

UML Modeling and Formal Verification of Secure Group Communication Protocols

P. de Saqui-Sannes, T. Villemur, B. Fontan, S. Mota,

M.S. Bouassida, N. Chridi, I. Chrisment, L. Vigneron

pdss@laas.fr

UML-FM'09 Rio de Janeiro, RJ, Brasil 8/12/2009

Working together, a PMR terminal in hand

Challenges and Bottlenecks

- Secured Group Communication system (SGC)
 - Key-based security
 - Group management
 - Dynamic group
 - Hierarchy
- Architecture design and validation
 - Protocol mechanisms proposed by TelecomParis, UTC, LORIA
 - Model-based validation
 - Performance evaluation by LORIA (NS) and UTC (Matlab)
 - Security flaws detection (AVISPA @ LORIA)
 - Deadline violation detection (TURTLE @ LAAS-CNRS)
- A verification-centric UML method for SGC design
 - Reuse of AVISPA and TURTLE

UML method for SGC design

Pattern – Key Management

Pattern – Group Management

AVISPA

TURTLE: a Formal UML profile supported by TTool

Requirement capture

SysMLrequirement diagrams, chronograms

Automatic synthesis of observers

Use-case driven analysis, scenarios

Rendezvous and FIFO, Time intervals

Formal verification (RTL, CADP, UPPAL) Automatic synthesis of design diagrams

Object-oriented design Architecture, Behaviors

Object composition (process algebra) Synchronization actions, Time intervals

Formal verification (RTL, CADP, UPPAL)

Rapid prototyping Components, deployment nodes

Java annotations

Java and System C code generators

The Upgrade service

Upgrade: Formal Verification

Requirement	Limit duration	Upgrade protocol on
	(ms)	average-rate network
		(Execution time 331 ms)
Detecting an integrity	10 000	Widely validated
violation		
Detecting a replay	10 000	Widely validated
Accessing to a	350	Shortly validated
multimedia group		
Accessing to textual	60 000	Very widely validated
message groups		

Conclusions

A method for Secure Group Communication system design

- Requirement, analysis and design patterns
- A verification-centric method
- An annotated UML model with security and temporal requirements

SAFECAST: joint use of UML and formal verification tools

- UML has made communication among partners easier than expected
- Acknowledged benefits of formal verification
 - Security flaws were detected and fixed (HLPSL, AVISPA)
 - Secured configurations were eliminated because of unmet deadlines (TURTLE, TTool and RTL)
 - EADS has saved development time

Future work

- The method is not restricted to SAFECAST system
- Audio-video multicast streaming application within ad hoc networks
 - Quality of Service
- TURTLE & network coding

Acknowledgements

SAFECAST partners

AVISPA developers

TTool developer