
1/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Towards Model Checking
Executable UML Specifications

in mCRL2

Helle Hvid Hansen Jeroen Ketema Bas Luttik
MohammadReza Mousavi Jaco van de Pol

Eindhoven University of Technology
University of Twente

8 December 2009

2/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Introduction

Verification of railway safety systems (interlockings):

Specification is highly declarative (not an implementation)

Specification written in executable UML

Executable UML (xUML):

Class diagrams and state machines

Particular dialect comes with a simulator

Verification approach:

Instantiate the model based on the layout of a railway yard

Transform into an mCRL2 specification (process algebra)

Apply model checking (both explicit and symbolic)

2/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Introduction

Verification of railway safety systems (interlockings):

Specification is highly declarative (not an implementation)

Specification written in executable UML

Executable UML (xUML):

Class diagrams and state machines

Particular dialect comes with a simulator

Verification approach:

Instantiate the model based on the layout of a railway yard

Transform into an mCRL2 specification (process algebra)

Apply model checking (both explicit and symbolic)

2/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Introduction

Verification of railway safety systems (interlockings):

Specification is highly declarative (not an implementation)

Specification written in executable UML

Executable UML (xUML):

Class diagrams and state machines

Particular dialect comes with a simulator

Verification approach:

Instantiate the model based on the layout of a railway yard

Transform into an mCRL2 specification (process algebra)

Apply model checking (both explicit and symbolic)

3/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

mCRL2

mCRL2 is an ACP-based process algebra:

Synchronous communication between processes

Processes and actions may carry data

Data types

Built-in data types: integers, lists, ...

Abstract data types: sort myState = struct Yes | No

Sequential processes (with data)

Recursive processes: proc A(. . .) = · · · A(. . .) · · · ;

Actions: a(. . .)

Sequential and alternative composition: . and +

If-then-else construct: c → s � t

3/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

mCRL2

mCRL2 is an ACP-based process algebra:

Synchronous communication between processes

Processes and actions may carry data

Data types

Built-in data types: integers, lists, ...

Abstract data types: sort myState = struct Yes | No

Sequential processes (with data)

Recursive processes: proc A(. . .) = · · · A(. . .) · · · ;

Actions: a(. . .)

Sequential and alternative composition: . and +

If-then-else construct: c → s � t

3/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

mCRL2

mCRL2 is an ACP-based process algebra:

Synchronous communication between processes

Processes and actions may carry data

Data types

Built-in data types: integers, lists, ...

Abstract data types: sort myState = struct Yes | No

Sequential processes (with data)

Recursive processes: proc A(. . .) = · · · A(. . .) · · · ;

Actions: a(. . .)

Sequential and alternative composition: . and +

If-then-else construct: c → s � t

4/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

mCRL2 (cont.)

Sequential processes (cont.)

Quantification over data:
∑

d :D P(d)

Example

proc A(n : N) =
∑

m:N a(m).(m = 0)→ A(n + 1) � (A(m) + A(n))

Parallel processes and communication

parallel composition: ‖
synchronous communication (multi-actions): a1| · · · |an → b

Example

comm({a|b→ c}, a(m) ‖ b(m)) we observe c(m)

4/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

mCRL2 (cont.)

Sequential processes (cont.)

Quantification over data:
∑

d :D P(d)

Example

proc A(n : N) =
∑

m:N a(m).(m = 0)→ A(n + 1) � (A(m) + A(n))

Parallel processes and communication

parallel composition: ‖
synchronous communication (multi-actions): a1| · · · |an → b

Example

comm({a|b→ c}, a(m) ‖ b(m)) we observe c(m)

4/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

mCRL2 (cont.)

Sequential processes (cont.)

Quantification over data:
∑

d :D P(d)

Example

proc A(n : N) =
∑

m:N a(m).(m = 0)→ A(n + 1) � (A(m) + A(n))

Parallel processes and communication

parallel composition: ‖
synchronous communication (multi-actions): a1| · · · |an → b

Example

comm({a|b→ c}, a(m) ‖ b(m)) we observe c(m)

4/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

mCRL2 (cont.)

Sequential processes (cont.)

