
Comparing
Implicit Path Enumeration

and
Model Checking - based

WCET Analysis

Benedikt Huber, Martin Schöberl
Vienna University of Technology

benedikt@vmars.tuwien.ac.at
mschoebe@mail.tuwien.ac.at

mailto:benedikt@vmars.tuwien.ac.at�
mailto:mschoebe@mail.tuwien.ac.at�

Why consider Model Checking ?
 Instruction timing depends on execution history
 ILP – based WCET calculation
 Expressive constraints, efficient solvers
 Needs good abstractions and/or graph duplication to take

execution history into account

 Model Checking
 Use a model checker to calculate a WCET bound
 States generated on the fly, provide execution context
 No need to enumerate all paths
 Easy to model hardware
 Reports worst-case path

Determining the WCET using UPPAAL

 Control flow graph Timed Automaton
 Clocks represent elapsed time (global, basic block)
 Bounded integer variables
 Loop Counters
 Hardware State

 Guards on clocks and variables
 Model instruction timing
 Exclude infeasible paths

 Verify whether the task always finishes within T time units
 Binary search with known upper bound

Example: Loop with Branch Prediction

 Verify: A[](Task.E imply elapsed ≤ WCET)
 Find path: E<>(Task.E && elapsed == WCET)

 UPPAAL reports worst-case path: ACDABDACDABD…E

elapsed .. total elapsed time
t .. time spend in basic block
b .. state of branch predictor
cnt .. loop counter

Invariants
Timing Guards
Loop Guards
Clock Reset
Variable Update

Implementation Context
 New version of our WCET analysis tool for Java

processors
 Target: The Java Optimized Processor (JOP)
 But the approach also works for other platforms

 Analysis of Java byte code
 Close to target platform, but much easier than assembler
 Analysis: Call graph, Dynamic Dispatch, Loop Bounds

 Common Tool infrastructure
 CFG construction & analysis
 Report generation
 Microcode Analysis

Evaluation: IPET and Model Checking
 Target: JOP + variable block method cache (FIFO replacement)
 IPET
 Static cache approximation
 We use this property: If during the execution of some method, the

cache is guaranteed not to overflow, each method is loaded at most
once.

 Model Checking: Cache simulation
 Cache is an array of bounded integer variables
 Update on access, wait on miss

 Questions we wanted to answer
 Is model checking in principle capable of handling our applications ?
 Comparison of static cache approximation with cache simulation

Benchmark Results

 Method Cache: Simulation and Static Approximation
 Simulation does not scale well
 On evaluation platform, approximation is good enough

 +3% - +7% compared to simulation
 Took much longer to develop

JOP Apps Methods Calc. WCET IPET (s) Verify (s)

MatrixMult 3 1088497 0.01 0.23

CRC 6 191825 0.01 0.52

Lift 13 8355 0.01 0.18

UdpIp 28 129638 0.04 1.78

Kfl (8 blocks) 46 37963 0.13 31.77

Kfl (1 block) 0.57

Kfl (16 blocks) Timeout

Conclusion and Discussion
 IPET as ‘the standard method’ is a good idea
 Model Checking ?
 Use model checking for important code fragments
 Combine with Implicit Path Enumeration
 Well suited to distinguish tractable number of hardware states

 UPPAAL has a nice abstraction for time
 But only simple integer variables for hardware components
 Binary search could be eliminated

 Future Work
 Apply model checking to JOP multiprocessor
 Work on other processors

Thank you.

	�Comparing�Implicit Path Enumeration�and�Model Checking - based�WCET Analysis
	Why consider Model Checking ?
	Determining the WCET using uppaal
	Example: Loop with Branch Prediction
	Implementation Context
	Evaluation: IPET and Model Checking
	Benchmark Results
	Conclusion and Discussion
	Thank you.

