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Fact: Compile-Time Analysis is Limited

e Compiler Optimization
— Less severely hit

x strikes power/optimality, not usefulness
* but opens the avenue to take advantage of the trade-off

between precision and performance

e \Worst-case Execution Time Analysis (WCET)

— Severely hit
x strikes tightness , not just power/optimality:
No loop bound, no WCET bound!
* unclear, how to take advantage of the trade-off between

precision and performance

~» hence: rest on user-assistance!



Motivation

Resting on user-assistance, however, means introducing a...

Trusted Annotation Base (TAB)
iInto WCET Analysis

Unintended but unavoidable consequences...

e Soundness: Computed time bounds hold only up to the

correctness of the TAB - are we still safe ?

e Optimality: Same for tightness




Replacing Trust by Proof

® From Trust to Proof

— Squeeze the TAB: Compress it!

* Soundness: — Replacing trust by proof
— Getting rid of user-assistance

x Optimality: Sharpening the time bounds

e From Proof to Power

— Squeeze the TAB/VAB: Wring it!
x Taking advantage of the TAB/VAB

x Taking advantage of the trade-off between power and

performance of analysis algorithms




Replacing Trust by Proof — Model-checking

e |f something can’t be bounded automatically, ask for

user-assistance

e Apply model-checking to prove/disprove the user-provided

bound

... controlled and guided by

e Binary Tightening
sharpen the current bound

e Binary Widening
find start value if the user annotation is missing or faulty




The TuBound Tool

So far, TuBound featured
e [nterval analysis
e Loop bound analysis

e Constraint analysis

to reduce the need for user-provided annotations to a minimum.

Recently, TuBound has been extended to feature

e Model-checking
— BLAST

— CBMC (turned out to be superior for our setting!)




Taking Advantage of TAB/VAB and Trade-Off...

Model Checking

Constraint Propagation

Interval Analysis / \
Zonstant Propagation / \ h

Profiling

...using a pool of complementary analysis techniques of different

power and computational complexity.




Experimental Results (1)
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Experimental Results (2)

Benchmark TuBound basic with Model Checking Runtime
gsort-exam 0% 66.6% 0.02s
bs 0% 100% .03s5%
nsichneu 0% 100% 5.59s
statemate 0% 100% 0.06s
janne_complex 0% 100% 0.18s
minver 94.1% 100% 0.06s
fftl 54.5% 81.8% 0.43s
duff 50% 50% Os
whet 90.9% 90.9% -
adpcm 83.3% 83.3% timeout
compress 25.0% 25.0% timeout
fir 50% 50% timeout
Ims 60% 60% timeout
insertsort 0% 0% timeout
select 0% 0% timeout
Total Percentage 77.0% 84.7%




Configuration

Conclusions
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The Holy Grall




Thank you!

Questions?

This work has been supported by the 7th EU R&D Framework Progr amme under contract No 215068, “Integrating European
Timing Analysis Technology (ALL-TIMES)”, and by the Austri an Science Fund (Fonds zur F drderung der wissenschaftlichen

Forschung) under contract P18925-N13, “Compiler-Support for Timing Analysis (CoSTA)".
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Experience: The TuBound Tool

Architecture overview...

C
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Verifying Loop Bounds using CBMC

int binary _search(int x) {
int fvalue, md, low =0, up = 14;
fvalue = (-1); /* all data are positive =/
{
=> wunsigned int _ bound = O;
whi | e(l ow <= up){
md =Ilow+ up > 1,
if (data[md].key == x) { /* found =/
up = low - 1;
fval ue = data[m d]. val ue;
}
else if (data[m d].key > x)
up = md - 1;
else low =md + 1;

__bound += 1;

assert(__bound <= 7);

return fval ue;
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CBMC at Work: Replacing Trust by Proof

int conplex(int a, int b)
{
while(a < 30) {
#pragma wcet trusted | oopbound(16)
while(b < a) {
#pragma wcet trusted | oopbound(16)
if (b > 5)
b =Db * 3;
el se
b =Db+ 2
if (b >= 10 & b <= 12)
a =a + 10;
el se

= 2;
= b - 10;

return 1;
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i nt conplex(int a, int b)
{
while(a < 30) {
#pragma wcet | oopbound( 16)
{
unsigned int _ bound = 0U;
while(b < a){
#pragma wcet trusted | oopbound(16)
++_ bound;

if (b >05)
b =Dbx* 3
el se
b =D>b+ 2
if (b >= 10 & b <= 12)
a =a + 10;
el se
a =

a + 2:
b - 10;

}

return 1;




