
An integrated Multi-View
Model Evolution

Framework

Volker Stolz

2

Problem Description

• rCOS Modeler for use case-driven,
component based, development

• Uses UML (+ rCOS profile)

• Development process through
refinement/transformation

• Verification (model checking), code-
gen (Java), test-case generation
(MBT)

3

Where are the models?

•Possible views:

• There is no model—at least not until
you’re finished.

• There a (too) many models—many
models along the way to the result.

• There is only one model—but not the
one you expected!

4

Modeling Levels: OMG

Platform independent modelPlatform independent model

Platform specific modelPlatform specific model

Executable codeExecutable code

PIM-to-PSM:
“50-70% automation”

PSM-to-code:
“full automation”

CORBA, RMI, ...

Java, C++, ...

5

PIM: sub-divisions

PIMPIM

Requirements
Model

Requirements Requirements
ModelModel

Design
Model
Design Design
ModelModel

Componen
t Model

ComponenComponen
t Modelt Model

•Class model
•Contracts (relational functionality

specification)
•Dynamic behaviour (state machine,
sequence diagram)

••Class modelClass model
••Contracts (relational functionality Contracts (relational functionality

specification)specification)
••Dynamic behaviour (state machine,Dynamic behaviour (state machine,
sequence diagram)sequence diagram)

•Object (sequence)
diagrams
•OO designs (executable)

••Object (sequence) Object (sequence)
diagramsdiagrams
••OO designs (executable)OO designs (executable)

•Components
•Comp. sequence diagrams
•Composition/deployment

••ComponentsComponents
••Comp. sequence diagramsComp. sequence diagrams
••Composition/deploymentComposition/deployment

6

Level of abstraction

Hierarchy of components

Multi-v
iew

⊑

Class Diagrams

Interaction Diagram
State Machine Diagram

�

Publication

Contract

Implementation

Design

⊑

⊑

Functionality Specification

⊑

7

Creating Models
(UML style)

• Atomic actions:

• add child element

• update attribute

• delete child element

• (plus “pocket change” like primitive
types, multiplicities etc.)

Traditional model editing,
lather, rinse, repeat.

What about design decisions?

What about design decisions?

Applied patterns:

Applied patterns:

refactoring/refinement)?

refactoring/refinement)?

(Concurrent editing)

(Concurrent editing)

8

PIM: sub-divisions

PIMPIM

Requirements
Model

Requirements Requirements
ModelModel

Design
Model
Design Design
ModelModel

Componen
t Model

ComponenComponen
t Modelt Model

•Class model
•Contracts (relational functionality
specification)
•Dynamic behaviour (state machine,
sequence diagram)

••Class modelClass model
••Contracts (relational functionalityContracts (relational functionality
specification)specification)
••Dynamic behaviour (state machine,Dynamic behaviour (state machine,
sequence diagram)sequence diagram)

•Object (sequence)
diagrams
•OO designs

••Object (sequence) Object (sequence)
diagramsdiagrams
••OO designsOO designs

•Components
•Composition/deployment
••ComponentsComponents
••Composition/deploymentComposition/deployment

In
cr

em
en

ta
l

In
cr

em
en

ta
l

ch
an

ge

ch
an

ge

Revising design Revising design
decisions costly!decisions costly!

9

Transformations in rCOS

• Class model:

• “Usual suspects”, implemented:

• Expert Pattern, simple Auto-refine

• Manual refinement steps

• Abstraction (on the method-level)

• Integration (merge state machine into
“guarded designs”)

• Component/Use case: splitting into sub-
components/use cases (in progress)

10

Current setup (1)

Initial require-
ments model
from OOAD

11

Current setup (2)

Transformation

12

Transformations...

• ...are based on meta-model with
classes and associations/attributes.

• ... can be primitive actions
(add, delete, update).

• ...have formal parameters.
• ...can be chained: output of one

transformation is input for another one.
• ...have prerequisites.
• ...are refinements (proof!).

13

Updating a model through a
transformation

•Workflow:

• User selects transformation and
arguments. Example:
Expert pattern applied on sub-
expression within an operation.

• Check prerequisites. Here:
Find free method name in target
class.

• Compute and execute primitive
actions.

Model updated
Model updated

destructively!
destructively!

14

Alternative
• GUI only represents current state of model.

• Allow user to browse model before/after
transformation.

• Chaining and re-playing comes naturally.

• Develop independent transformations
independently.

• Primitive actions are singleton transformations,
corresponding to traditional editing steps!

• Final model described by (final) “chain” of
transformations.

Transformations become the model!Transformations become the model!
(+ initial model)(+ initial model)

15

Editing chains of
transformations

• Transformation as batch job.

• Achieving the desired output model
means changing the transformations.

• Inserting/removing a step influences
subsequent step because of
dependencies.

• Especially so when there are proof
obligations/proofs.

16

Example: Expert Pattern

Cashdesk::finishSale() {
[sale != null ⊢ sale.complete' = true];
var double sum;
sum := 0;
for (LineItem l : sale.lines) {

[⊢ sum' = sum + l.subtotal]
};
[⊢sale.total' = sum];
end sum
}

Cashdesk::finishSale()
{ sale.finishSale() }

Sale::finishSale() {
[⊢ complete' = true];
var double sum;
sum := 0;
for (LineItem l : lines) {

[⊢ sum' = sum + l.subtotal]
};
[⊢ total' = sum];
end sum
}

17

Things to consider
• Change to the (initial) spec of
Cashdesk::finishSale()
→ re-apply transformation.

• Change in the hierarchy of Sale
requiring to re-check prerequisites.

• There was no Sale::finishSale()
before—now other
transformations/editing actions may
depend on it.

18

Some observations
• Refinement-based modeling means developing a program

that will transform your model (what about strategies?).

• Model becomes data structure, transformation becomes
the model (Composition of transformations).

• Inherits many (interesting) problems and solutions from
programming/program analysis;
dependency tracking may have huge overhead?

• “Semantic overhead” from refinement setting.

• Presentation issues (GUI just a view; trans-formation
should be in-memory instead of on-disk).

• Multi-view: you may not be seeing whole model/entire
impact.

19

A quick word on proof
obligations

•Source of proof obligations:

• Prerequisites of transformations (semantic!).

• NOT for refinements themselves...

• ...except for manual refinement steps
(which syntactically substitute one design for
another).

• May be updated when re-running transformations.

•Proofs:

• Stored together with transformation.

• Re-checked when transformation is re-run.

• Needs to be updated/re-done when it fails.

20

Appealing visual
notation?

Trying out rCOS
• Eclipse Ganymede (3.4.2)

• rCOS Eclipse update site:

• http://rcos.iist.unu.edu/eclips
e/

• Download the example
models

21

TOPCASED

