
Building Building SynchronousSynchronous DataFlowDataFlow
graphs graphs withwith UML & MARTE/CCSLUML & MARTE/CCSL

F. Mallet, J. DeAntoni, C. André, R. de Simone

Aoste - INRIA/I3S

Université de Nice Sophia Antipolis

2

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

UML & Formal methodsUML & Formal methods

� Ambiguity and structural properties of basic sequence
diagrams
� Interactions + trace

� Extending statecharts with process algebra operators
� Untimed StateMachines + CSP

� UML Behavioral consistency checking using instantiable
Petri Nets
� Activities + PN

� Timing analysis and validation with UML
� StateMachines + Timed automata

3

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

� Compare their constraining power : level of concurrency
� Do we want to choose between all these ?

� Use UML as a framework for combining all of these semantics

� Apply directors (like in Ptolemy) to choose the suitable semantics

linear

emission

UML2

causal

linearemissionUML2causal SeveralSeveral interpretationsinterpretations

4

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

ProfilesProfiles to give the semanticsto give the semantics

� How to combine these two diagrams ?
� Put them next to each others ?

« apply »

Profile for OMEGA

« apply »

Profile for CSP

5

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

PropositionProposition
� What

� Explicit execution semantics within the model

� How
� Annotate the meta-model (not there yet)
� Execution semantics defined with MARTE/CCSL

� UML Profile for MARTE and CCSL
� Modeling and Analysis of Real-Time and Embedded systems

• Time model => Timed Causality Semantics to UML models
� CCSL: MARTE Companion Modeling Language

• Apply to any (EMF) model => UML or not

� Example
� UML (activity/state machine): Synchronous DataFlow graphs
� CCSL Library for SDF

6

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

CCSL CCSL –– PolychronousPolychronous systemssystems

� Clock Model
� Clock C=〈I, ≺〉, infinite ordered set of instants

• Discrete-time clocks: I is discrete and indexed by ℕ*

7

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

CCSL CCSL –– PolychronousPolychronous systemssystems
� Clock Model

� Clock C=〈I, ≺〉, infinite ordered set of instants
• Discrete-time clocks: I is discrete and indexed by ℕ*

� Instant relations: coincidence, (strict) precedence, exclusion
� Clock relations:

• infinitely many instant relations according to predefined patterns
(periodicity, alternation, sampling, …)

8

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

CCSL CCSL –– PolychronousPolychronous systemssystems

� Clock Model (static)
� Clock C=〈I, ≺〉, infinite ordered set of instants

� Instant/clock relations = constraints

� Time system (dynamic)
� Clocks = set of boolean variables
� Constraints = set of boolean equations => SAT problem

Event structures
[Winskel]

Occurrence nets
[Petri]

TaggedSystems
[LSV]

9

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

CCSL clock constraint CCSL clock constraint -- precedenceprecedence
Precedence

A precedes B (strict form) written as

() [] []*k A k B k∀ ∈ pN

A Bp

Semantics

() ()()
� �()

A B

A B B

β χ χ

β

=

= ⇒ ¬

�

� �
� �� �

p

Simulation

Logical
representation

Use: causal dependency or asynchronous communication

On-demand visualization

of precedence relation

between instants

10

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

CCSL clock constraint CCSL clock constraint -- SynchronySynchrony
Synchrony

A = B written as

() [] []*k A k B k∀ ∈ ≡N

A B=
Semantics

� � � �()A B A B== =� �
� �� �

Simulation

Logical
representation

Use: synchronous evolutions

11

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

CCSL clock constraintCCSL clock constraint–– filteringfiltering
Filtering

B = A filteredBy w written as

() []*

thwhere is the index of the 1 in

k B k A w k

w k k w

 ∀ ∈ ↑ 

↑

≡N

where (infinite) Binary WordB A w w ω= ∈B▼

Semantics

()
� � � �()

1.w v

A w A

β
β
=

= ∧
�

▼

Simulation

Logical
representation

Use: a special case of synchrony (on selected instants)

()70 .1endOfLine outPixel
ω

= ▼

12

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

SSynchronous ynchronous DData ata FFlow (low (SDFSDF))

� Data Flow graphs
� Directed graphs
� Nodes = functions/computations
� Arcs = data path

� Synchronous Data Flow [E.A. Lee, 1987]

� Static number of data samples consumed/produced by each node
� Well-suited for multi-rate DSP algorithms with continuous stream of

data
� Reduction of Kahn-Process Networks to allow static scheduling and

ease parallelization
� Equivalent to Computation Graphs [Karp & Miller, 1966]

� Popular due to Ptolemy developed in Berkeley

13

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

SDF MetaSDF Meta--modelmodel

�Nodes are called actors

�Arcs have a delay
�Input/Output have a weight

� Number of data samples consumed/produced

14

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

SDF ExampleSDF Example

�Equivalent to a Marked-Event Graph
� Conflict-free Petri Net
� Static scheduling: A A BA A

C C
B

15

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

How to model SDF graphs in UML ?How to model SDF graphs in UML ?

Where is the semantics ?
Is that compatible with the UML semantics ?

CCSL makes the semantics explicit …
… within the model

16

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

CCSL Library for SDF (1/2)CCSL Library for SDF (1/2)
� SDF

� Actor A

� Token T

� Input i

� Output o

� CCSL
� Clock A;

� Clock write, read;

17

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

CCSL Library for SDF (2/2)CCSL Library for SDF (2/2)

�SDF

�CCSL

18

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

ExampleExample

19

Building Synchronous Data Flow graphs with UML and MARTE/CCSL

ConclusionConclusion

�(UML) Models must come with
� A meta-model to describe the structural/composition rules
� An explicit execution semantics

�CCSL can be used for describing
� Temporal patterns
� Causal relationships

�MARTE: attach CCSL specifications to UML models
�TimeSquare can

� execute CCSL specifications
� Animate DI2 models in Papyrus
� http://www.inria.fr/sophia/aoste/time_square/

