
Bringing class diagrams to life

Luis S. Barbosa & Sun Meng

DI-CCTC, Minho University, Braga & CWI, Amsterdam

UML & FM Workshop 2009
Rio de Janeiro

8 December, 2009



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Formal Methods

proofs

ppppppppppp

OOOOOOOOOOOO

problems structures

models prototypes

certification

NNNNNNNNNNN

nnnnnnnnnnnn

• Modelling: choose the right abstractions for a problem domain

• Calculation: express such abstractions in a mathematical
framework rich enough to enable rigorous reasoning

• Prototyping: execute models to simulate systems’ behavior
and gather empirical evidence about their properties



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

UML & FM

”a graphical language for visualizing, specifying, constructing, and
documenting the artifacts of a software-intensive system”.

OMG

• The number and diversity of diagrams expressing a UML
model makes it difficult to base its semantics on a single
framework.

• Some of the formalisations proposed in the literature are
essentially descriptive and difficult to use in proofs.



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

A research agenda

The quest for a precise notion of behaviour and a calculational
approach to behavioural equivalence and refinement suggested the
adoption of a

coalgebraic framework

• standard notion of systems’ behaviour in terms of the
bisimilarity relation induced by each signature functor, upon
which properties of UML models can be formulated and
checked.

• built on top of a characterisation by an universal property
which entails the foundations for derived calculi

• uniform setting for reasoning about the diversity of UML
models and their inter-relations



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Plan

• Motivation

• Why coalgebras?

• Class as coalgebras

• Composition

• Constraints

• Associations

• Future work



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Coalgebras

a lens: ◯⌢◯

a tool box:
⋒ee

an observation structure: ◯⌢◯ universe
α←Ð universe

an assembly process: artifact
d←Ð

⋒ee
artifact

α ∶ TU ←Ð U

• coalgebras describe transition systems

• and abstract behaviour types as (final) coalgebras

• emphasis is on observation



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Coalgebras

a lens: ◯⌢◯

a tool box:
⋒ee

an observation structure: ◯⌢◯ universe
α←Ð universe

an assembly process: artifact
d←Ð

⋒ee
artifact

α ∶ TU ←Ð U

• coalgebras describe transition systems

• and abstract behaviour types as (final) coalgebras

• emphasis is on observation



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Coalgebraic modelling

... the mathematics of state-based systems (Jacobs,07)

e.g., streams (TX = A ×X ) and (different types of) automata

in our own research in UML semantics

• software components (Barbosa,01): TX = B(X ×O)I

• objects (Cruz, Barbosa, Oliveira, 05): TX = A ×B(X )I

• statecharts (Meng, Niaxiao, Barbosa,04): TX = B(X ×PE)E

• UML sequence diagrams (Meng & Barbosa,08): TX = X Σ

• UML class diagrams (Barbosa & Meng,08): ...



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Coalgebraic modelling

... the mathematics of state-based systems (Jacobs,07)

e.g., streams (TX = A ×X ) and (different types of) automata

in our own research in UML semantics

• software components (Barbosa,01): TX = B(X ×O)I

• objects (Cruz, Barbosa, Oliveira, 05): TX = A ×B(X )I

• statecharts (Meng, Niaxiao, Barbosa,04): TX = B(X ×PE)E

• UML sequence diagrams (Meng & Barbosa,08): TX = X Σ

• UML class diagrams (Barbosa & Meng,08): ...