Quantification over data:
∑

d :D P(d)

Example

proc A(n : N) =
∑

m:N a(m).(m = 0)→ A(n + 1) � (A(m) + A(n))

Parallel processes and communication

parallel composition: ‖
synchronous communication (multi-actions): a1| · · · |an → b

Example

comm({a|b→ c}, a(m) ‖ b(m)) we observe c(m)

5/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

xUML Constructs

Only translate constructs that occur in railway specifications

Class diagrams

Inheritance and associations between classes

No association classes (classes labelling associations)

(Nested) state machines

States:

Concurrent and composite states (AND- and OR-states)
Initial pseudo states (no history and final pseudo states)

Transitions labelled with “trigger[condition]/action”-triples

Trigger needed to take the transition (signal or change event)
Condition needed to be valid upon taking the transition
Action to be executed upon taking the transition

5/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

xUML Constructs

Only translate constructs that occur in railway specifications

Class diagrams

Inheritance and associations between classes

No association classes (classes labelling associations)

(Nested) state machines

States:

Concurrent and composite states (AND- and OR-states)
Initial pseudo states (no history and final pseudo states)

Transitions labelled with “trigger[condition]/action”-triples

Trigger needed to take the transition (signal or change event)
Condition needed to be valid upon taking the transition
Action to be executed upon taking the transition

5/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

xUML Constructs

Only translate constructs that occur in railway specifications

Class diagrams

Inheritance and associations between classes

No association classes (classes labelling associations)

(Nested) state machines

States:

Concurrent and composite states (AND- and OR-states)
Initial pseudo states (no history and final pseudo states)

Transitions labelled with “trigger[condition]/action”-triples

Trigger needed to take the transition (signal or change event)
Condition needed to be valid upon taking the transition
Action to be executed upon taking the transition

5/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

xUML Constructs

Only translate constructs that occur in railway specifications

Class diagrams

Inheritance and associations between classes

No association classes (classes labelling associations)

(Nested) state machines

States:

Concurrent and composite states (AND- and OR-states)
Initial pseudo states (no history and final pseudo states)

Transitions labelled with “trigger[condition]/action”-triples

Trigger needed to take the transition (signal or change event)
Condition needed to be valid upon taking the transition
Action to be executed upon taking the transition

6/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Signal and Change Events

Events are stored in event pools (buffers), one per class instance

Signal events

Signals can be sent to classes and their associated state machines

Signals are sent asynchronously

Once received signal event is added to an event pool

Change events

Change events are of the form

when(cond)

where cond is a boolean expression:

The event is added to an event pool when cond becomes valid

The event is not removed once cond becomes invalid again

6/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Signal and Change Events

Events are stored in event pools (buffers), one per class instance

Signal events

Signals can be sent to classes and their associated state machines

Signals are sent asynchronously

Once received signal event is added to an event pool

Change events

Change events are of the form

when(cond)

where cond is a boolean expression:

The event is added to an event pool when cond becomes valid

The event is not removed once cond becomes invalid again

6/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Signal and Change Events

Events are stored in event pools (buffers), one per class instance

Signal events

Signals can be sent to classes and their associated state machines

Signals are sent asynchronously

Once received signal event is added to an event pool

Change events

Change events are of the form

when(cond)

where cond is a boolean expression:

The event is added to an event pool when cond becomes valid

The event is not removed once cond becomes invalid again

6/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Signal and Change Events

Events are stored in event pools (buffers), one per class instance

Signal events

Signals can be sent to classes and their associated state machines

Signals are sent asynchronously

Once received signal event is added to an event pool

Change events

Change events are of the form

when(cond)

where cond is a boolean expression:

The event is added to an event pool when cond becomes valid

The event is not removed once cond becomes invalid again

6/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Signal and Change Events

Events are stored in event pools (buffers), one per class instance

Signal events

Signals can be sent to classes and their associated state machines

Signals are sent asynchronously

Once received signal event is added to an event pool

Change events

Change events are of the form

when(cond)

where cond is a boolean expression:

The event is added to an event pool when cond becomes valid

The event is not removed once cond becomes invalid again

7/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Run-to-Completion Assumptions

Run-to-completion assumptions specify the allowed interleavings

Definition (Run-to-completion (RTC))

Local RTC All actions of a transition in a state machine S
are executed before a new transition is taken by S

Atomic RTC All actions of a transition in the system
are executed before any new transition is taken

Global RTC External events are only accepted by the system
in case (i) all event pools are empty

and (ii) no actions are being executed

Local RTC is minimally required by the UML standard

The available simulator enforces both atomic and global RTC

7/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Run-to-Completion Assumptions

Run-to-completion assumptions specify the allowed interleavings

Definition (Run-to-completion (RTC))

