Extending the Path Analysis Technique to Obtain a Soft WCET

Paul Keim, Amanda Noyes, Drew Ferguson, Josh Neal, Chris Healy

Department of Computer Science, Furman University
Overview

- Hard versus soft WCET
- Incorporating soft WCET in loop analysis algorithm
- Study of benchmarks
- Comparison of static timing analysis
- Ongoing & future work
- Conclusions
Motivation

• Need to bound WCET of tasks.
 – Static timing analysis tools

• Can we tolerate an occasional missed deadline?
 – Hard RT system: **NO.** WCET is absolute
 – Soft RT system: **YES.** A WCET estimate that almost always bounds the actual WCET is acceptable.

• Traditional WCET analysis has been for hard RT
 – Estimates can be quite loose due to input data
For example …

• Consider a simple distribution of possible execution times, compared to “hard” WCET

BCET = 600

Observed: 822 to 978

WCET = 1200
Goal

• We want to provide a tighter WCET bound, which may underestimate the actual execution time in rare cases (< 1%).

• Extend earlier work in timing analysis
 – Statically determine the distribution of execution times.

• Need to also update hardware simulator so it also produces time distributions: interesting case studies.
Loop analysis

- In our “path analysis” approach, we do the analysis bottom up. Instruction \rightarrow path \rightarrow loop \rightarrow function \rightarrow task.
 - The loop’s execution time distribution depends on its paths.
 - Multiple paths result from conditional control flow.
 - Choice of path typically depends on input data, unknown at compile time.
 - 1 path: trivial
 - 2 paths: we use binomial probability technique
 - 3+ paths: repeated application of (2)
2 path case

Let A = longer path and B = shorter path
 compute A_{time} and B_{time} as well as A_{prob} and B_{prob}

$\text{total_prob} = 0.0$

for $i = 0$ to n

 $p = \text{probability that A is taken on i of the n iterations and B is taken on (n – i) iterations}$

 for $j = 100*\text{total_prob}$ to $100* (\text{total_prob} + p)$

 $\text{time_dist}[j] = A_{time} * i \ + \ B_{time} * (n – i)$

 $\text{total_prob} += p$
More paths?

- Consider case of 4 paths (A,B,C,D) with equal probability of being taken.
 - Use 2 case model to find time distributions $T_{D_{A+B}}$ and $T_{D_{C+D}}$.
 - Concatenate the two TD’s. Sort the values, and remove every other element (because they were the same size) to normalize size of the TD.

- What if $(A+B)_{\text{prob}} > (C+D)_{\text{prob}}$?
 - Before you concatenate, stretch $T_{D_{A+B}}$ by a factor of $(A+B)_{\text{prob}} / (C+D)_{\text{prob}}$
Methodology

• Benchmark tasks with random input data
• Timing analyzer only needs to be run once, because it *ignores* the input data.
• Using hardware simulator
 – 1000 trials of benchmark program
 – Automatically generate next version of benchmark, compile and run.
 – Testing is easier for soft WCET than for hard WCET because we don’t need to figure out the WC input data. 😊
Simulated observations

• Each time we ran a randomized version of a benchmark, we computed: observed execution time / predicted WCET. (As a percent)

• We took note of:
 – Width of the observed distribution
 – Skewness
 – The observed soft WCET. In one case this was as low as 2%.
 – Different loops in the same function
 – Effect of changing the distribution of input values. (“fair” versus “unfair”)
Result with 7 paths
Ongoing & Future

• Combining multiple loops
• More realistic estimate of probability of taking a branch
• Open questions:
 – Consider other probability distributions?
 – How to measure “how close” static and dynamic distributions are?

• GUI and Website cs.furman.edu/~sparta
• Combine with work on parametric timing analysis to produce distribution of polynomial coefficients.
Conclusion

• Extend our existing framework for bounding hard WCET to generate:
 – static prediction for soft WCET,
 – as well as entire execution time distribution.

• Incorporated into existing timing analyzer, giving rapid result for all loops in program.

• Scales well with ↑ number of paths.

• Potential benefit for system developers if hard and soft WCET differ substantially.