Comparing
Implicit Path Enumeration

and
Model Checking - based
WCET Analysis

Benedikt Huber, Martin Schoberl
Vienna University of Technology

benedikt@vmars.tuwien.ac.at
mschoebe@mail.tuwien.ac.at

mailto:benedikt@vmars.tuwien.ac.at�
mailto:mschoebe@mail.tuwien.ac.at�

Why consider Model Checking ?

» Instruction timing depends on execution history
» ILP — based WCET calculation

Expressive constraints, efficient solvers

Needs good abstractions and/or graph duplication to take
execution history into account

» Model Checking
Use a model checker to calculate a WCET bound
States generated on the fly, provide execution context
No need to enumerate all paths
Easy to model hardware

Reports worst-case path

Determining the WCET using UPPAAL

» Control flow graph = Timed Automaton
» Clocks represent elapsed time (global, basic block)

» Bounded integer variables
Loop Counters

Hardware State

» Guards on clocks and variables
Model instruction timing

Exclude infeasible paths

» Verify whether the task always finishes within T time units

Binary search with known upper bound

Example: Loop with Branch Prediction

Start

Invariants ©
Timing Guards elapsed:=0, t:=0
Loop Guards Ay s
o
Clock Reset [O)
. t<=273 <= ':':t.'[._.] =1173:8)
Variable Update [, N ECEAECI FOR
&t <= (| t-[|] ==1173:8) . = .
b[1]:= 1, cnt =ant+1,t:=0 Q: - Q-
t:=0 t=0
D -
L YR)
: U
elapsed .. total elapsed time ot
=dt=Uu
t .. time spend in basic block t<=3
b .. state of branch predictor E:c: :Fi”ighed

cnt .. loop counter
» Verify: A[1(Task.E imply elapsed < WCET)
» Find path: E<>(Task.E && elapsed == WCET)

» UPPAAL reports worst-case path: ACDAZDACDAED...E

Implementation Context

» New version of our WCET analysis tool for Java
processors

Target: The Java Optimized Processor (JOP)
But the approach also works for other platforms
» Analysis of Java byte code
Close to target platform, but much easier than assembler
Analysis: Call graph, Dynamic Dispatch, Loop Bounds
» Common Tool infrastructure
CFG construction & analysis
Report generation
Microcode Analysis

Evaluation: IP]

T and Model Checking

» Target: JOP + variable block method cache (FIFO replacement)

» IPET

Static cache approximation

We use this property
cache is guaranteed n
once.

: If during the execution of some method, the

ot to overflow, each method is loaded at most

» Model Checking: Cache simulation

Cache is an array of bounded integer variables

Update on access, wait on miss

» Questions we wanted to answer

Is model checking in principle capable of handling our applications ?

Comparison of static

cache approximation with cache simulation

Benchmark Results

JoP Apps PET (5) | Verity (9

MatrixMult 1088497 0.0l 0.23
CRC 6 191825 0.01 0.52
Lift 13 8355 0.01 0.18
Udplp 28 129638 0.04 1.78
Kfl (8 blocks) 46 37963 0.13 31.77
Kfl (1 block) 0.57
Kfl (16 blocks) Timeout

» Method Cache: Simulation and Static Approximation
Simulation does not scale well

On evaluation platform, approximation is good enough
+3% - +7% compared to simulation
Took much longer to develop

Conclusion and Discussion

» IPET as ‘the standard method’ is a good idea
» Model Checking ?

Use model checking for important code fragments
Combine with Implicit Path Enumeration

Well suited to distinguish tractable number of hardware states
» UPPAAL has a nice abstraction for time
But only simple integer variables for hardware components
Binary search could be eliminated
» Future Work
Apply model checking to JOP multiprocessor

Work on other processors

Thank you.

	�Comparing�Implicit Path Enumeration�and�Model Checking - based�WCET Analysis
	Why consider Model Checking ?
	Determining the WCET using uppaal
	Example: Loop with Branch Prediction
	Implementation Context
	Evaluation: IPET and Model Checking
	Benchmark Results
	Conclusion and Discussion
	Thank you.

