis
– Modular performance analysis

• Based on real-time calculus (RTC)
• From AADL to RTC
• Case study

– SP100 wireless architecture
• Analysis results

– Scalability of RTC



June 2, 2009 AADL & UML '09 3

Architectural vs. analysis modeling

Close to the application domain,
easy to build and understand.

Architectural 
modeling

Model 
transformation

Performance and 
timing analysis

Approximate and 
scalable

(Semi-)automatic and 
traceable

Feedback in
terms of the
architectural

model



June 2, 2009 AADL & UML '09 4

Performance in stream processing

• Many embedded systems process streams of 
events/data
– Media players, control systems

• Each event triggers task execution to process
– While the task is busy, events are queued

• Performance measure:
– End-to-end latency

• Resource bottlenecks
– Schedulability
– Buffer space



June 2, 2009 AADL & UML '09 5

Overview

• Background
– From architecture to analysis
– Modular performance analysis

• Based on real-time calculus (RTC)
• From AADL to RTC
• Case study

– SP100 wireless architecture
• Analysis results

– Scalability of RTC



June 2, 2009 AADL & UML '09 6

Modular Performance Analysis

• Developed at ETH Zurich since 2003
• Based on:

– Max-Plus/Min-Plus Algebra [Quadrat et al.,
1992]

– Network Calculus [Le Boudec & Thiran, 2001]
– Real-Time Calculus [Chakraborty et al.,2000]

• Supported by a Matlab toolbox

• Next 8 slides courtesy of Ernesto Wandeler, ETHZ



June 2, 2009 AADL & UML '09 7

Abstraction for Performance Analysis

Processor/Network
Task/Message

Input
Stream

Concrete 
Instance
Abstract 
Representation

Service
Model

Load
Model

Task / Processing
Model



June 2, 2009 AADL & UML '09 8

Load Model
Service
Model

t [ms] 

events
Event Stream

2.5 

Arrival Curve α & Delay d
demand

∆ [ms] 2.5 

deadline = d

Load
Model

Processing
Model



June 2, 2009 AADL & UML '09 9

Load Model
Service
Model

t [ms] 

events

2.5 

demand

∆ [ms] 2.5 

number of events in 
in t=[0 .. 2.5] ms

Event Stream

Arrival Curve α & Delay d

deadline = d

Load
Model

Processing
Model



June 2, 2009 AADL & UML '09 10

Load Model
Service
Model

t [ms] 

events

maximum / minimum
arriving demand in any
interval of length 2.5 ms

2.5 

demand

∆ [ms] 2.5 

number of events in 
in t=[0 .. 2.5] ms

Event Stream

Arrival Curve α & Delay d

deadline = d

Load
Model

Processing
Model



June 2, 2009 AADL & UML '09 11

Load Model
Service
Model

t [ms] 

events

2.5 

demand

∆ [ms] 2.5 

αl

αu

maximum / minimum
arriving demand in any
interval of length 2.5 ms

number of events in 
in t=[0 .. 2.5] ms

Event Stream

Arrival Curve α & Delay d

deadline = d

Load
Model

Processing
Model



June 2, 2009 AADL & UML '09 12

Load Model - Examples
Service
Model

periodic periodic w/ jitter

periodic w/ burst complex

Load
Model

Processing
Model



June 2, 2009 AADL & UML '09 13

Service Model
Service
Model

availability

maximum/minimum
available service in any
interval of length 2.5 ms

available service 
in t=[0 .. 2.5] ms

2.5 

βu

βl

Service Curves [βl, βu]
service

∆ [ms] 2.5 

t [ms] 

Resource Availability

Load
Model

Processing
Model



June 2, 2009 AADL & UML '09 14

Service Model - Examples
Service
Model

full resource bounded delay

TDMA resource periodic resource

Load
Model

Processing
Model



June 2, 2009 AADL & UML '09 15

Task / Processing Model
Service
Model

d

α

β

β’

α’

Load
Model

Processing
Model



June 2, 2009 AADL & UML '09 16

Task / Processing Model
Service
Model

d

Real-Time Calculus
α

β

β’

α’

Load
Model

Processing
Model



June 2, 2009 AADL & UML '09 17

Task / Processing Model
Service
Model

d

Real-Time Calculus
α

β

β’

α’