Local RTC All actions of a transition in a state machine S
are executed before a new transition is taken by S

Atomic RTC All actions of a transition in the system
are executed before any new transition is taken

Global RTC External events are only accepted by the system
in case (i) all event pools are empty

and (ii) no actions are being executed

Local RTC is minimally required by the UML standard

The available simulator enforces both atomic and global RTC

7/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Run-to-Completion Assumptions

Run-to-completion assumptions specify the allowed interleavings

Definition (Run-to-completion (RTC))

Local RTC All actions of a transition in a state machine S
are executed before a new transition is taken by S

Atomic RTC All actions of a transition in the system
are executed before any new transition is taken

Global RTC External events are only accepted by the system
in case (i) all event pools are empty

and (ii) no actions are being executed

Local RTC is minimally required by the UML standard

The available simulator enforces both atomic and global RTC

7/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Run-to-Completion Assumptions

Run-to-completion assumptions specify the allowed interleavings

Definition (Run-to-completion (RTC))

Local RTC All actions of a transition in a state machine S
are executed before a new transition is taken by S

Atomic RTC All actions of a transition in the system
are executed before any new transition is taken

Global RTC External events are only accepted by the system
in case (i) all event pools are empty

and (ii) no actions are being executed

Local RTC is minimally required by the UML standard

The available simulator enforces both atomic and global RTC

7/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Run-to-Completion Assumptions

Run-to-completion assumptions specify the allowed interleavings

Definition (Run-to-completion (RTC))

Local RTC All actions of a transition in a state machine S
are executed before a new transition is taken by S

Atomic RTC All actions of a transition in the system
are executed before any new transition is taken

Global RTC External events are only accepted by the system
in case (i) all event pools are empty

and (ii) no actions are being executed

Local RTC is minimally required by the UML standard

The available simulator enforces both atomic and global RTC

8/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Translating Class Diagrams

Each class is represented by a process:

Inheritance is dealt with by “flattening” the class hierarchy

⇒ Concurrent composition of state machines related to classes

Associations become parameters of processes

Example

element

pointtrack signal

route *

1 entry signal

*

*tracks

*

*left points

*

* right points

proc track(routes : . . .) = . . . ;

proc point(routes : . . .) = . . . ;

proc signal(routes : . . .) = . . . ;

proc route(tracks : . . . , left points : . . . ,
right points : . . . , entry signal : . . .) = . . . ;

8/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Translating Class Diagrams

Each class is represented by a process:

Inheritance is dealt with by “flattening” the class hierarchy

⇒ Concurrent composition of state machines related to classes

Associations become parameters of processes

Example

element

pointtrack signal

route *

1 entry signal

*

*tracks

*

*left points

*

* right points

proc track(routes : . . .) = . . . ;

proc point(routes : . . .) = . . . ;

proc signal(routes : . . .) = . . . ;

proc route(tracks : . . . , left points : . . . ,
right points : . . . , entry signal : . . .) = . . . ;

8/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Translating Class Diagrams

Each class is represented by a process:

Inheritance is dealt with by “flattening” the class hierarchy

⇒ Concurrent composition of state machines related to classes

Associations become parameters of processes

Example

element

pointtrack signal

route *

1 entry signal

*

*tracks

*

*left points

*

* right points

proc track(routes : . . .) = . . . ;

proc point(routes : . . .) = . . . ;

proc signal(routes : . . .) = . . . ;

proc route(tracks : . . . , left points : . . . ,
right points : . . . , entry signal : . . .) = . . . ;

8/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Translating Class Diagrams

Each class is represented by a process:

Inheritance is dealt with by “flattening” the class hierarchy

⇒ Concurrent composition of state machines related to classes

Associations become parameters of processes

Example

element

pointtrack signal

route *

1 entry signal

*

*tracks

*

*left points

*

* right points

proc track(routes : . . .) = . . . ;

proc point(routes : . . .) = . . . ;

proc signal(routes : . . .) = . . . ;

proc route(tracks : . . . , left points : . . . ,
right points : . . . , entry signal : . . .) = . . . ;

9/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Translating Event Pools and State Machines

Each process representing a class consists of two parallel processes:

Buffer process

⇒ Represents event pool associated with an instance of a class
⇒ Asynchronous communication in synchronous environment

Process representing the state machine related to the class

⇒ States are represented as data parameters to the process
⇒ Process is a message loop:

get message, execute actions, update state, get message, . . .

