
ALF – A Language for WCET Flow Analysis

Jan Gustafsson, Andreas Ermedahl, Björn Lisper, Christer Sandberg,
and Linus Källberg

School of Innovation, Design and Engineering, Mälardalen University
Box 883, S-721 23 Västerås, Sweden

{jan.gustafsson,andreas.ermedahl,bjorn.lisper,christer.sandberg,

linus.kallberg}@mdh.se

2009-06-30

WCET Workshop 2009



Flow Analysis

Find constraints on program flow:

• Max # of loop iterations

• Infeasible paths

• Etc.

Important part of WCET analysis

Difficult (precise analysis undecidable)

WCET Workshop 2009 1



Canonical Structure of WCET Analysis Tool

Low−level
analysis

WCET
estimate

Flow analysis

Calculation

code

The binary is analyzed

WCET Workshop 2009 2



There are Many Different Binary Formats

Low−level
analysis

WCET
estimate

Flow analysis

Calculation

ARM7

Low−level
analysis

WCET
estimate

Flow analysis

Calculation

Low−level
analysis

WCET
estimate

Flow analysis

Calculation

Low−level
analysis

Flow analysis

WCET
estimate

Calculation

PowerPC
NEC V850

Infineon

WCET Workshop 2009 3



Source Code Flow Analysis

Source
code

Low−level
analysis

WCET
estimate

Flow analysis

Calculation

binary

Compiler

WCET Workshop 2009 4



Intermediate Code Flow Analysis

Source
code

Frontend

Optimizer

Backend

Low−level
analysis

WCET
estimate

Flow analysis

Calculation
Compiler IF

binary

Compiler IF

WCET Workshop 2009 5



The Problem

Many different code formats to analyze!

Can be expensive to implement a new flow analysis for each format

Flow analysis techniques are usually quite format-independent

Can we avoid a proliferation of implementations?

WCET Workshop 2009 6



A Possible Solution: ALF

ALF = ARTIST2 Language for WCET Flow Analysis

An intermediate level code format

Designed for ease of program analysis rather than code generation

Idea: rather than building a new flow analysis component for each format to
analyze,

• build a single component analyzing ALF

• create translators from the different formats into ALF

Provides a challenge for the design of ALF – must allow faithful translations
from many different formats

WCET Workshop 2009 7



The ALF Solution

Low−level
analysis

WCET
estimate

Flow analysis

Calculation

ARM7

PowerPC

NEC V850

Infineon

Compiler IF

Source code ALF

WCET Workshop 2009 8



ALF General Characteristics

Imperative language (stateful, executing statements change contents of
memory)

Differs between data and code memory (only data memory can be written)

Memory model resembles model for unlinked code – symbolic base pointers

Both high- and low-level constructs for control flow (function call/return, but
also dynamic jumps)

WCET Workshop 2009 9



A Note on ALF Syntax

Fully textual format, LISP/Erlang-like:

{ switch { s_le 32 { load 32 { addr 32 { fref 32 x } { dec_unsigned 32 0 } } }
{ load 32 { addr 32 { fref 32 y } { dec_unsigned 32 0 } } } }

{ target { dec_unsigned 1 1 }
{ label 32 { lref 32 exit } { dec_unsigned 32 0 } } } }

{ store { addr 32 { fref 32 z } { dec_unsigned 32 0 } }
with { dec_signed 32 42 } }

{ label 32 { lref 32 exit } { dec_unsigned 32 0 } }

A common question: “why not XML?”

WCET Workshop 2009 10



True Answer

Because I don’t like XML very much!

WCET Workshop 2009 11



A Better Answer

It would be easy to define “XML-ALF” if desired, and translate between ALF
and XML-ALF:

{ name ... }

<name> ... </name>

But we see other issues as much more important than the style of syntax, so
this has low priority

WCET Workshop 2009 12



ALF’s Data Model

ALF’s data memory consists of frames

Can be both statically and dynamically allocated

A symbolic frameref points to the start of a frame

An ALF data address is basically a pair (frameref, offset)

frameref

offset

frame

WCET Workshop 2009 13



Code Addresses

ALF’s code addresses are called labels

A label is similar to a data address: a pair (lref, offset), where lref is a
symbolic label reference and offset is numeric

ALF statements may have labels (but need not)

Can be used to model both fully symbolic labels (set offset to 0 always), or
addresses in memory (use offset as numeric address)

Both lref and offset can be dynamic: allows to model dynamic jumps

WCET Workshop 2009 14



ALF Values

Five kinds:

• numerical values: signed/unsigned integers, floats, etc.,

• framerefs,

• label references (lrefs),

• data addresses, and

• code addresses

Each value has a size (# of bits)

There are unbounded size integers

Finite size values are storable

Storable values can be symbolic or bitstring values

WCET Workshop 2009 15



ALF Operators

A number of different kinds of operators:

• on data of limited size (arithmetic/logic etc)

• on data of unbounded size (“mathematical” operations)

• on bitstrings (e.g., concatenation)

• a conditional

• operators to read from memory, and allocate memory

All operators (but one) are side-effect-free

WCET Workshop 2009 16



ALF Statements

The most important ones:

• store (concurrent assignment)

• switch (multiway jump with possibly dynamic targets)

• function call and return

WCET Workshop 2009 17



A Simple Example

C code:

if(x > y) z = 42;

Corresponding ALF code:

{ switch { s_le 32 { load 32 { addr 32 { fref 32 x } { dec_unsigned 32 0 } } }
{ load 32 { addr 32 { fref 32 y } { dec_unsigned 32 0 } } } }

{ target { dec_unsigned 1 1 }
{ label 32 { lref 32 exit } { dec_unsigned 32 0 } } } }

{ store { addr 32 { fref 32 z } { dec_unsigned 32 0 } }
with { dec_signed 32 42 } }

{ label 32 { lref 32 exit } { dec_unsigned 32 0 } }

WCET Workshop 2009 18



Tool and Translators

A version of SWEET analyzing ALF is underway (current version can
analyze some simple examples)

Work is done in the ALL-TIMES FP7 project

Translators (at different stages of completion):

• TU Vienna: SATIrE IF → ALF, will enable source level flow analysis

• AbsInt: aiT CRL2/PowerPC → ALF (binary level flow analysis)

• AbsInt: aiT CRL2/NEC V850 → ALF (ditto)

• IAR Systems: C compiler IF → ALF (source/IF level flow analysis)

WCET Workshop 2009 19



Conclusions and Further Research

A step towards an open framework for flow analysis

Allows the development of generic analyses, and comparisons of different
analyses

May be used for other things than flow analysis, like different generic tools
for analyzing/manipulating binaries

To do in the future:

More translators & implementations

XML syntax, for the so inclined

Development of accompanying formats for expressing flow analysis results,
value constraints, and other similar information

WCET Workshop 2009 20