Load
Model

Processing
Model



June 2, 2009 AADL & UML '09 18

Scheduling / Arbitration
FP

GPS

EDF

TDMA



June 2, 2009 AADL & UML '09 19

Analysis: Delay and Backlog
Service
Model

delay dmax

backlog bmax

βl

αu
[αl, αu]

[βl, βu]

[βl’, βu’]

[αl’, αu’]

RTC

Load
Model

Processing
Model



June 2, 2009 AADL & UML '09 20

RTC performance analysis

• Construct the graph of abstract components
– Connected by stream or resource edges

• Associate input arrival and service curves with 
source nodes

• If the graph is acyclic
– Compute output curves of each node in a 

topological order
• O/w, break cycles and iterate to fixed point
• Supported by a MATLAB toolbox



June 2, 2009 AADL & UML '09 21

Limitations of RTC-based analysis

• Difficult to represent time-variant behavior 
(e.g., state-dependent streams)
– Recent extensions combine RTC with 

automata
– Restrict to single AADL modes

• Cannot deal with blocking
– Event handling matches AADL semantics
– Blocking on shared resource access is 

problematic



June 2, 2009 AADL & UML '09 22

Overview

• Background
– From architecture to analysis
– Modular performance analysis

• Based on real-time calculus (RTC)
• From AADL to RTC
• Case study

– SP100 wireless architecture
• Analysis results

– Scalability of RTC



June 2, 2009 AADL & UML '09 23

Model transformation

• AADL model is transformed into an RTC model
• Load: 

– Input event streams + periodic tasks
• Service:

– Processors + buses
• Processing components

– Threads + connections
• Connections

– Flows provide load connections
– Mappings provide service connections



June 2, 2009 AADL & UML '09 24

Transformation algorithm

• Traverse AADL model, collect processing 
components and input loads

• Construct graph of processing components 
based on flows, component mappings, priorities

• Test if the graph has cycles
– If not, done
– O/w, cut the “back” edges, add code for 

fixed point computations
• Algorithm generates RTC model in the 

MATLAB format



June 2, 2009 AADL & UML '09 25

Component transformations
processor

Actual_
Processor_Binding

Actual_
Connection_Binding

thread

Scheduling_Protocol

bus

thread

Compute_Execution_Time
Priority
Deadline

thread
100ms Period

Input_Rate
Input_Jitterthread



June 2, 2009 AADL & UML '09 26

Transformation: acyclic case

2

1

2

1



June 2, 2009 AADL & UML '09 27

Transformation: cycles via priority order

2

1

1

2

2

1

==?



June 2, 2009 AADL & UML '09 28

Transformation: non-preemptive bus

2

1

2

1

==?



June 2, 2009 AADL & UML '09 29

Overview

• Background
– From architecture to analysis
– Modular performance analysis

• Based on real-time calculus (RTC)
• From AADL to RTC
• Case study

– SP100 wireless architecture
• Analysis results

– Scalability of RTC



June 2, 2009 AADL & UML '09 30

Case study: wireless architecture

• Model a typical application-level architecture
– ISA100 application layer as the basis
– Study applicability of AADL

• The need for AADL v2 extensions
• Perform analysis of several configurations

– Find out which modeling approaches work
– Study performance as function of model size
– Scalability of RTC



June 2, 2009 AADL & UML '09 31

ISA100 highlights

• The network contains multiple sensor nodes 
connected to the wired network through 
gateways
– Wired network is the source of various loads

• Three flow types:
– Periodically published sensor data (TDMA)
– Parameter traffic (client/server, CSMA)
– Alarm traffic (client/server, CSMA)



June 2, 2009 AADL & UML '09 32

ISA100 highlights

• Parameter cache in the gateway
– If the requested parameter is in the cache, 

it is returned to the operator
– Otherwise, a request to the relevant sensor 

node is sent
• The response is placed in the gateway and 

returned to the operator
• Alarm queue

– If queue is full, alarm is dropped
• Node times out and retransmits

– O/w, alarm is queued and acknowledged



June 2, 2009 AADL & UML '09 33

Architecture model – overall

February 27, 2008 Honeywell Project Review 33



June 2, 2009 AADL & UML '09 34

Architecture model – gateway



June 2, 2009 AADL & UML '09 35

Challenges

• Modeling cache effects
– Flow depends on cache lookup

• Split flow with a scaling factor (Output_Rate
property)

