
Bringing class diagrams to life

Luis S. Barbosa & Sun Meng

DI-CCTC, Minho University, Braga & CWI, Amsterdam

UML & FM Workshop 2009
Rio de Janeiro

8 December, 2009



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Formal Methods

proofs

ppppppppppp

OOOOOOOOOOOO

problems structures

models prototypes

certification

NNNNNNNNNNN

nnnnnnnnnnnn

• Modelling: choose the right abstractions for a problem domain

• Calculation: express such abstractions in a mathematical
framework rich enough to enable rigorous reasoning

• Prototyping: execute models to simulate systems’ behavior
and gather empirical evidence about their properties
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UML & FM

”a graphical language for visualizing, specifying, constructing, and
documenting the artifacts of a software-intensive system”.

OMG

• The number and diversity of diagrams expressing a UML
model makes it difficult to base its semantics on a single
framework.

• Some of the formalisations proposed in the literature are
essentially descriptive and difficult to use in proofs.
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A research agenda

The quest for a precise notion of behaviour and a calculational
approach to behavioural equivalence and refinement suggested the
adoption of a

coalgebraic framework

• standard notion of systems’ behaviour in terms of the
bisimilarity relation induced by each signature functor, upon
which properties of UML models can be formulated and
checked.

• built on top of a characterisation by an universal property
which entails the foundations for derived calculi

• uniform setting for reasoning about the diversity of UML
models and their inter-relations
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Plan

• Motivation

• Why coalgebras?

• Class as coalgebras

• Composition

• Constraints

• Associations

• Future work
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Coalgebras

a lens: ◯⌢◯

a tool box:
⋒ee

an observation structure: ◯⌢◯ universe
α←Ð universe

an assembly process: artifact
d←Ð

⋒ee
artifact

α ∶ TU ←Ð U

• coalgebras describe transition systems

• and abstract behaviour types as (final) coalgebras

• emphasis is on observation
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Coalgebraic modelling

... the mathematics of state-based systems (Jacobs,07)

e.g., streams (TX = A ×X ) and (different types of) automata

in our own research in UML semantics

• software components (Barbosa,01): TX = B(X ×O)I

• objects (Cruz, Barbosa, Oliveira, 05): TX = A ×B(X )I

• statecharts (Meng, Niaxiao, Barbosa,04): TX = B(X ×PE)E

• UML sequence diagrams (Meng & Barbosa,08): TX = X Σ

• UML class diagrams (Barbosa & Meng,08): ...
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Coalgebras as T-shaped transition structures

TU
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U
βoo

h
��
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αoo

i.e. Th ⋅ β = α ⋅ h

U

h
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β←Ðoo

h
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V V
α←Ðoo

i.e. h ⋅ β←Ð = α←Ð ⋅h
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Coalgebras as T-shaped transition structures

α←Ð def= ∈F ⋅ α

where ∈T is functorial membership, a natural transformation given
by

∈Id = id

∈K = �
∈T1×T2 = (∈T1 ⋅π1) ∪ (∈T2 ⋅π2)
∈T1+T2 = [∈T1 , ∈T2]
∈T1⋅T2 = ∈T2 ⋅ ∈T1

∈TK = ⋃
k∈K

∈T ⋅βk (where βk f = f k)

∈P = ∈
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Morphisms preserve and reflect transitions

Th ⋅ d = c ⋅ h
which entails

h ⋅ d←Ð = c←Ð ⋅h

i.e., the conjunction of inclusions

h ⋅ d←Ð ⊆ c←Ð ⋅h
c←Ð ⋅h ⊆ h ⋅ d←Ð

or, going pointwise,

v ′ d←Ð v ⇒ h v ′ c←Ð h v

u′ c←Ð h v ⇒ ∃v ′∈V . v ′ c←Ð v ∧ u′ = h v ′

morphisms entail (T-shaped) bisimilarity
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Class diagrams



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Class diagrams

A class diagram captures the static structure of a system, as a set
of classes and relationships between them.