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Coalgebras as T-shaped transition structures

TU

Th
��

U
βoo

h
��

TV V
αoo

i.e. Th ⋅ β = α ⋅ h

U

h
��

U
β←Ðoo

h
��

V V
α←Ðoo

i.e. h ⋅ β←Ð = α←Ð ⋅h



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Coalgebras as T-shaped transition structures

α←Ð def= ∈F ⋅ α

where ∈T is functorial membership, a natural transformation given
by

∈Id = id

∈K = �
∈T1×T2 = (∈T1 ⋅π1) ∪ (∈T2 ⋅π2)
∈T1+T2 = [∈T1 , ∈T2]
∈T1⋅T2 = ∈T2 ⋅ ∈T1

∈TK = ⋃
k∈K

∈T ⋅βk (where βk f = f k)

∈P = ∈



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Morphisms preserve and reflect transitions

Th ⋅ d = c ⋅ h
which entails

h ⋅ d←Ð = c←Ð ⋅h

i.e., the conjunction of inclusions

h ⋅ d←Ð ⊆ c←Ð ⋅h
c←Ð ⋅h ⊆ h ⋅ d←Ð

or, going pointwise,

v ′ d←Ð v ⇒ h v ′ c←Ð h v

u′ c←Ð h v ⇒ ∃v ′∈V . v ′ c←Ð v ∧ u′ = h v ′

morphisms entail (T-shaped) bisimilarity



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Class diagrams



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Class diagrams

A class diagram captures the static structure of a system, as a set
of classes and relationships between them.

Example

joined ∶ Date ←Ð U

lastHire ∶ Date ←Ð U

balance ∶ R←Ð U

pay ∶ U ←Ð UR

[[Membership]] = ⟨joined, lastHire,balance,pay⟩

which is a coalgebra for functor

T X = Date ×Date ×R ×XR



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Classes as coalgebras

state space U
initial condition ε ∶ 2←Ð U

methods md ∶ (O ×U)I ←Ð U
attributes at ∶ A←Ð U

i.e., class is a coalgebra for functor

T X = A × (O ×X )I

whose initial states verify ε.



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Classes as coalgebras

More generally, as methods are typically partial functions or even
arbitrary relations:

T X = A × ((O ×X ) + 1)I

T X = A ×P(O ×X )I

respectively. Both cases, are subsumed by

⟨at,md⟩ ∶ A ×B(O ×U)I ←Ð U

where functor T is parametric in a strong monad B

leading to a calculus for class composition



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Classes as coalgebras

More generally, as methods are typically partial functions or even
arbitrary relations:

T X = A × ((O ×X ) + 1)I

T X = A ×P(O ×X )I

respectively. Both cases, are subsumed by

⟨at,md⟩ ∶ A ×B(O ×U)I ←Ð U

where functor T is parametric in a strong monad B

leading to a calculus for class composition



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Prototyping classes

• mechanism for registering and selecting class instances

• step-by-step interaction with each specific instance through
activation of the corresponding ⟨at,md⟩ operation

• class composition shapes a fragment of a Class Diagram as a
coalgebra itself



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

An calculus of classes

⟨atp,mdp⟩ ∶ A × (B (O ×Up))I ←Ð Up

• Three tensor products:
⊠ (synchronous product), ⊞ (choice) and � (concurrent)

• Attributes are always observable (herefore are composed in a
multiplicative context)

• Initial conditions are joined by logical conjunction

• Rich calculus: properties expressed as T-bisimulation
equations



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Parallel

p ⊠ q = ⟨γp⊠q, ⟨atp⊠q,mdp⊠q⟩⟩

where

γp⊠q = U ×V
γp×γq // 2 × 2

∧ // 2

atp⊠q = U ×V
atp×atq // A ×A′

mdp⊠q = U ×V × (I × I ′) m // (U × I ) × (V × I ′)
mdp×mdq // B(O ×U) ×B(O ′ ×V )

δ // B((O ×U) × (O ′ ×V ))
Bm // B((O ×O ′) × (U ×V ))



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Choice

p ⊞ q = ⟨γp⊞q, ⟨atp⊞q,mdp⊞q⟩⟩
where

mdp⊞q = U ×V × (I + I ′) △×id // (U ×V )2 × (I + I ′)
≅ // (U × I ) ×V + (V × I ′) ×U

f // B(O ×U) ×V +B(O ′ ×V ) ×U

τr×τr // B((O ×U) ×V ) +B((O ′ ×V ) ×U)
≅ // B(O × (U ×V )) +B(O ′ × (U ×V ))
g // B((O +O ′) ×U ×V ) +B((O +O ′) ×U ×V )
▽ // B((O +O ′) ×U ×V )