Example

automatic

not ready

ready

automatic

manual

/

/

not ready/

manual/

automatic/

ready/

proc M(S : . . . , Auto S : . . .) =∑
m:Msg get msg(m).

(S = manual&& m = automatic)→
M(automatic, not ready)

� · · · ;

9/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Translating Event Pools and State Machines

Each process representing a class consists of two parallel processes:

Buffer process

⇒ Represents event pool associated with an instance of a class
⇒ Asynchronous communication in synchronous environment

Process representing the state machine related to the class

⇒ States are represented as data parameters to the process
⇒ Process is a message loop:

get message, execute actions, update state, get message, . . .

Example

automatic

not ready

ready

automatic

manual

/

/

not ready/

manual/

automatic/

ready/

proc M(S : . . . , Auto S : . . .) =∑
m:Msg get msg(m).

(S = manual&& m = automatic)→
M(automatic, not ready)

� · · · ;

9/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Translating Event Pools and State Machines

Each process representing a class consists of two parallel processes:

Buffer process

⇒ Represents event pool associated with an instance of a class
⇒ Asynchronous communication in synchronous environment

Process representing the state machine related to the class

⇒ States are represented as data parameters to the process
⇒ Process is a message loop:

get message, execute actions, update state, get message, . . .

Example

automatic

not ready

ready

automatic

manual

/

/

not ready/

manual/

automatic/

ready/

proc M(S : . . . , Auto S : . . .) =∑
m:Msg get msg(m).

(S = manual&& m = automatic)→
M(automatic, not ready)

� · · · ;

9/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Translating Event Pools and State Machines

Each process representing a class consists of two parallel processes:

Buffer process

⇒ Represents event pool associated with an instance of a class
⇒ Asynchronous communication in synchronous environment

Process representing the state machine related to the class

⇒ States are represented as data parameters to the process
⇒ Process is a message loop:

get message, execute actions, update state, get message, . . .

Example

automatic

not ready

ready

automatic

manual

/

/

not ready/

manual/

automatic/

ready/

proc M(S : . . . , Auto S : . . .) =∑
m:Msg get msg(m).

(S = manual&& m = automatic)→
M(automatic, not ready)

� · · · ;

9/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Translating Event Pools and State Machines

Each process representing a class consists of two parallel processes:

Buffer process

⇒ Represents event pool associated with an instance of a class
⇒ Asynchronous communication in synchronous environment

Process representing the state machine related to the class

⇒ States are represented as data parameters to the process
⇒ Process is a message loop:

get message, execute actions, update state, get message, . . .

Example

automatic

not ready

ready

automatic

manual

/

/

not ready/

manual/

automatic/

ready/

proc M(S : . . . , Auto S : . . .) =∑
m:Msg get msg(m).

(S = manual&& m = automatic)→
M(automatic, not ready)

� · · · ;

10/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Translating Change Events

Change events are translated by introducing “monitor” processes

One monitor per occurring change event

Inner workings:
1 If part of the state referred to by the change event changes,

then a message is sent synchronously to the related monitor
2 Monitor checks if condition is valid while it wasn’t before
3 If so, the state machine to which the event belongs is notified

(message is put in buffer associated with the state machine)

Observations (without showing any mCRL2 specification):

Monitors duplicate state data

Communication with monitors increases number of transitions

10/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Translating Change Events

Change events are translated by introducing “monitor” processes

One monitor per occurring change event

Inner workings:
1 If part of the state referred to by the change event changes,

then a message is sent synchronously to the related monitor
2 Monitor checks if condition is valid while it wasn’t before
3 If so, the state machine to which the event belongs is notified

(message is put in buffer associated with the state machine)

Observations (without showing any mCRL2 specification):

Monitors duplicate state data

Communication with monitors increases number of transitions

10/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Translating Change Events

Change events are translated by introducing “monitor” processes

One monitor per occurring change event

Inner workings:
1 If part of the state referred to by the change event changes,

then a message is sent synchronously to the related monitor
2 Monitor checks if condition is valid while it wasn’t before
3 If so, the state machine to which the event belongs is notified

(message is put in buffer associated with the state machine)

Observations (without showing any mCRL2 specification):

Monitors duplicate state data

Communication with monitors increases number of transitions

10/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Translating Change Events