Example

joined ∶ Date ←Ð U

lastHire ∶ Date ←Ð U

balance ∶ R←Ð U

pay ∶ U ←Ð UR

[[Membership]] = ⟨joined, lastHire,balance,pay⟩

which is a coalgebra for functor

T X = Date ×Date ×R ×XR
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Classes as coalgebras

state space U
initial condition ε ∶ 2←Ð U

methods md ∶ (O ×U)I ←Ð U
attributes at ∶ A←Ð U

i.e., class is a coalgebra for functor

T X = A × (O ×X )I

whose initial states verify ε.
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Classes as coalgebras

More generally, as methods are typically partial functions or even
arbitrary relations:

T X = A × ((O ×X ) + 1)I

T X = A ×P(O ×X )I

respectively. Both cases, are subsumed by

⟨at,md⟩ ∶ A ×B(O ×U)I ←Ð U

where functor T is parametric in a strong monad B

leading to a calculus for class composition
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Prototyping classes

• mechanism for registering and selecting class instances

• step-by-step interaction with each specific instance through
activation of the corresponding ⟨at,md⟩ operation

• class composition shapes a fragment of a Class Diagram as a
coalgebra itself
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An calculus of classes

⟨atp,mdp⟩ ∶ A × (B (O ×Up))I ←Ð Up

• Three tensor products:
⊠ (synchronous product), ⊞ (choice) and � (concurrent)

• Attributes are always observable (herefore are composed in a
multiplicative context)

• Initial conditions are joined by logical conjunction

• Rich calculus: properties expressed as T-bisimulation
equations



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Parallel

p ⊠ q = ⟨γp⊠q, ⟨atp⊠q,mdp⊠q⟩⟩

where

γp⊠q = U ×V
γp×γq // 2 × 2

∧ // 2

atp⊠q = U ×V
atp×atq // A ×A′

mdp⊠q = U ×V × (I × I ′) m // (U × I ) × (V × I ′)
mdp×mdq // B(O ×U) ×B(O ′ ×V )

δ // B((O ×U) × (O ′ ×V ))
Bm // B((O ×O ′) × (U ×V ))
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Choice

p ⊞ q = ⟨γp⊞q, ⟨atp⊞q,mdp⊞q⟩⟩
where

mdp⊞q = U ×V × (I + I ′) △×id // (U ×V )2 × (I + I ′)
≅ // (U × I ) ×V + (V × I ′) ×U

f // B(O ×U) ×V +B(O ′ ×V ) ×U

τr×τr // B((O ×U) ×V ) +B((O ′ ×V ) ×U)
≅ // B(O × (U ×V )) +B(O ′ × (U ×V ))
g // B((O +O ′) ×U ×V ) +B((O +O ′) ×U ×V )
▽ // B((O +O ′) ×U ×V )
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Choice

where

f
abv= mdp × id +mdq × id

g
abv= B(ι1 × id) +B(ι2 × id)

△ = ⟨id, id⟩
▽ = [id, id]
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Wrapping

A mechanism for input/output (for class adaptation)

mdp[f ,g] = Up × I ′ id×fÐÐÐ→ Up × I
mdpÐÐÐ→ B(Up ×O)

B(id×g)ÐÐÐÐ→ B(Up ×O ′)

where f ∶ I ←Ð I ′ and g ∶ O ′ ←Ð O.
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Properties

(p[f ,g])[f ′,g ′] ∼ p[f ⋅ f ′,g ′ ⋅ g]

because

md(p[f ,g])[f ′,g ′]
∼ { wrapping definition }

B(id × g ′) ⋅mdp[f ,g] ⋅ (id × f ′)
∼ { wrapping definition }

B(id × g ′) ⋅B(id × g ′) ⋅mdp ⋅ (id × f ) ⋅ (id × f ′)
∼ { × is a functor }

B(id × g ′ ⋅ g) ⋅mdp ⋅ (id × f ⋅ f ′)
∼ { wrapping definition }

mdp[f ⋅f ′,g ′⋅g]
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Properties

Moreover,

• ⊠, ⊞ and � are associative as well as commutative (if B is a
commutative monad)

• All properties are stated up to bisimilarity:

proof technique:
bisimilarity is witnessed by any morphism linking both sides
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Properties

mdq⊠p[s,s] ⋅ (s × id)
= { ⊠ and wrapping definition }

B(id × s) ⋅Bm ⋅ δl ⋅ (aq × ap) ⋅m ⋅ (id × s) ⋅ (s × id)
= { s natural and s ⋅m = m ⋅ (s × s) }