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Choice

where

f
abv= mdp × id +mdq × id

g
abv= B(ι1 × id) +B(ι2 × id)

△ = ⟨id, id⟩
▽ = [id, id]



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Wrapping

A mechanism for input/output (for class adaptation)

mdp[f ,g] = Up × I ′ id×fÐÐÐ→ Up × I
mdpÐÐÐ→ B(Up ×O)

B(id×g)ÐÐÐÐ→ B(Up ×O ′)

where f ∶ I ←Ð I ′ and g ∶ O ′ ←Ð O.



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Properties

(p[f ,g])[f ′,g ′] ∼ p[f ⋅ f ′,g ′ ⋅ g]

because

md(p[f ,g])[f ′,g ′]
∼ { wrapping definition }

B(id × g ′) ⋅mdp[f ,g] ⋅ (id × f ′)
∼ { wrapping definition }

B(id × g ′) ⋅B(id × g ′) ⋅mdp ⋅ (id × f ) ⋅ (id × f ′)
∼ { × is a functor }

B(id × g ′ ⋅ g) ⋅mdp ⋅ (id × f ⋅ f ′)
∼ { wrapping definition }

mdp[f ⋅f ′,g ′⋅g]



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Properties

Moreover,

• ⊠, ⊞ and � are associative as well as commutative (if B is a
commutative monad)

• All properties are stated up to bisimilarity:

proof technique:
bisimilarity is witnessed by any morphism linking both sides



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Properties

mdq⊠p[s,s] ⋅ (s × id)
= { ⊠ and wrapping definition }

B(id × s) ⋅Bm ⋅ δl ⋅ (aq × ap) ⋅m ⋅ (id × s) ⋅ (s × id)
= { s natural and s ⋅m = m ⋅ (s × s) }

B(id × s) ⋅Bm ⋅ δl ⋅ s ⋅ (ap × aq) ⋅m
= { δl , δr interchangeable }

B(id × s) ⋅Bm ⋅Bs ⋅ δr ⋅ (ap × aq) ⋅m
= { routine: m ⋅ s = (s × s) ⋅m }

B(id × s) ⋅B(s × s) ⋅Bm ⋅ δr ⋅ (ap × aq) ⋅m
= { B commutative }

B(id × s) ⋅B(s × s) ⋅Bm ⋅ δl ⋅ (ap × aq) ⋅m
= { s = s○, ⊠ and wrapping definition }

B(s × id) ⋅mdp⊠q



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Constraints as invariants



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Constraints as invariants

OCL constraint
balance > 0

in CD is supposed to be preserved along the system life.
Formally, it is incorporated in the semantics as an invariant

An invariant [Jac, 06] for a coalgebra c ∶ X → T(X ) is a
predicate P ⊆ X satisfying for all x ∈ X ,

x ∈ P ⇒ c(x) ∈ Pred(T)(P).

where Pred(T)(P) stands for the lifting of predicate P via T



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Constraints as invariants

OCL constraint
balance > 0

in CD is supposed to be preserved along the system life.
Formally, it is incorporated in the semantics as an invariant

An invariant [Jac, 06] for a coalgebra c ∶ X → T(X ) is a
predicate P ⊆ X satisfying for all x ∈ X ,

x ∈ P ⇒ c(x) ∈ Pred(T)(P).

where Pred(T)(P) stands for the lifting of predicate P via T



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Constraints as invariants

Making the definition more amenable to formal calculation we

• represent predicates as coreflexives, i.e., fragementes of id:

y ΦX x ≡ y = x ∧ x ∈ X

• identify the lifting Pred(T)(P) of predicate P with its image
through relator T

cf Calculating invariants as coreflexive bisimulations
(BOS, 08)



