
Lightweight Analysis of Access Control Models
with Description Logic

Christiano Braga
Universidade Federal Fluminense

Joint work with E. Hermann Hæusler, PUC-Rio

UML&FM’09

December 08th, 2009
Rio de Janeiro, Brazil

Motivation
I Previous work: validated code generation of access control

models to aspects.
I We have defined a model-to-model transformation from

access control models specified in the SecureUML modelling
language to aspects modeled in the AAC (aspects for access
control) modelling language.

<<Role>>

Test_Operator

<<Role>>

Test_Supervisor

<<Role>>

Test_Administrator

<<Entity>>

TRC

+owner: String

+scope: TypeOfScope

+name: String

+create(p_scope:TypeOfScope,p_owner:String,
 p_name:String)

+delete()

<<Permission>>

NewPr iva te

+create: AtomicExecute

p_owner = caller.name and p_scope = Private

<<Permission>>

NewGlobal

+create: AtomicExecute

p_owner = caller.name

Fig. 2. Modeling the access control requirements.

– the use of a specific method, isServiceGranted(topic), to test whether the
logged-in user belongs (either directly or indirectly) to the group associ-
ated with topic in the UserRights document; this method is provided by a
component IUserAdmGet.

To translate SecureUML+ComponentUML models to the company’s C++-
based technology, we proceeded as follows:

Step 1 In the UserRights document, we define as groups the roles depicted
in the diagram, preserving the hierarchy among them. For example, the
following XML code is part of the UserRights document that we have used
to translate the roles and their hierarchies specified in the model depicted in
Figure 2.

<VIRTUAL_USER_GROUPS>
<VIRTUAL_USER_GROUP name="L1">

<USER_GROUP name="Test_Administrator"/>
</VIRTUAL_USER_GROUP>

<VIRTUAL_USER_GROUP name="L2">
<USER_GROUP name="Test_Supervisor"/>

<VIRTUAL_USER_GROUP_REF name="L1"/>
</VIRTUAL_USER_GROUP>

<VIRTUAL_USER_GROUP name="L3">
<USER_GROUP name="Test_Operator"/>

<VIRTUAL_USER_GROUP_REF name="L2"/>
</VIRTUAL_USER_GROUP>

</VIRTUAL_USER_GROUPS>

Excerpt of the TRC policy as an instance of the
SecureUML metamodel

MagicDraw UML, 1-1 /Applications/MagicDraw/MagicDraw UML PE/samples/product features/Untitled1.mdzip SecureUMLMetaModel Jan 13, 2009 5:43:37 PM

-body : String

-language : String

AuthorizationConstraint

-default : Boolean

Role

CompositeAction

-default : Boolean

Permission

AtomicAction

Action Resource

User

ActionAssignment

-isassigned

*

-accesses

1..*

PermissionAssigment

-haspermission

*

-givesaccess

1

ResourceAssignment

-resource

1

-action

1..*

RoleHierarchy

-subrole

-superrole

ActionHierarchy

-subordinatedactions

-compositeaction
ConstraintAssignment

-constraints 1

-isconstraintby 0..1

UserAssignment

-hasrole *

-includes *

The transformation process

m ∈ SecureUML

ISecureUML(m)

��
τ // a ∈ AAC

IAAC (a)∧ISecureUML+AAC (m,a)

��

I where
I m and a are models instances of the metamodels of

SecureUML and AAC, respectively,
I τ is the transformation from SecureUML abstract syntax to

AAC abstract syntax, and
I IL represent the OCL invariants of the metamodel L.

Summary of our transformation approach

I Code generation is a model-to-model transformation.

I Validation: OCL invariants are applied to source and target
models and also to the pair formed by the source and target
models.

I OCL invariants from the source metamodel represent
well-formedness rules of a given model wrt. to the source
metamodel. The same for the target metamodel.

I The OCL invariants applied to the pair formed by the source
and target metamodels represent the specification of the
transformation. (We call such invariants the transformation
contract of τ .)

The model consistency problem

I Our validation approach only makes sense if the metamodels,
the source and target models involved in the transformation
are consistent.

I A consistent model is one that has a scenario in conformance
with it.

I Consistency, in the presence of OCL invariants, is, in general,
undecidable, since the problem reduces to decidability of
first-order logic formulæ.

DL formalization

I This is where DL comes into place.