B(id × s) ⋅Bm ⋅ δl ⋅ s ⋅ (ap × aq) ⋅m
= { δl , δr interchangeable }

B(id × s) ⋅Bm ⋅Bs ⋅ δr ⋅ (ap × aq) ⋅m
= { routine: m ⋅ s = (s × s) ⋅m }

B(id × s) ⋅B(s × s) ⋅Bm ⋅ δr ⋅ (ap × aq) ⋅m
= { B commutative }

B(id × s) ⋅B(s × s) ⋅Bm ⋅ δl ⋅ (ap × aq) ⋅m
= { s = s○, ⊠ and wrapping definition }

B(s × id) ⋅mdp⊠q
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Constraints as invariants
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Constraints as invariants

OCL constraint
balance > 0

in CD is supposed to be preserved along the system life.
Formally, it is incorporated in the semantics as an invariant

An invariant [Jac, 06] for a coalgebra c ∶ X → T(X ) is a
predicate P ⊆ X satisfying for all x ∈ X ,

x ∈ P ⇒ c(x) ∈ Pred(T)(P).

where Pred(T)(P) stands for the lifting of predicate P via T
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Constraints as invariants

Making the definition more amenable to formal calculation we

• represent predicates as coreflexives, i.e., fragementes of id:

y ΦX x ≡ y = x ∧ x ∈ X

• identify the lifting Pred(T)(P) of predicate P with its image
through relator T

cf Calculating invariants as coreflexive bisimulations
(BOS, 08)
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Constraints as invariants

⟨∀ x ∶∶ x ∈ P ⇒ c(x) ∈ Pred(T)(P)⟩
≡ { ∀-one point rule}

⟨∀ y , x ∶ y = x ∶ x ∈ P ⇒ c(y) = c(x) ∧ c(x) ∈ Pred(T)(P)⟩
≡ { ∀-trading }

⟨∀ y , x ∶∶ y = x ∧ x ∈ P ⇒ c(y) = c(x) ∧ c(x) ∈ Pred(T)(P)⟩
≡ { predicates as coreflexives }

⟨∀ y , x ∶∶ y ΦP x ⇒ c(y) ΦPred(T)(P) c(x)⟩
≡ { rule (f b)R(g a) ≡ b(f ○ ⋅ R ⋅ g)a }

⟨∀ y , x ∶∶ y ΦP x ⇒ y(c○ ⋅ΦPred(T)(P) ⋅ c)x⟩
≡ { inclusion }

ΦP ⊆ c○ ⋅ΦPred(T)(P) ⋅ c
≡ { shuntig rule and relator definition }

c ⋅ΦP ⊆ T ΦP ⋅ c
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Constraints as invariants

Therefore

[[balance > 0]] =
[[Membership]] ⋅Φbalance>0 ⊆ T Φbalance>0 ⋅ [[Membership]]

• Constraints stand for proof obligations when transforming
Class Diagrams
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A calculus of CD constraints
Instantiating the proof obligation to T, yields

⟨at,md⟩ ⋅ΦP ⊆ A ×B(O ×ΦP)I ⋅ ⟨at,md⟩
≡ { split fusion and absorption}

⟨at ⋅ΦP ,md ⋅ΦP⟩ ⊆ ⟨at,B(O ×ΦP)I ⋅md⟩
≡ { structural equality}

at ⋅ΦP ⊆ at

md ⋅ΦP ⊆ B(O ×ΦP)I ⋅md

Initial conditions also satisfies constraints, i.e.,

∀u∈U . γ u ⇒ P u

or, in a point-free format

Φγ ⊆ ΦP
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A calculus of CD constraints

Constraints are preserved by combinators, ⊞, ⊠ and �, ie,

atp⊠q ⋅Φ(P×P ′) ⊆ atp⊠q
mdp⊠q ⋅Φ(P×P ′) ⊆ B((O ×O ′) ×Φ(P×P ′))I×I

′ ⋅mdp⊠q

• the first inequality holds because Φ(P×P ′) is a coreflexive.

