Building Synchronous DataFlow
graphs with UML & MARTE/CCSL

F. Mallet, J. DeAntoni, C. André, R. de Simone

Aoste - INRIA/I3S

Université de Nice Sophia Antipolis

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

UML & Formal methods

J Ambiguity and structural properties of basic sequence

. ol 02 03
diagrams llalle] i
o2 nm2
= |nteractions + trace I3 3
i e It

 Extending statecharts with process algebra operators
= Untimed StateMachines + CSP o o

uuuuuuuuu

eeeeeeeeee

- UML Behavioral con5|stency checking usmg mstantlable
Petri Nets == |

= Activities + PN

 Timing analysis and validation Wlth UML
= StateMachines + Timed automata

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

Several interpretations

Iml ?ml

m2 ’m2
linear > " .
’m4@ Im4

I:ml _

3m3

4:m4

emission > e
m3 ?m3

UML2 >

causal >

 Compare their constraining power : level of concurrency

O Do we want to choose between all these ?
Use UML as a framework for combining all of these semantics

= Apply directors (like in Ptolemy) to choose the suitable semantics 3

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

Profiles to give the semantics

complaint(c : Compld. d : Deptld, u : Custld) ‘
Profile for CSP
« apply » l':
—{]
A [cJitter <= 10]
/ self.sendData()
timeout(tPeriod) /
/cOffset.set(0) begin
« ap p |y)3’—{> [cOffset <= 25] tcﬁjg:uec:dszgt(())zs)
Init Rl a), N WaitCycle end | ProduceData
Profile for OMEGA i)

[cditter <= 10]
/ informal "lost data"

 How to combine these two diagrams ?
= Put them next to each others ?

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

Proposition
J What
= Explicit execution semantics within the model
J How
= Annotate the ‘model

= Execution semantics defined with MARTE/CCSL

J UML Profile for MARTE and CCSL

= Modeling and Analysis of Real-Time and Embedded systems
* Time model => Timed Causality Semantics to UML models

= CCSL: MARTE Companion Modeling Language
* Apply to any (EMF) model => UML or not

O Example
= UML (activity/state machine): Synchronous DataFlow graphs
= CCSL Library for SDF

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

CCSL - Polychronous systems

 Clock Model
= Clock C=(Z, <), infinite ordered set of instants
» Discrete-time clocks: 7 is discrete and indexed by N*

1 2 3
A @ O O >
1 2 3
B O O O >
1 2 3
C —@ O O >
6

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

CCSL - Polychronous systems
 Clock Model

= Clock C=(Z, <), infinite ordered set of instants
» Discrete-time clocks: 7 is discrete and indexed by N*
= |nstant relations: coincidence, (strict) precedence, exclusion

= Clock relations:

« infinitely many instant relations according to predefined patterns
(periodicity, alternation, sampling, ...)

4 \ 1 O =
".: /\ O ~

precedence \ coincidence
7

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

CCSL - Polychronous systems

 Clock Model (static)
= Clock C=(Z, <), infinite ordered set of instants

= [nstant/clock relations = constraints
d Time system (dynamic)
= Clocks = set of boolean variables
= Constraints = set of boolean equations => SAT problem

Event structures

A [Winskel]

B Occurrence nets
[Petri]

C TaggedSystems

[LSV]

r

Building Synchronous Data Flow graphs with UML and MARTE/CCSL
CCSL clock constraint - precedence

Precedence
A precedes B (strict form) written as A< B
Semantics (DkDN*) Alk] < B[K]
%A = (B/é(:)'Bj(_'D)BD’D - reprl_ec;%ir?gtion
Simulation

: | S I N I
e M nn n 0 0

On-demand visualization
of precedence relation
between instants

Use: causal dependency or asynchronous communication

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

CCSL clock constraint - Synchrony

Synchrony
A =B written as A= B
Semantics (Dk DN*) A[k] _ B[k]
%A = B%:(DAD:DBD)— Logical
representation
Simulation / Clock tick
A 11Tl [Tl i [l

g 1JL_Tl [l

On-demand visualization
of coincidence relation
between instants

Use: synchronous evolutions

10

Building Synchronous Data Flow graphs with UML and MARTE/CCSL
CCSL clock constraint— filtering

Filtering

B = AfilteredBy w writtenas B|=

AV wwhere wB” (infinite) Binary Word

Semantics (OkON') B[K] = Al wt K]
wherew 1 k istheindex of thek™ 1inw
AL (w=1v) — Logical
JAvY W = (,8 DDAD) representation
Simulation
1 2 3 4 5 6 7 8
outpixe | | 11 | I
endOfLine ﬁ
. . w On-demand visualization
endOfLi neE OutPixel V(0". 1) of coincidence relation

between instants

Use: a special case of synchrony (on selected instants)

11

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

Synchronous Data Flow (SDF)

 Data Flow graphs
= Directed graphs
= Nodes = functions/computations
= Arcs = data path

 Synchronous Data Flow [E.A. Lee, 1987]

Static number of data samples consumed/produced by each node

Well-suited for multi-rate DSP algorithms with continuous stream of
data

Reduction of Kahn-Process Networks to allow static scheduling and
ease parallelization

Equivalent to Computation Graphs [Karp & Miller, 1966]
Popular due to Ptolemy developed in Berkeley

12

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

SDF Meta-model

*

{ SDFGraph e

arcs

actors | *
Arc
Actor nputs | INpUt INCOMING | 42y : UnlimitedNatural
t *
executes() actor enables() read()
’ write()
actor I/0
] outgoing
weight: UnlimitedNatural
+ | Output

outputs

INodes are called actors
JArcs have a delay

dInput/Output have a weight
= Number of data samples consumed/produced

13

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

SDF Example

J Equivalent to a Marked-Event Graph
= Conflict-free Petri Net

= Static scheduling: AABAAB

CC
14

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

How to model SDF graphs in UML ?
)

o)

DF

e

o_ab

(

SDF

~

lfr"
A }
Oab

1

tab

Where Is the semantics ?
|s that compatible with the UML semantics ?

A

l

‘L.—;L.

CCSL makes the semantics explicit ...

o cb| | i be

-

J

... within the

L Ocb

lbe
-

model

‘ C

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

CCSL Library for SDF (1/2)

J SDF J CCSL
= Actor A = Clock A;
= TokenT = Clock write, read;
write delay read def token(clock write, clock read. int delay) =
—T—C write E (read delayedFor delay)
= Input | o
weight | ;) . s
> actor i def input(clock actor, clock read, int weight) =
read \\\ __________ /,: (read by weight) | < | actor
= Outputo
{ \} Weight def output(clock actor, clock write, int weight) =
| actor > . - w
| 0 lwrite actor [=] (write filteredBy (1.0vaht~1)*)

Tt 16

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

CCSL Library for SDF (2/2)

JSDF
’ : out in ;/ |
. source [} >0 target
|) delay |)
JCCSL

def arc(int delay, clock source, int out, clock target, int in) =

output(source, write, out): token(write. read, delay): input(target, read, in)

17

Building Synchronous Data Flow graphs with UML and MARTE/CCSL
Example

(] 1.0 1 JL LTI
B S e

~,

: B (]I

e

Building Synchronous Data Flow graphs with UML and MARTE/CCSL
Conclusion

J (UML) Models must come with

= A meta-model to describe the structural/composition rules
= An explicit execution semantics

1 CCSL can be used for describing

= Temporal patterns
= Causal relationships

JMARTE: attach CCSL specifications to UML models

dTimeSqguare can

= execute CCSL specifications

= Animate DI2 models in Papyrus

= http://www.inria.fr/sophia/aoste/time_square/

19

