
Performance Analysis of AADL 
Models Using 

Real-Time Calculus

Oleg Sokolsky
University of Pennsylvania

UML & AADL Workshop
Potsdam, Germany

June 2, 2009



June 2, 2009 AADL & UML '09 2

Overview

• Background
– From architecture to analysis
– Modular performance analysis

• Based on real-time calculus (RTC)
• From AADL to RTC
• Case study

– SP100 wireless architecture
• Analysis results

– Scalability of RTC
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Architectural vs. analysis modeling

Close to the application domain,
easy to build and understand.
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Model 
transformation

Performance and 
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scalable
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Performance in stream processing

• Many embedded systems process streams of 
events/data
– Media players, control systems

• Each event triggers task execution to process
– While the task is busy, events are queued

• Performance measure:
– End-to-end latency

• Resource bottlenecks
– Schedulability
– Buffer space



June 2, 2009 AADL & UML '09 5

Overview

• Background
– From architecture to analysis
– Modular performance analysis

• Based on real-time calculus (RTC)
• From AADL to RTC
• Case study

– SP100 wireless architecture
• Analysis results

– Scalability of RTC



June 2, 2009 AADL & UML '09 6

Modular Performance Analysis

• Developed at ETH Zurich since 2003
• Based on:

– Max-Plus/Min-Plus Algebra [Quadrat et al.,
1992]

– Network Calculus [Le Boudec & Thiran, 2001]
– Real-Time Calculus [Chakraborty et al.,2000]

• Supported by a Matlab toolbox

• Next 8 slides courtesy of Ernesto Wandeler, ETHZ
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Abstraction for Performance Analysis

Processor/Network
Task/Message

Input
Stream

Concrete 
Instance
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Service
Model

Load
Model

Task / Processing
Model
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Load Model - Examples
Service
Model
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Load
Model

Processing
Model
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Service Model
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Service Model - Examples
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Task / Processing Model
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Scheduling / Arbitration
FP

GPS

EDF

TDMA



June 2, 2009 AADL & UML '09 19

Analysis: Delay and Backlog
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RTC performance analysis

• Construct the graph of abstract components
– Connected by stream or resource edges

• Associate input arrival and service curves with 
source nodes

• If the graph is acyclic
– Compute output curves of each node in a 

topological order
• O/w, break cycles and iterate to fixed point
• Supported by a MATLAB toolbox
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Limitations of RTC-based analysis

• Difficult to represent time-variant behavior 
(e.g., state-dependent streams)
– Recent extensions combine RTC with 

automata
– Restrict to single AADL modes

• Cannot deal with blocking
– Event handling matches AADL semantics
– Blocking on shared resource access is 

problematic
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Model transformation

• AADL model is transformed into an RTC model
• Load: 

– Input event streams + periodic tasks
• Service:

– Processors + buses
• Processing components

– Threads + connections
• Connections

– Flows provide load connections
– Mappings provide service connections
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Transformation algorithm

• Traverse AADL model, collect processing 
components and input loads

• Construct graph of processing components 
based on flows, component mappings, priorities

• Test if the graph has cycles
– If not, done
– O/w, cut the “back” edges, add code for 

fixed point computations
• Algorithm generates RTC model in the 

MATLAB format
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Component transformations
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Transformation: acyclic case
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Transformation: cycles via priority order
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Transformation: non-preemptive bus
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Case study: wireless architecture

• Model a typical application-level architecture
– ISA100 application layer as the basis
– Study applicability of AADL

• The need for AADL v2 extensions
• Perform analysis of several configurations

– Find out which modeling approaches work
– Study performance as function of model size
– Scalability of RTC
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ISA100 highlights

• The network contains multiple sensor nodes 
connected to the wired network through 
gateways
– Wired network is the source of various loads

• Three flow types:
– Periodically published sensor data (TDMA)
– Parameter traffic (client/server, CSMA)
– Alarm traffic (client/server, CSMA)
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ISA100 highlights

• Parameter cache in the gateway
– If the requested parameter is in the cache, 

it is returned to the operator
– Otherwise, a request to the relevant sensor 

node is sent
• The response is placed in the gateway and 

returned to the operator
• Alarm queue

– If queue is full, alarm is dropped
• Node times out and retransmits

– O/w, alarm is queued and acknowledged
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Architecture model – overall

February 27, 2008 Honeywell Project Review 33
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Architecture model – gateway
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Challenges

• Modeling cache effects
– Flow depends on cache lookup

• Split flow with a scaling factor (Output_Rate
property)

– Cache is a shared data component
• Resource contention not modeled

• Modeling alarm queue
– Alarms may be dropped and retransmitted

• Hard to model directly
– Instead, model conditions for no retransmits
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More challenges

• Resource partitioning
– CSMA and TDMA are the same medium

• Modeled separately, need to be kept coherent 
when parameters change

– Virtual buses in AADL v2 – easier to 
automate

• Multiplicity of components
– Many sensor nodes

• huge model, lots of copy & paste => errors
– Arrays in AADL v2 – more compact
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Analysis model - I
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Analysis model - II
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Adding multiple nodes

• More processing blocks, more CSMA flows
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Analysis results
• Interesting values:

– End-to-end delays of flows
• Sharp rise in values indicates that the system 

does not have enough throughput for the load
– Buffer requirement bQ for alarm delivery

• bQ < alarm queue length => alarms are never lost
• Configurations analyzed:

– “Firmware download” – infrequent; long
– “Network noise” – frequent, bursty; short
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End-to-end delays – alarm flow

• Linear for ample throughput
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End-to-end delays – alarm flow

• … dramatic increase for low throughput
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Scalability – total analysis time
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Scalability results

• Analysis time is much more sensitive to
– curve shapes
– ranges of timing constants

• which, of course, affect curve shapes
than to the number of blocks to process

• Lots of simple nodes are much more efficient 
to analyze than even a few complex nodes

• “Divide and conquer” approaches are possible to 
explore isolated changes
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Summary

• Modular performance analysis is an 
architecture-level analysis technique based on 
real-time calculus
– Supports a significant subset of AADL
– Automatic transformation possible

• Especially with AADL v2 extensions
• Some custom properties are needed

• Scalability needs improvement
– Active research area (ETH, NUS, TUM)
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