Sound and Efficient WCET Analysis in the Presence of Timing Anomalies

Jan Reineke¹, Rathijit Sen²

¹Saarland University, Saarbrücken

²University of Wisconsin, Madison

Workshop on WCET Analysis, Dublin 2009

Timing Analysis Framework

- Determines bounds on execution times of basic blocks

- Usually most expensive part of WCET analysis

Model of Micro-Architectural Analysis

Model of Micro-Architectural Analysis

Notation:

$$s \xrightarrow[\iota_0...\iota_n]{t} s'$$

$$\max(s, \iota_0 \dots \iota_n) := \max\{t \mid s \xrightarrow[\iota_0 \dots \iota_n]{t} s'\} \quad \max(s_1, \iota_1 \iota_2) = 5$$

Example:

$$s_1 \xrightarrow[\iota_1]{2} s_2$$

$$\max(s_1,\iota_1\iota_2)=5$$

Model of Micro-Architectural Analysis

Notation:

$$s \xrightarrow[t_0...t_n]{t} s'$$

 $\max(s, \iota_0 \dots \iota_n) := \max\{t \mid s \xrightarrow[\iota_0 \dots \iota_n]{t} s'\} \quad \max(s_1, \iota_1 \iota_2) = 5$

Example:

$$s_1 \xrightarrow[\iota_1]{2} s_2$$

$$\max(s_1,\iota_1\iota_2)=5$$

Timing Anomalies

Definition (Timing anomaly)

An instruction semantics has a *timing* anomaly if there exists a sequence of instructions $\iota_0\iota_1\ldots\iota_n$, and an abstract state s, such that

- there are states s_1, s_2 , with $s \xrightarrow[t_0]{t_1} s_1$ and $s \xrightarrow[t_0]{t_2} s_2$, and $t_1 < t_2$, such that
- $t_1 + \max(s_1, \iota_1 \dots \iota_n) > t_2 + \max(s_2, \iota_1 \dots \iota_n).$

Safely Discarding Analysis States

dea: Precompute maximal difference in timing for pairs of states.

Discard states that cannot "overtake" others anymore.

"Locally exclude timing anomalies."

Valid △ Function

Definition (Valid Δ)

A \triangle function is *valid*, if for all pairs of states s_1, s_2 and for all instruction sequences $\iota_0 \dots \iota_n$:

$$\Delta(s_1, s_2) \geq \max(s_1, \iota_0 \dots \iota_n) - \max(s_2, \iota_0 \dots \iota_n)$$

Discard s_1 if $\Delta(s_1, s_2) + t_1 \leq t_2$.

Discard s_2 if $\Delta(s_2, s_1) + t_2 \le t_1$.

Computing △ Functions

System of difference constraints:

For empty sequence of instructions:

$$\Delta(s_1,s_2)\geq 0$$

Recursive constraints:

$$\Delta(s_1,s_2) \geq t_1' - t_2' + \Delta(s_1',s_2') \quad \text{ if } s_1 \xrightarrow[\iota]{t_1'} s_1' \wedge s_2 \xrightarrow[\iota]{t_2'} s_2' \text{ for some } \iota.$$

 \longrightarrow Can be solved by a shortest paths computation.

Domino Effects

Least $\Delta(s_1, s_2)$ not always finite:

Definition (Domino effect)

An instruction semantics has a *domino effect* if there are two states s_1, s_2 , such that for each $\Delta \in \mathbb{N}$ there is a sequence of instructions $\iota_0 \dots \iota_n$, such that

$$\max(s_1, \iota_0 \ldots \iota_n) - \max(s_2, \iota_0 \ldots \iota_n) \geq \Delta.$$

But: Ratio $\frac{\max(s_1, \iota_0 \dots \iota_n)}{\max(s_2, \iota_0 \dots \iota_n)}$ always bounded.

Case Study

- Computed ∆ function for simple processor with:
 - 2 instruction types
 - 2 functional units
 - execution times between 2 and 6 cycles
 - a 4 instruction fetch buffer
- Results:
 - 555 states
 - 97340 constraints
 - Δ function ranges from 0 through 7

Conclusions & Future Work

- Sound and efficient WCET analysis in the presence of timing anomalies, by
 - locally excluding timing anomalies, using
 - precomputed Δ functions.
- \blacksquare Computed \triangle functions for relatively simple architectures.

- Future work:
 - Compute Δ functions for real-world architectures.
 - Perform WCET analysis based on that basis.
 - Explore further trade-offs between efficiency and precision.