• to prove the second we reason
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A calculus of CD constraints

mdp⊠q ⋅ (Φ(P×P ′) × (id × id))
= { definition of ⊠ and Φ(P×P′) = ΦP × ΦP′}

Bm ⋅ δ ⋅ (mdp ×mdq) ⋅m ⋅ ((ΦP ×ΦP ′) × (id × id))
= { m is a natural transformation and × is a functor}

Bm ⋅ δ ⋅ ((mdp ⋅ (ΦP × id)) × (mdq ⋅ (id ×ΦP ′))) ⋅m
⊆ { p (resp., q) preserves P (resp., P′)}

Bm ⋅ δ ⋅ ((B(O ×ΦP) ⋅mdp) × (B(O ′ ×ΦP ′) ⋅mdq)) ⋅m
= { δ is a natural transformation and × is a functor}

Bm ⋅B((O ×ΦP) × (O ′ ×ΦP ′)) ⋅ δ ⋅ (mdp ×mdq) ⋅m
= { m is a natural transformation}

B((O ×O ′) × (ΦP ×ΦP ′)) ⋅Bm ⋅ δ ⋅ (mdp ×mdq) ⋅m
= { definition of ⊠}

B((O ×O ′) × (ΦP ×ΦP ′)) ⋅mdp⊠q
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Associations

• Types of relationships between sets of instances

• Invariants over a coalgebra representing the whole diagram
dynamics (the diagram engine) over Pop ×Assocs, where

Pop = P(Ref)ClassId

Assocs = P(Assoc)AId

Assoc = ClassId × ClassId ×P(Ref × Ref)
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Fundamental property
Associations are total with respect to the actual sets of instances
of the classes involved.

How can this be expressed?

Let S = (ρ,α) be the state space of the diagram engine coalgebra,
and for all association identifier a, let α(a) = (c,d , r). The
association is total iff

idρ(c) ⊆ ker r

where

ker R = R○ ⋅ R
img R = R ⋅ R○

(cf, the pointfree calculus of binary relations (BH93))
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Specification of associations

• one-to-one: ker r ⊆ idρ(c) (injectivity), img r ⊆ idρ(d)
(simplicity), and totality leads to

ker r = idρ(c) ∧ img r ⊆ idρ(d)

• many-to-one: img r ⊆ idρ(d), which combined with totality
yields

r is a total function

• one-to-many: img r○ ⊆ idρ(c) which is equivalent, by duality, to
ker r ⊆ idρ(c). Together with totality yields

ker r = idρ(c)

• many-to-many: any relation does the job.
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Specification of associations

• at most m in the source class

∀p∈dom r . #(r ⋅ {p}) ≤ m

• at most n in the target class

∀q∈rng r . #({q} ⋅ r) ≤ n

Note:
p is a coreflexive pair, composition r ⋅ {p} corresponds to relation
{(y , π1 p)∣ (y , π1 p) ∈ r}.
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The diagram engine

• associations are properties of binary relations between class
instances

• to prototype a CD entails the need to refer explicitly to the
sets of class instances as well as to the actual relations
between instances

• ... leads to a coalgebra over Pop ×Assocs to represent the
dynamics of the whole diagram

• properties of associations should be regarded as invariants for
such a coalgebra

But what is its shape?
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The diagram engine

Basic operations required:

• create new instances:
new ∶ U × Ref ←Ð U × ClassId

• remove instances:
del ∶ U ←Ð U × Ref

• connect a class instance to another in the context of a
declared association:
connect ∶ U ←Ð U ×AId × (ClassId × Ref)2

• disconnect a class instance from an association:
disconnect ∶ U ←Ð U × Ref ×AId
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The diagram engine

... which leads to

(U, δ ∶ (Ref + 1) ×U)IP ←Ð U)

where

IP = ClassId + Ref + (AId × ClassId × Ref)2 + (Ref ×AId)

represents the input parameters for the four operations.

• Initial conditions can be specified to characterize δ initial valid
states (for example, forcing initially all sets of instances to be
empty).
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The diagram engine

Haskell prototyping

• available at both class and diagram levels

• requires prototyping srategies to deal with unstable states wrt
δ invariants (ie, association properties): for example, after the
creation of a new instance and before its addition to the
relevant associations;

• in particular, on creating or removing a class instance, this
forces δ to be not observabed until the associated operations
of connecting or disconnecting terminate,
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Future work

Where shall I go from here?, asked Alice.
That depends a great deal on where you would like to get to, said

the Cat.

Lewis Caroll
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Current & future work

• Current work (at the prototyping level):
• plan significative case studies to assess empirically the merits

of the approach and library
• introduce coalgebraic refinement as another dimension in the

calculus of class diagrams and an option at prototyping level;

• Long term: the quest for effective calculi
• deriving coalgebraic calculi for different types of UML diagrams

(e.g. class diagrams, statecharts and sequence diagrams);
• combining them and their ”canonical” prototypers.
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