Change events are translated by introducing “monitor” processes

One monitor per occurring change event

Inner workings:
1 If part of the state referred to by the change event changes,

then a message is sent synchronously to the related monitor
2 Monitor checks if condition is valid while it wasn’t before
3 If so, the state machine to which the event belongs is notified

(message is put in buffer associated with the state machine)

Observations (without showing any mCRL2 specification):

Monitors duplicate state data

Communication with monitors increases number of transitions

11/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Model Checking

Remark

Unlimited buffer size in translation ⇒ Infinite state space

Only local RTC in translation ⇒ Starvation

Mitigation:

Limited buffer space (solves only infinite state space problem)

Barrier synchronisation (solves both issues, but global RTC)

Small Toy Specification (7 class instances)

Version State space Symbolic Explicit

buffer size 1 61× 1012 113 secs not feasible
barrier sync 8× 106 160 secs 91

2 minutes

No atomic RTC: yields traces not observable in the simulator

11/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Model Checking

Remark

Unlimited buffer size in translation ⇒ Infinite state space

Only local RTC in translation ⇒ Starvation

Mitigation:

Limited buffer space (solves only infinite state space problem)

Barrier synchronisation (solves both issues, but global RTC)

Small Toy Specification (7 class instances)

Version State space Symbolic Explicit

buffer size 1 61× 1012 113 secs not feasible
barrier sync 8× 106 160 secs 91

2 minutes

No atomic RTC: yields traces not observable in the simulator

11/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Model Checking

Remark

Unlimited buffer size in translation ⇒ Infinite state space

Only local RTC in translation ⇒ Starvation

Mitigation:

Limited buffer space (solves only infinite state space problem)

Barrier synchronisation (solves both issues, but global RTC)

Small Toy Specification (7 class instances)

Version State space Symbolic Explicit

buffer size 1 61× 1012 113 secs not feasible
barrier sync 8× 106 160 secs 91

2 minutes

No atomic RTC: yields traces not observable in the simulator

11/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Model Checking

Remark

Unlimited buffer size in translation ⇒ Infinite state space

Only local RTC in translation ⇒ Starvation

Mitigation:

Limited buffer space (solves only infinite state space problem)

Barrier synchronisation (solves both issues, but global RTC)

Small Toy Specification (7 class instances)

Version State space Symbolic Explicit

buffer size 1 61× 1012 113 secs not feasible
barrier sync 8× 106 160 secs 91

2 minutes

No atomic RTC: yields traces not observable in the simulator

11/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Model Checking

Remark

Unlimited buffer size in translation ⇒ Infinite state space

Only local RTC in translation ⇒ Starvation

Mitigation:

Limited buffer space (solves only infinite state space problem)

Barrier synchronisation (solves both issues, but global RTC)

Small Toy Specification (7 class instances)

Version State space Symbolic Explicit

buffer size 1 61× 1012 113 secs not feasible
barrier sync 8× 106 160 secs 91

2 minutes

No atomic RTC: yields traces not observable in the simulator

12/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Conclusion

Translation from xUML to mCRL2:

Not extremely difficult

Except for change events (not completely satisfactory)

Model checking the translation:

Measures needed to avoid infinite state space and starvation

State space can be huge

Traces depend on RTC assumptions (different for simulator)

Future work:

Automatic translation using the Epsilon framework

Extend the translation to other xUML constructs

Re-consider the translation of change events (avoid them?)

12/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Conclusion

Translation from xUML to mCRL2:

Not extremely difficult

Except for change events (not completely satisfactory)

Model checking the translation:

Measures needed to avoid infinite state space and starvation

State space can be huge

Traces depend on RTC assumptions (different for simulator)

Future work:

Automatic translation using the Epsilon framework

Extend the translation to other xUML constructs

Re-consider the translation of change events (avoid them?)

12/12

Introduction mCRL2 xUML Translating xUML Model Checking Conclusion

Conclusion

Translation from xUML to mCRL2:

Not extremely difficult

Except for change events (not completely satisfactory)

Model checking the translation:

Measures needed to avoid infinite state space and starvation

State space can be huge

Traces depend on RTC assumptions (different for simulator)

Future work:

Automatic translation using the Epsilon framework

Extend the translation to other xUML constructs

Re-consider the translation of change events (avoid them?)

	Introduction
	Introduction

	mCRL2
	mCLR2

	xUML
	xUML Constructs

	Translating xUML
	Translating xUML

	Model Checking
	Problems and Solutions

	Conclusion
	Conclusion

