Statistical-Based WCET Estimation and Validation

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Jeffery P. Hansen
Scott Hissam
Gabriel A. Moreno
NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copyright license under the clause at 252.227-7013.
Outline

• Measurement-Based WCET Estimation
• About the Data Set
• Extreme Value Theory
• WCET Prediction Algorithm
• Experimental Methodology and Results
Measurement-Based WCET Estimation

Modern processors are optimized for throughput with features such as

- Predictive branching
- Caching

Due to these CPU features

- Execution time can be difficult to model
- True worst case may be unreasonably long

Our Measurement-Based Approach

- Estimate WCET based on execution time measurements
- Use Extreme Value Theory (EVT) to produce estimate
- WCET estimate based on user requirement for probability of being exceeded
- Additional measurement data used to validate predictions
Outline

• Measurement-Based WCET Estimation
• About the Data Set
• Extreme Value Theory
• WCET Prediction Algorithm
• Experimental Methodology and Results
Data Set Overview

• Trace data taken from an embedded system
• Total of 154 tasks
• For each task
 – 25 runs of 5 min. each
 – 15 min. of data from each trace used for estimation
 – 110 min. of data from each trace used for validation
 – No data-dependant loops
Sample Sizes of Trace Data

- 75,000 Samples
- 122 tasks
Execution Time Distribution for Typical Task
Outline

• Measurement-Based WCET Estimation
• About the Data Set
• Extreme Value Theory
• WCET Prediction Algorithm
• Experimental Methodology and Results
Extreme Value Theory

Branch of statistics used to reason about rare events
Models tail of distribution
Used to model
 • Insurance claims (e.g., floods)
 • Finance (e.g., market risks)
Central Limit Theorem

The sum of a set of independent identically distributed random variables converges to the normal distribution.

\[S_n = X_1 + X_2 + \cdots + X_n \]
The maximum of a set of independent identically distributed random variables X_i converges to one of:

- **Gumbel** – if X_i has exponential tail
- **Fréchet** – if X_i has heavy tail
- **Weibull** – if X_i has bounded tail

$$M_n = \max(X_1, X_2, \ldots, X_n)$$
Outline

• Measurement-Based WCET Estimation
• About the Data Set
• Extreme Value Theory
• WCET Prediction Algorithm
• Experimental Methodology and Results
WCET Estimation Algorithm

1) Raw Execution Time Samples

2) Create Blocks

3) Block Maximums

4) Create QQ Plot

5) Estimate Gumbel

6) Goodness-of-Fit Test

7) Generate Prediction

Test Failed?
Outline

• Measurement-Based WCET Estimation
• About the Data Set
• Extreme Value Theory
• WCET Prediction Algorithm
• Experimental Methodology and Results
Quantile-Quantile Plot Example

![Quantile-Quantile Plot Example](chart.png)
Chi-Squared Test for Block Size 100

Bins: 100
Collapsed Bins: 62

\[\chi^2 = 236 \]

Critical value for 59 degrees of freedom at \(p=0.05 \) is 77.93

Reject
Chi-Squared Test for Block Size 400

Bins: 25
Collapsed Bins: 19
\[\chi^2 = 19.67 \]

Critical value for 16 degrees of freedom at p=0.05 is 26.3

Do Not Reject
Single Task Results

![Graph showing Single Task Results]

Expected

Measured

Trace Data

WCET Exceedance Probability

10^{-1}

10^{-2}

10^{-3}

10^{-4}

10^{-5}

10^{-6}

10^{-7}

50 60 70 80 90 100 110 120 130 140 150

WCET (μs)
Validation Results

Fraction of Samples above Prediction

\(\text{Max Obs.} \quad p_e=10^{-4} \quad p_e=10^{-5} \quad p_e=10^{-6} \)

WCET Prediction

WCET Exceedance Probability

- Measured
- Expected
Conclusion

Applied algorithm to estimate WCET from execution time samples
 • Uses extreme value theory method of block maximum
 • Execution time data grouped into blocks
 • Block size increased until goodness-of-fit test passes

Validated predictions using additional execution time samples
 • Measured WCET exceedances agreed with predicted exceedences
 • Variation in WCET exceedences using EVT algorithm reduced over using maximum observed execution time as WCET.