From Trusted Annotations to Verified Knowledge

or
Squeeze your Trusted Annotation Base!

Albrecht Kadlec, Raimund Kirner,

Adrian Prantl, Jens Knoop and Markus Schordan

Vienna University of Technology, Austria

TECHNISCHE

[UNIVERSITAT
I WIEN

VIENNA

WIEN UNIVERSITY OF

TECHNOLOGY

Fact: Compile-Time Analysis is Limited

e Compiler Optimization
— Less severely hit

x strikes power/optimality, not usefulness
* but opens the avenue to take advantage of the trade-off

between precision and performance

e \Worst-case Execution Time Analysis (WCET)

— Severely hit
x strikes tightness , not just power/optimality:
No loop bound, no WCET bound!
* unclear, how to take advantage of the trade-off between

precision and performance

~» hence: rest on user-assistance!

Motivation

Resting on user-assistance, however, means introducing a...

Trusted Annotation Base (TAB)
iInto WCET Analysis

Unintended but unavoidable consequences...

e Soundness: Computed time bounds hold only up to the

correctness of the TAB - are we still safe ?

e Optimality: Same for tightness

Replacing Trust by Proof

® From Trust to Proof

— Squeeze the TAB: Compress it!

* Soundness: — Replacing trust by proof
— Getting rid of user-assistance

x Optimality: Sharpening the time bounds

e From Proof to Power

— Squeeze the TAB/VAB: Wring it!
x Taking advantage of the TAB/VAB

x Taking advantage of the trade-off between power and

performance of analysis algorithms

Replacing Trust by Proof — Model-checking

e |f something can’t be bounded automatically, ask for

user-assistance

e Apply model-checking to prove/disprove the user-provided

bound

... controlled and guided by

e Binary Tightening
sharpen the current bound

e Binary Widening
find start value if the user annotation is missing or faulty

The TuBound Tool

So far, TuBound featured
e [nterval analysis
e Loop bound analysis

e Constraint analysis

to reduce the need for user-provided annotations to a minimum.

Recently, TuBound has been extended to feature

e Model-checking
— BLAST

— CBMC (turned out to be superior for our setting!)

Taking Advantage of TAB/VAB and Trade-Off...

Model Checking

Constraint Propagation

Interval Analysis / \
Zonstant Propagation / \ h

Profiling

...using a pool of complementary analysis techniques of different

power and computational complexity.

Experimental Results (1)

Benchmark Loops

TuBound basic

with Model Checking

Runtime

recursion
bsort100
cnt
cover
cre

edn
expint
fdct
fibcall
jfdctint
lcdnum
ludcmp
matmult
ndes

ns

qurt

sqrt

0
3
4
3
3
2
3
2
1
3
1
1
15)
2
4
1
1
5)

st

100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%

100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%

Experimental Results (2)

Benchmark TuBound basic with Model Checking Runtime
gsort-exam 0% 66.6% 0.02s
bs 0% 100% .03s5%
nsichneu 0% 100% 5.59s
statemate 0% 100% 0.06s
janne_complex 0% 100% 0.18s
minver 94.1% 100% 0.06s
fftl 54.5% 81.8% 0.43s
duff 50% 50% Os
whet 90.9% 90.9% -
adpcm 83.3% 83.3% timeout
compress 25.0% 25.0% timeout
fir 50% 50% timeout
Ims 60% 60% timeout
insertsort 0% 0% timeout
select 0% 0% timeout
Total Percentage 77.0% 84.7%

Configuration

Conclusions

Soundness

WCET Anal.

Succeeds

Characterization

Class. Automatic PAs

user-assistance

May Fall

Insufficient

Class. Automatic PAs

w/ user-annotations

Sound rel.

to TAB

State-of-the-Art

Class. Automatic PAs

w/ user-ann.

Sound rel.

to TAB

Soph. Automatic PAs

user-assistance

10

The Holy Grall

Thank you!

Questions?

This work has been supported by the 7th EU R&D Framework Progr amme under contract No 215068, “Integrating European
Timing Analysis Technology (ALL-TIMES)”, and by the Austri an Science Fund (Fonds zur F drderung der wissenschaftlichen

Forschung) under contract P18925-N13, “Compiler-Support for Timing Analysis (CoSTA)".

11

Experience: The TuBound Tool

Architecture overview...

C
Source Code

I

Angi)éz;ted Worst-case

Execution

Assembler -
Time

Code

12

Verifying Loop Bounds using CBMC

int binary _search(int x) {
int fvalue, md, low =0, up = 14;
fvalue = (-1); /* all data are positive =/
{
=> wunsigned int _ bound = O;
whi | e(l ow <= up){
md =Ilow+ up > 1,
if (data[md].key == x) { /* found =/
up = low - 1;
fval ue = data[m d]. val ue;
}
else if (data[m d].key > x)
up = md - 1;
else low =md + 1;

__bound += 1;

assert(__bound <= 7);

return fval ue;

13

CBMC at Work: Replacing Trust by Proof

int conplex(int a, int b)
{
while(a < 30) {
#pragma wcet trusted | oopbound(16)
while(b < a) {
#pragma wcet trusted | oopbound(16)
if (b > 5)
b =Db * 3;
el se
b =Db+ 2
if (b >= 10 & b <= 12)
a =a + 10;
el se

= 2;
= b - 10;

return 1;

14

i nt conplex(int a, int b)
{
while(a < 30) {
#pragma wcet | oopbound(16)
{
unsigned int _ bound = 0U;
while(b < a){
#pragma wcet trusted | oopbound(16)
++_ bound;

if (b >05)
b =Dbx* 3
el se
b =D>b+ 2
if (b >= 10 & b <= 12)
a =a + 10;
el se
a =

a + 2:
b - 10;

}

return 1;