I DL is a family of logics, fragments of FOL, designed to be
decidable and as efficient as possible.

I Each fragment allows for the specification and reasoning of
increasingly expressive theories.

I For instance, ALCN extends the ALN with general concept
negation.

SecureUML DL formalization

I In this work, we have formalized the SecureUML metamodel
in DL, together with its OCL invariants.

I This formalization allows for:
I consistency checking of SecureUML metamodel, proving it

allows for the specification of access control policies and
I consistency checking of a given access control policy m

expressed in SecureUML, that is, a model instance of the
SecureUML metamodel, proving that there are possible
scenarios of m.

I A combination of consistency checking, provided by DL,
together with the OCL validation, gives us more confidence
that the transformation is correct.

Mapping UML models to DL knowledge bases

I DL has two basic elements: concepts and roles.

I Concepts formalize classes and roles formalize association
ends.

I A DL knowledge base has two parts: a terminology box
(TBOX) and an assertion box (ABOX).

I The TBOX is described using concept (and role)
subsumptions, which is essentially concept (and role)
inclusion.

I The ABOX is described using constants that instantiate the
concepts and roles in the TBOX.

I A TBOX represents a UML class model and an ABOX
represents an instance model.

DL specification of SecureUML roles

I We started with a standard mapping (Berardi, Calvanesi and
de Giacomo) from UML class model to a TBOX.

MagicDraw UML, 1-1 /Applications/MagicDraw/MagicDraw UML PE/samples/product features/Untitled1.mdzip SecureUMLMetaModel Jan 13, 2009 5:43:37 PM

-body : String

-language : String

AuthorizationConstraint

-default : Boolean

Role

CompositeAction

-default : Boolean

Permission

AtomicAction

Action Resource

User

ActionAssignment

-isassigned

*

-accesses

1..*

PermissionAssigment

-haspermission

*

-givesaccess

1

ResourceAssignment

-resource

1

-action

1..*

RoleHierarchy

-subrole

-superrole

ActionHierarchy

-subordinatedactions

-compositeaction
ConstraintAssignment

-constraints 1

-isconstraintby 0..1

UserAssignment

-hasrole *

-includes *

giveaccess ≡ haspermission−

subrole ≡ superrole−

> v ∀haspermission.Permission u
∀giveaccess.Role

> v ∀superrole.Role u ∀subrole.Role
Permission v ∃giveaccess.Role u (≤ 1 givesaccess)

DL specification of the defaultRole invariant
I For each OCL invariant we have extended the TBOX resulting

from the application of the default mapping to the
SecureUML metamodel with new assertions.

I For the defaultRole invariant:
I The first four assertions specify that there exists only one

default Role.
I The last assertion specify that there exists a defualt Role in

the transitive closure of superrole.

context Role inv defaultRole :
self.allinstances()→ select(r | r.default)→ size() = 1
self.superrolePlus()→ exists(r | r.default)

> v ∀isdefault.A u ∀isdefault−.Role
∀id(>).A v ∃id(>).A

A ≡ (= 1 isdefault−).Role

(≤ 1 isdefault−).Role ≡ ¬>
Role ≡ ∃superrole.Role t ∃isdefault.A.

The ABOX of the role hierarchy for the TRC policy

Role(ta) Role(ts) Role(to) Role(dr)
hasdefaultRole(dr)
superrole(ta, ts) superrole(ts, to)
superrole(ts, dr) superrole(to, dr) superrole(ta, dr)

I Note that if a security policy p does not say anything about a
default role, for instance, our DL analysis would not complain
about it, that is, if the assertion hasdefaultRole(dr) is not
present in the knowledge base, the consistency check would
not complain.

Lessons learned

I OCL limitations: we can not prove general properties using
OCL lightweight validation, that is, executing OCL invariants
over instance models. With DL we can.

I DL limitations: due to DL open world semantics, in a given
ABOX, the absence of an individual does not prove a theory
wrong. With OCL we can.

I Lightweight OCL+DL validation is an interesting analysis
tool.

Final remarks

I We have presented a DL-based approach for the lightweight
analysis of access control policies.

I From this experiment we have learned that consistency check
and lightweight OCL validation are complementary analysis
techniques.

I We have applied a domain-specific approach for the DL
specification of OCL constraints. In the future, we would like
to relate the different DL logics with subsets of OCL
constructs.