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Constraints as invariants

⟨∀ x ∶∶ x ∈ P ⇒ c(x) ∈ Pred(T)(P)⟩
≡ { ∀-one point rule}

⟨∀ y , x ∶ y = x ∶ x ∈ P ⇒ c(y) = c(x) ∧ c(x) ∈ Pred(T)(P)⟩
≡ { ∀-trading }

⟨∀ y , x ∶∶ y = x ∧ x ∈ P ⇒ c(y) = c(x) ∧ c(x) ∈ Pred(T)(P)⟩
≡ { predicates as coreflexives }

⟨∀ y , x ∶∶ y ΦP x ⇒ c(y) ΦPred(T)(P) c(x)⟩
≡ { rule (f b)R(g a) ≡ b(f ○ ⋅ R ⋅ g)a }

⟨∀ y , x ∶∶ y ΦP x ⇒ y(c○ ⋅ΦPred(T)(P) ⋅ c)x⟩
≡ { inclusion }

ΦP ⊆ c○ ⋅ΦPred(T)(P) ⋅ c
≡ { shuntig rule and relator definition }

c ⋅ΦP ⊆ T ΦP ⋅ c



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Constraints as invariants

Therefore

[[balance > 0]] =
[[Membership]] ⋅Φbalance>0 ⊆ T Φbalance>0 ⋅ [[Membership]]

• Constraints stand for proof obligations when transforming
Class Diagrams



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

A calculus of CD constraints
Instantiating the proof obligation to T, yields

⟨at,md⟩ ⋅ΦP ⊆ A ×B(O ×ΦP)I ⋅ ⟨at,md⟩
≡ { split fusion and absorption}

⟨at ⋅ΦP ,md ⋅ΦP⟩ ⊆ ⟨at,B(O ×ΦP)I ⋅md⟩
≡ { structural equality}

at ⋅ΦP ⊆ at

md ⋅ΦP ⊆ B(O ×ΦP)I ⋅md

Initial conditions also satisfies constraints, i.e.,

∀u∈U . γ u ⇒ P u

or, in a point-free format

Φγ ⊆ ΦP



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

A calculus of CD constraints

Constraints are preserved by combinators, ⊞, ⊠ and �, ie,

atp⊠q ⋅Φ(P×P ′) ⊆ atp⊠q
mdp⊠q ⋅Φ(P×P ′) ⊆ B((O ×O ′) ×Φ(P×P ′))I×I

′ ⋅mdp⊠q

• the first inequality holds because Φ(P×P ′) is a coreflexive.

• to prove the second we reason



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

A calculus of CD constraints

mdp⊠q ⋅ (Φ(P×P ′) × (id × id))
= { definition of ⊠ and Φ(P×P′) = ΦP × ΦP′}

Bm ⋅ δ ⋅ (mdp ×mdq) ⋅m ⋅ ((ΦP ×ΦP ′) × (id × id))
= { m is a natural transformation and × is a functor}

Bm ⋅ δ ⋅ ((mdp ⋅ (ΦP × id)) × (mdq ⋅ (id ×ΦP ′))) ⋅m
⊆ { p (resp., q) preserves P (resp., P′)}

Bm ⋅ δ ⋅ ((B(O ×ΦP) ⋅mdp) × (B(O ′ ×ΦP ′) ⋅mdq)) ⋅m
= { δ is a natural transformation and × is a functor}

Bm ⋅B((O ×ΦP) × (O ′ ×ΦP ′)) ⋅ δ ⋅ (mdp ×mdq) ⋅m
= { m is a natural transformation}

B((O ×O ′) × (ΦP ×ΦP ′)) ⋅Bm ⋅ δ ⋅ (mdp ×mdq) ⋅m
= { definition of ⊠}

B((O ×O ′) × (ΦP ×ΦP ′)) ⋅mdp⊠q



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Associations

• Types of relationships between sets of instances

• Invariants over a coalgebra representing the whole diagram
dynamics (the diagram engine) over Pop ×Assocs, where

Pop = P(Ref)ClassId

Assocs = P(Assoc)AId

Assoc = ClassId × ClassId ×P(Ref × Ref)



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Fundamental property
Associations are total with respect to the actual sets of instances
of the classes involved.

