

Scheduling analysis for different-level models

Oleg Sokolsky University of Pennsylvania UML&AADL Workshop June 2, 2009

Scheduling: models and analysis

June 2, 2009

Architectural vs. behavioral models

- Architectural models:
 - AADL, SysML, some UML diagrams
 - Model represents components
 - Behaviors are implicit in semantics for components and connections; modified by properties
- Behavioral models
 - Automata, UML state diagrams
 - Model represents behaviors
 - Behaviors (mostly) explicit

June 2, 2009

Scheduling analysis

- Analytical methods
 - Response-time analysis, utilization bounds, ...
 - Tied to a task model, identifies worst case
 - Scalable
- Computational methods
 - Task automata, ACSR, Petri nets
 - Encode task behavior
 - State-space exploration (model checking, reachability analysis) to find timing violations
 - Expressive

Examples

- RM scheduling analysis for AADL in OSATE
 - Traverse the model, making sure that it complies with the task model (independent periodic tasks, RM scheduling protocol, etc.)
 - Extract problem instance from properties and input into an RM tool
- Scheduling analysis for AADL in Furness
 - Build task skeletons, populate with properties
 - Add state machines for task activation, data and event propagation, etc.
 - Input into a model checker

June 2, 2009