– Cache is a shared data component
• Resource contention not modeled

• Modeling alarm queue
– Alarms may be dropped and retransmitted

• Hard to model directly
– Instead, model conditions for no retransmits



June 2, 2009 AADL & UML '09 36

More challenges

• Resource partitioning
– CSMA and TDMA are the same medium

• Modeled separately, need to be kept coherent 
when parameters change

– Virtual buses in AADL v2 – easier to 
automate

• Multiplicity of components
– Many sensor nodes

• huge model, lots of copy & paste => errors
– Arrays in AADL v2 – more compact



June 2, 2009 AADL & UML '09 37

Analysis model - I



June 2, 2009 AADL & UML '09 38

Analysis model - II



June 2, 2009 AADL & UML '09 39

Adding multiple nodes

• More processing blocks, more CSMA flows



June 2, 2009 AADL & UML '09 40

Overview

• Background
– From architecture to analysis
– Modular performance analysis

• Based on real-time calculus (RTC)
• From AADL to RTC
• Case study

– SP100 wireless architecture
• Analysis results

– Scalability of RTC



June 2, 2009 AADL & UML '09 41

Analysis results
• Interesting values:

– End-to-end delays of flows
• Sharp rise in values indicates that the system 

does not have enough throughput for the load
– Buffer requirement bQ for alarm delivery

• bQ < alarm queue length => alarms are never lost
• Configurations analyzed:

– “Firmware download” – infrequent; long
– “Network noise” – frequent, bursty; short



June 2, 2009 AADL & UML '09 42

End-to-end delays – alarm flow

• Linear for ample throughput

9000
9200

9400
9600

9800
10000

10200
10400

0 2 4 6 8 10

nodes

en
d-

to
-e

nd
 d

el
ay

, m
s

network noise firmware download, low jitter



June 2, 2009 AADL & UML '09 43

End-to-end delays – alarm flow

• … dramatic increase for low throughput

0
10000
20000
30000
40000
50000
60000
70000
80000

0 5 10 15 20

nodes

en
d-

to
-e

nd
 d

el
ay

, m
s

network noise



June 2, 2009 AADL & UML '09 44

Scalability – total analysis time

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

0 5 10 15 20
nodes

an
al

ys
is

 ti
m

e 
(s

ec
on

ds
)

network noise firmware download, low jitter
firmware download, high jitter



June 2, 2009 AADL & UML '09 45

Scalability results

• Analysis time is much more sensitive to
– curve shapes
– ranges of timing constants

• which, of course, affect curve shapes
than to the number of blocks to process

• Lots of simple nodes are much more efficient 
to analyze than even a few complex nodes

• “Divide and conquer” approaches are possible to 
explore isolated changes



June 2, 2009 AADL & UML '09 46

Summary

• Modular performance analysis is an 
architecture-level analysis technique based on 
real-time calculus
– Supports a significant subset of AADL
– Automatic transformation possible

• Especially with AADL v2 extensions
• Some custom properties are needed

• Scalability needs improvement
– Active research area (ETH, NUS, TUM)


	Performance Analysis of AADL Models Using Real-Time Calculus
	Overview
	Architectural vs. analysis modeling
	Performance in stream processing
	Overview
	Modular Performance Analysis
	Abstraction for Performance Analysis
	Load Model
	Load Model
	Load Model
	Load Model
	Load Model - Examples
	Service Model
	Service Model - Examples
	Task / Processing Model
	Task / Processing Model
	Task / Processing Model
	Scheduling / Arbitration
	Analysis: Delay and Backlog
	RTC performance analysis
	Limitations of RTC-based analysis
	Overview
	Model transformation
	Transformation algorithm
	Component transformations
	Transformation: acyclic case
	Transformation: cycles via priority order
	Transformation: non-preemptive bus
	Overview
	Case study: wireless architecture
	ISA100 highlights
	ISA100 highlights
	Architecture model – overall
	Architecture model – gateway
	Challenges
	More challenges
	Analysis model - I
	Analysis model - II
	Adding multiple nodes
	Overview
	Analysis results
	End-to-end delays – alarm flow
	End-to-end delays – alarm flow
	Scalability – total analysis time
	Scalability results
	Summary