How can this be expressed?

Let S = (ρ,α) be the state space of the diagram engine coalgebra,
and for all association identifier a, let α(a) = (c,d , r). The
association is total iff

idρ(c) ⊆ ker r

where

ker R = R○ ⋅ R
img R = R ⋅ R○

(cf, the pointfree calculus of binary relations (BH93))



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Specification of associations

• one-to-one: ker r ⊆ idρ(c) (injectivity), img r ⊆ idρ(d)
(simplicity), and totality leads to

ker r = idρ(c) ∧ img r ⊆ idρ(d)

• many-to-one: img r ⊆ idρ(d), which combined with totality
yields

r is a total function

• one-to-many: img r○ ⊆ idρ(c) which is equivalent, by duality, to
ker r ⊆ idρ(c). Together with totality yields

ker r = idρ(c)

• many-to-many: any relation does the job.



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Specification of associations

• at most m in the source class

∀p∈dom r . #(r ⋅ {p}) ≤ m

• at most n in the target class

∀q∈rng r . #({q} ⋅ r) ≤ n

Note:
p is a coreflexive pair, composition r ⋅ {p} corresponds to relation
{(y , π1 p)∣ (y , π1 p) ∈ r}.



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

The diagram engine

• associations are properties of binary relations between class
instances

• to prototype a CD entails the need to refer explicitly to the
sets of class instances as well as to the actual relations
between instances

• ... leads to a coalgebra over Pop ×Assocs to represent the
dynamics of the whole diagram

• properties of associations should be regarded as invariants for
such a coalgebra

But what is its shape?



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

The diagram engine

Basic operations required:

• create new instances:
new ∶ U × Ref ←Ð U × ClassId

• remove instances:
del ∶ U ←Ð U × Ref

• connect a class instance to another in the context of a
declared association:
connect ∶ U ←Ð U ×AId × (ClassId × Ref)2

• disconnect a class instance from an association:
disconnect ∶ U ←Ð U × Ref ×AId



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

The diagram engine

... which leads to

(U, δ ∶ (Ref + 1) ×U)IP ←Ð U)

where

IP = ClassId + Ref + (AId × ClassId × Ref)2 + (Ref ×AId)

represents the input parameters for the four operations.

• Initial conditions can be specified to characterize δ initial valid
states (for example, forcing initially all sets of instances to be
empty).



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

The diagram engine

Haskell prototyping

• available at both class and diagram levels

• requires prototyping srategies to deal with unstable states wrt
δ invariants (ie, association properties): for example, after the
creation of a new instance and before its addition to the
relevant associations;

• in particular, on creating or removing a class instance, this
forces δ to be not observabed until the associated operations
of connecting or disconnecting terminate,



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Future work

Where shall I go from here?, asked Alice.
That depends a great deal on where you would like to get to, said

the Cat.

Lewis Caroll



Introduction Why coalgebras? Classes as coalgebras Composition Constraints Associations Conclusions

Current & future work

• Current work (at the prototyping level):
• plan significative case studies to assess empirically the merits

of the approach and library
• introduce coalgebraic refinement as another dimension in the

calculus of class diagrams and an option at prototyping level;

• Long term: the quest for effective calculi
• deriving coalgebraic calculi for different types of UML diagrams

(e.g. class diagrams, statecharts and sequence diagrams);
• combining them and their ”canonical” prototypers.


	Introduction
	Why coalgebras?
	Classes as coalgebras
	Composition
	Constraints
	Associations
	Conclusions

