
Formal Methods Integration
in Software Engineering

Isabelle Perseil, Laurent Pautet

Workshop UML&FM’2009 / ICFEM 2009
Rio de Janeiro, Brazil, December, the 8th, 2009

UML&FM’2009, Rio de Janeiro, Brazil 08/12/2009page 1 Isabelle PERSEIL

Contents

�Objectives of the C-Method (a new software
engineering method)

�Issues: from non formal to semi-formal, from semi-formal
to formal, from formal to semi-formal…

�General approach
� Define the abstraction levels
� Introduce intermediate languages to allow the management of the

overall process (seamless process, understandable)
� Make a round-trip between formal and semi-formal notations

�Conclusions

UML&FM’2009, Rio de Janeiro, Brazil 08/12/2009page 2 Isabelle PERSEIL

Objectives of the C-Method

� 1. A well-defined software development life-cycle with a seamless flow

� 2. A software development process adapted for DRES

� 3. A set of (standards) modeling notations (for each purpose,
requirements capture, architecture design, etc..)

� 4. A compositionality of these different notations to ensure they fit
together

� 5. The availability of real-time notations as to describe concurrency,
synchronization, etc

� 6. An early binding of software components to hardware components

� 7. A possible decomposition of the software architecture that is
amenable to processor allocation, schedulability and timing analysis

� 8. The integration of non-functional requirements

� 9. The integration of scheduling paradigms within the design process

� 10. Ease of use of the method, CASE tool support

UML&FM’2009, Rio de Janeiro, Brazil 08/12/2009page 3 Isabelle PERSEIL

Starting with the e lements of a
metamethod

The elements identification ensure the exhaustivene ss of all the necessary steps

UML&FM’2009, Rio de Janeiro, Brazil 08/12/2009page 4 Isabelle PERSEIL

Issues: dealing with heterogeneous
languages and their abstraction levels

abstraction

UML&FM’2009, Rio de Janeiro, Brazil 08/12/2009page 5 Isabelle PERSEIL

C-Method and its lifecycle
guided by the abstraction levels

Non Functional

Functional

Proofs / Verification

UML&FM’2009, Rio de Janeiro, Brazil 08/12/2009page 6 Isabelle PERSEIL

Detailing the abstraction phase (on the
functional part)

� A cognitive means to deal with
complexity (Jeff Kramer)
• Removing detail
• Identification of generalizations or

common features

Use Cases Model + a controlled language (RDL)

UseCase
Diagram

Initial Requirements Document

informal requirement

Use Case

Class

Sequence
Diagram

Actor

consistency Dictionary

UML&FM’2009, Rio de Janeiro, Brazil 08/12/2009page 7 Isabelle PERSEIL

Realizing the Implementation phase

� MDD approach (ACCORD/UML) on
descending phase of lifecycle

Concrete techniques:

� From MARTE to AADL
• Mapping MARTE � AADL
• ATL Transformations

� ATL : coding the transformations
rules inside modules

� Subset of xUML (fUML) + Action
semantics (concrete syntax)

� +CAL algorithm language
� ANTLR Ada code generation

techniques

Real-time PIM

Platform Specific Models Plateform Models

CORBA CCM,
EJB, XML/SOAP,
MW dédié

«component
»Syst1

«component
»Syst2

RegulatScre
en

« component
»SpeedRegulator

« component
»

»
RegulatScreen

«compone
nt

»
ControlRegul

Verification

Phase
d'introduction

Phase
de croissance

Phase
de maturité

Phase de déclin

Total
des

ventes

Temps

Scheduling &
WCET analysis

Test generation

Model Transformation

C
p

1

C
p

2

Code generation

UML&FM’2009, Rio de Janeiro, Brazil 08/12/2009page 8 Isabelle PERSEIL

Enforcing the formal methods integration:
a formal use-case driven method

formal uc

proofs
repository

PVS proof

Why specification

+CAL specification MARTE specification

AADL specificationAda program

Sq => Zq

integration

MARTE2AADL

Ocarina

SRM modeling framework

SW_interaction package

SwMutualExclusionResource

Concurrency_Control_Protocol
property

thread enters a critical region :

Get_Resource
(on the shared data component)

exit from a critical region:

Release_Resource

while ((Rank [q] / = 0) /\
((Rank [q] , q) <
(Rank [a_process] , a_process))
)

do skip ;
end while ;

exit when (Rank (q)=0)
or (Rank (a_process)>
(Rank (q))

or (a_process > q)

safety_property :
THEOREM invariant(LAMBDA(s:State)
: (NOT (s`pi2 = critical AND
s`pi1 = critical)))

while ((Rank [q] / = 0) /\
((Rank [q] , q) <
(Rank [a_process] , a_process)))

do ;
done ;

Complex

simple

UML&FM’2009, Rio de Janeiro, Brazil 08/12/2009page 9 Isabelle PERSEIL

PBSE approach: the proof tree

UML&FM’2009, Rio de Janeiro, Brazil 08/12/2009page 10 Isabelle PERSEIL

Proof-based use cases:
a sub-objectives technique

z

Z(a2) Z(n2)Z(k2)

Z(ah) z(kt) z(nu)

[S1] [S j] [Sq]

Root specification

.

.

proofs
repository[S] = ∪∪∪∪i∈∈∈∈{1,q} [S i]

«include» «include»«include»

«include» «include»«include»

sub-problem
specification

. . .

UML&FM’2009, Rio de Janeiro, Brazil 08/12/2009page 11 Isabelle PERSEIL

Approach: the sequent logic eases the sub-proofs representation

Proof-based use cases:
a sub-objectives technique

UML&FM’2009, Rio de Janeiro, Brazil 08/12/2009page 12 Isabelle PERSEIL

Conclusions and future works

� The C-Method is based upon the use of three
standards:
• +CAL/TAL+ for formal specification
• MARTE at the Analysis level
• AADL at the design level

� Model transformation and code generation ����

seamless process
• Formal methods are part of the transformation
• Understandable by the average engineer � reuse

� Other integration techniques: Hybridization (as
used for modeling discrete and continuous time
with the Chi language)

