Sound and Efficient WCET Analysis in the Presence of Timing Anomalies

Jan Reineke¹, Rathijit Sen²

¹Saarland University, Saarbrücken
²University of Wisconsin, Madison

Workshop on WCET Analysis, Dublin 2009
Determine bounds on execution times of basic blocks
- Based on an abstract model of the hardware
- Either sound or efficient due to timing anomalies
- Usually most expensive part of WCET analysis
Model of Micro-Architectural Analysis

Cycle semantics:

Notation: Example:

\[s \rightarrow \iota \]

\[s' \rightarrow \iota \]

\[\text{max}(s, \iota_0 \ldots \iota_n) := \text{max}\{ t \mid s \rightarrow \iota_0 \ldots \iota_n s' \} \]

\[\text{max}(s_1, \iota_1 \iota_2) = 5 \]
Model of Micro-Architectural Analysis

Cycle semantics:

Instruction semantics:

Notation:

\[s \xrightarrow[t]{\iota_0...\iota_n} s' \]

\[\max(s, \iota_0 \dots \iota_n) := \max\{ t \mid s \xrightarrow[t]{\iota_0...\iota_n} s' \} \]

Example:

\[s_1 \xrightarrow[2]{\iota_1} s_2 \]

\[\max(s_1, \iota_1 \iota_2) = 5 \]
Model of Micro-Architectural Analysis

Cycle semantics:

Instruction semantics:

Notation:
\[s \xrightarrow{t_{\ell_0...\ell_n}} s' \]

\[\max(s, \ell_0 \ldots \ell_n) := \max\{ t \mid s \xrightarrow{t_{\ell_0...\ell_n}} s' \} \]

Example:
\[s_1 \xrightarrow{2} s_2 \]
\[\max(s_1, \ell_1 \ell_2) = 5 \]
Definition (Timing anomaly)

An instruction semantics has a \textit{timing anomaly} if there exists a sequence of instructions $\iota_0\iota_1 \cdots \iota_n$, and an abstract state s, such that

- there are states s_1, s_2, with $s \xrightarrow{\iota_0} s_1$ and $s \xrightarrow{\iota_0} s_2$, and $t_1 < t_2$, such that
- $t_1 + \max(s_1, \iota_1 \cdots \iota_n) > t_2 + \max(s_2, \iota_1 \cdots \iota_n)$.

Jan Reineke, Rathijit Sen
Idea: Precompute maximal difference in timing for pairs of states.
Discard states that cannot “overtake” others anymore.

“Locally exclude timing anomalies.”
Definition (Valid Δ)

A Δ function is valid, if for all pairs of states s_1, s_2 and for all instruction sequences $\iota_0 \ldots \iota_n$:

$$\Delta(s_1, s_2) \geq \max(s_1, \iota_0 \ldots \iota_n) - \max(s_2, \iota_0 \ldots \iota_n)$$

Discard s_1 if $\Delta(s_1, s_2) + t_1 \leq t_2$.
Discard s_2 if $\Delta(s_2, s_1) + t_2 \leq t_1$.
Computing Δ Functions

System of *difference* constraints:

For empty sequence of instructions:

$$\Delta(s_1, s_2) \geq 0$$

Recursive constraints:

$$\Delta(s_1, s_2) \geq t'_1 - t'_2 + \Delta(s'_1, s'_2)$$

if $s_1 \xrightarrow{t'_1} s'_1 \land s_2 \xrightarrow{t'_2} s'_2$ for some ι.

\longrightarrow Can be solved by a shortest paths computation.
Domino Effects

Least $\Delta(s_1, s_2)$ not always finite:

Definition (Domino effect)

An instruction semantics has a *domino effect* if there are two states s_1, s_2, such that for each $\Delta \in \mathbb{N}$ there is a sequence of instructions $\iota_0 \ldots \iota_n$, such that

$$\max(s_1, \iota_0 \ldots \iota_n) - \max(s_2, \iota_0 \ldots \iota_n) \geq \Delta.$$

But: Ratio $\frac{\max(s_1, \iota_0 \ldots \iota_n)}{\max(s_2, \iota_0 \ldots \iota_n)}$ always bounded.
Case Study

- Computed Δ function for simple processor with:
 - 2 instruction types
 - 2 functional units
 - execution times between 2 and 6 cycles
 - a 4 instruction fetch buffer

- Results:
 - 555 states
 - 97340 constraints
 - Δ function ranges from 0 through 7
Conclusions & Future Work

- Sound and efficient WCET analysis in the presence of timing anomalies, by
 - locally excluding timing anomalies, using
 - precomputed Δ functions.

- Computed Δ functions for relatively simple architectures.

Future work:
- Compute Δ functions for real-world architectures.
- Perform WCET analysis based on that basis.
- Explore further trade-offs between efficiency and precision.