
Computer Science 12
Embedded Systems Group

WCET-aware Software Based Cache
Partitioning for Multi-Task Real-Time

Systems

Sascha Plazar | Paul Lokuciejewski | Peter Marwedel

TU Dortmund University
Department of Computer Science 12

Otto-Hahn-Str. 16
44221 Dortmund

Germany

Slide 1 / 12© Sascha Plazar | 30-June-09

Computer Science 12
Embedded Systems Group

OutlineOutline
1. Introduction, Idea
2. Software Based Cache partitioning
3. WCET-aware Cache Partitioning
4. ILP Formulation
5. Workflow
6. Results
7. Conclusion

Slide 2 / 12© Sascha Plazar | 30-June-09

Computer Science 12
Embedded Systems Group

WCETWCET--aware Cache Partitioningaware Cache Partitioning
Problem:

Caches are a source of unpredictability
Behaviour in general unpredictable in systems performing
preemptive scheduling
Different tasks could replace each other in cache

Idea:
Divide the cache into partitions
Assign one task per partition
Tasks can not replace each other

Slide 3 / 12© Sascha Plazar | 30-June-09

Computer Science 12
Embedded Systems Group

Software Based Cache PartitioningSoftware Based Cache Partitioning
Exploit the cache’s modulo addressing function
Distribute tasks in address space
Ensure mapping to particular cache lines

Tasks can not evict each other
- Additional jumps have to be inserted, branches corrected

0x0

0x80

0x100

0x0

0x180

0x80

0x200

0x100

0x280
Task1 (part3)

Task2 (part1)

Task1 (part2)

Task1 (part1)

Main Memory

Task 1

Task 2

Cache

Task2 (part2)

Slide 4 / 12© Sascha Plazar | 30-June-09

Computer Science 12
Embedded Systems Group

WCETWCET--aware Cache Partitioningaware Cache Partitioning
Greedy approach*

Partition size depends on task’s
code size
Example: 4 tasks with the same
code size

Better
Employ an ILP-model to select
optimal cache size for every task
Take execution frequencies into
account

Cache Line

0

63

Task 1

Task 2

Task 4

Task 3

Cache Line

0

63

Task 1
Task 2

Task 4

Task 3

[* Frank Mueller, 1995: Compiler Support for Software-Based Cache Partitioning]

Slide 5 / 12© Sascha Plazar | 30-June-09

Computer Science 12
Embedded Systems Group

ILP ILP FormulationFormulation

Slide 6 / 12© Sascha Plazar | 30-June-09

Computer Science 12
Embedded Systems Group

ILP FormulationILP Formulation
Each task must have a partition assigned:

Keep track of the cache size:

Slide 7 / 12© Sascha Plazar | 30-June-09

Computer Science 12
Embedded Systems Group

ILP FormulationILP Formulation
A tasks WCET is determined:

Objective function to minimize:

Slide 8 / 12© Sascha Plazar | 30-June-09

Computer Science 12
Embedded Systems Group

WorkflowWorkflow

WCETWCET--aware C Compiler (WCC)aware C Compiler (WCC)
Supports Infineon TriCore
TC1796
Integrates static WCET
analyzer aiT

Slide 9 / 12© Sascha Plazar | 30-June-09

Computer Science 12
Embedded Systems Group

Results: UTDSPResults: UTDSP

256 512 1024 2048 4096 8192 16384
40%

50%

60%

70%

80%

90%

100%

5 Tasks 10 Tasks 15 Tasks

Cache size [Bytes]

R
el

at
iv

e
W

C
E

T

Average of 100
sets of randomly
selected tasks:

5 tasks: ~8kB
10 tasks: ~18kB
15 tasks: ~26kB

W
C

ET
 re

la
tiv

e
to

 G
re

ed
y

ap
pr

oa
ch

Slide 10 / 12© Sascha Plazar | 30-June-09

Computer Science 12
Embedded Systems Group

Results: MRTCResults: MRTC

256 512 1024 2048 4096 8192 16384
40%

50%

60%

70%

80%

90%

100%

5 Tasks 10 Tasks 15 Tasks

Cache size [Bytes]

R
el

at
iv

e
W

C
E

T

Average of 100
sets of randomly
selected tasks:

5 tasks: ~6kB
10 tasks: ~12kB
15 tasks: ~19kB

W
C

ET
 re

la
tiv

e
to

 G
re

ed
y

ap
pr

oa
ch

Slide 11 / 12© Sascha Plazar | 30-June-09

Computer Science 12
Embedded Systems Group

WCET-driven Cache Partitioning presented
Employed an ILP to select optimal partition sizes w.r.t. the overall
system‘s WCET
Partitioning introduces predictability for preemptive scheduled
systems
Average WCET reduction of 12% (5 tasks) up to 19% (15 tasks)
compared to greedy approach

Future WorkFuture Work

ConclusionConclusion

Tightly coupling of offline schedulers
Take task dependencies into account

Slide 12 / 12© Sascha Plazar | 30-June-09

Computer Science 12
Embedded Systems Group

Thank you for your attention!Thank you for your attention!

Questions?

© Sascha Plazar | 30-June-09

Computer Science 12
Embedded Systems Group

Distribution of CodeDistribution of Code
Achieved by exploiting the linker
Each portion is assigned to its own section
Example linker script for two tasks:

0x0

0x180

0x80

0x100

0x280
Task2 (part3)

Task2 (part1)

Task1 (part2)

Task1 (part1)

Main Memory

Task2 (part1)

—

© Sascha Plazar | 30-June-09

Computer Science 12
Embedded Systems Group

Memory usageMemory usage
0x0

0x180

0x80

0x200

0x100

0x280
Task1 (part3)

Task2 (part1)

Task1 (part2)

Task1 (part1)

Main Memory

Task 1

Task 2

Cache

—

© Sascha Plazar | 30-June-09

Computer Science 12
Embedded Systems Group

Optimization TimeOptimization Time
Host machine: Dual Xeon L5420 @ 2.50GHz
Using a single core
Complete workflow consists of:

Compilation
Analysis
Optimization

: up to 3 minutes
: up to 1 hour / task
: up to 1 minute

	Foliennummer 1
	Outline
	WCET-aware Cache Partitioning
	Software Based Cache Partitioning
	WCET-aware Cache Partitioning
	ILP Formulation
	ILP Formulation
	ILP Formulation
	Workflow
	Results: UTDSP
	Results: MRTC
	Future Work
	Thank you for your attention!
	Distribution of Code
	Memory usage
	Optimization Time
	Partitioning Overhead
	Results: DSPstone Floating Point

