
From Trusted Annotations to Verified Knowledge

or
Squeeze your Trusted Annotation Base!

Albrecht Kadlec, Raimund Kirner,

Adrian Prantl, Jens Knoop and Markus Schordan

Vienna University of Technology, Austria

1



Fact: Compile-Time Analysis is Limited

• Compiler Optimization

– Less severely hit

∗ strikes power/optimality, not usefulness

∗ but opens the avenue to take advantage of the trade-off

between precision and performance

• Worst-case Execution Time Analysis (WCET)

– Severely hit

∗ strikes tightness , not just power/optimality:

No loop bound, no WCET bound!

∗ unclear, how to take advantage of the trade-off between

precision and performance

; hence: rest on user-assistance!

2



Motivation

Resting on user-assistance, however, means introducing a...

Trusted Annotation Base (TAB)

into WCET Analysis

Unintended but unavoidable consequences...

• Soundness: Computed time bounds hold only up to the

correctness of the TAB - are we still safe ?

• Optimality: Same for tightness

3



Replacing Trust by Proof

• From Trust to Proof

– Squeeze the TAB: Compress it!

∗ Soundness: – Replacing trust by proof

– Getting rid of user-assistance

∗ Optimality: Sharpening the time bounds

• From Proof to Power

– Squeeze the TAB/VAB: Wring it!

∗ Taking advantage of the TAB/VAB

∗ Taking advantage of the trade-off between power and

performance of analysis algorithms

4



Replacing Trust by Proof – Model-checking

• If something can’t be bounded automatically, ask for

user-assistance

• Apply model-checking to prove/disprove the user-provided

bound

... controlled and guided by

• Binary Tightening

sharpen the current bound

• Binary Widening

find start value if the user annotation is missing or faulty

5



The TuBound Tool

So far, TuBound featured

• Interval analysis

• Loop bound analysis

• Constraint analysis

to reduce the need for user-provided annotations to a minimum.

Recently, TuBound has been extended to feature

• Model-checking

– BLAST

– CBMC (turned out to be superior for our setting!)

6



Taking Advantage of TAB/VAB and Trade-Off...

Model Checking

Constant Propagation

Interval Analysis

Constraint Propagation

Profiling

...

...using a pool of complementary analysis techniques of different

power and computational complexity.

7



Experimental Results (1)

Benchmark Loops TuBound basic with Model Checking Runtime

recursion 0 – – –

bsort100 3 100% 100% –

cnt 4 100% 100% –

cover 3 100% 100% –

crc 3 100% 100% –

edn 12 100% 100% –

expint 3 100% 100% –

fdct 2 100% 100% –

fibcall 1 100% 100% –

jfdctint 3 100% 100% –

lcdnum 1 100% 100% –

ludcmp 11 100% 100% –

matmult 5 100% 100% –

ndes 12 100% 100% –

ns 4 100% 100% –

qurt 1 100% 100% –

sqrt 1 100% 100% –

st 5 100% 100% –

8



Experimental Results (2)

Benchmark Loops TuBound basic with Model Checking Runtime

qsort-exam 6 0% 66.6% 0.02s

bs 1 0% 100% 0.03s%

nsichneu 1 0% 100% 5.59s

statemate 1 0% 100% 0.06s

janne complex 2 0% 100% 0.18s

minver 17 94.1% 100% 0.06s

fft1 11 54.5% 81.8% 0.43s

duff 2 50% 50% 0s

whet 11 90.9% 90.9% –

adpcm 18 83.3% 83.3% timeout

compress 8 25.0% 25.0% timeout

fir 2 50% 50% timeout

lms 10 60% 60% timeout

insertsort 2 0% 0% timeout

select 4 0% 0% timeout

Total Percentage 77.0% 84.7%

9



Conclusions

Configuration Soundness WCET Anal. Characterization

Succeeds

Class. Automatic PAs Sound May Fail Insufficient

w/out user-assistance

Class. Automatic PAs Sound rel. Always State-of-the-Art

w/ user-annotations to TAB

Class. Automatic PAs Sound rel. Always Contribution

w/ user-ann. checking to red. TAB

Soph. Automatic PAs Sound Always The Holy Grail

w/out user-assistance

10



Thank you!

Questions?

This work has been supported by the 7th EU R&D Framework Progr amme under contract No 215068, “Integrating European

Timing Analysis Technology (ALL-TIMES)”, and by the Austri an Science Fund (Fonds zur F örderung der wissenschaftlichen

Forschung) under contract P18925-N13, “Compiler-Support for Timing Analysis (CoSTA)”.

11



Experience: The TuBound Tool

Architecture overview...

12



Verifying Loop Bounds using CBMC
int binary_search(int x) {

int fvalue, mid, low = 0, up = 14;

fvalue = (-1); /* all data are positive */

{

=> unsigned int __bound = 0;

while(low <= up){

mid = low + up >> 1;

if (data[mid].key == x) { /* found */

up = low - 1;

fvalue = data[mid].value;

}

else if (data[mid].key > x)

up = mid - 1;

else low = mid + 1;

=> __bound += 1;

}

=> assert(__bound <= 7);

}

return fvalue;

}

13



CBMC at Work: Replacing Trust by Proof
int complex(int a, int b) int complex(int a, int b)

{ {

while(a < 30) { while(a < 30) {

#pragma wcet_trusted_loopbound(16) <==> #pragma wcet_loopbound(16)

while(b < a) { {

#pragma wcet_trusted_loopbound(16) <== unsigned int __bound = 0U;

if (b > 5) while(b < a){

b = b * 3; ==> #pragma wcet_trusted_loopbound(16)

else ++__bound;

b = b + 2;

if (b >= 10 && b <= 12) -------> if (b > 5)

a = a + 10; b = b * 3;

else else

a = a + 1; b = b + 2;

} if (b >= 10 && b <= 12)

a = a + 2; a = a + 10;

b = b - 10; else

} a = a + 1;

return 1; }

} a = a + 2;

... b = b - 10;

}

return 1;

}

...

14


