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WCETWCET--aware Cache Partitioningaware Cache Partitioning
Problem:

Caches are a source of unpredictability
Behaviour in general unpredictable in systems performing 
preemptive scheduling
Different tasks could replace each other in cache

Idea:
Divide the cache into partitions
Assign one task per partition
Tasks can not replace each other
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Software Based Cache PartitioningSoftware Based Cache Partitioning
Exploit the cache’s modulo addressing function
Distribute tasks in address space 
Ensure mapping to particular cache lines

Tasks can not evict each other
- Additional jumps have to be inserted, branches corrected
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WCETWCET--aware Cache Partitioningaware Cache Partitioning
Greedy approach*

Partition size depends on task’s 
code size
Example: 4 tasks with the same 
code size

Better
Employ an ILP-model to select 
optimal cache size for every task
Take execution frequencies into 
account
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[* Frank Mueller, 1995: Compiler Support for Software-Based Cache Partitioning]
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ILP ILP FormulationFormulation
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ILP FormulationILP Formulation
Each task must have a partition assigned:

Keep track of the cache size:
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ILP FormulationILP Formulation
A tasks WCET is determined:

Objective function to minimize:
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WorkflowWorkflow

WCETWCET--aware C Compiler (WCC)aware C Compiler (WCC)
Supports Infineon TriCore
TC1796
Integrates static WCET 
analyzer aiT
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Results: UTDSPResults: UTDSP
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Results: MRTCResults: MRTC
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WCET-driven Cache Partitioning presented
Employed an ILP to select optimal partition sizes w.r.t. the overall 
system‘s WCET
Partitioning introduces predictability for preemptive scheduled 
systems
Average WCET reduction of 12% (5 tasks) up to 19% (15 tasks) 
compared to greedy approach

Future WorkFuture Work

ConclusionConclusion

Tightly coupling of offline schedulers
Take task dependencies into account
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Thank you for your attention!Thank you for your attention!

Questions?
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Distribution of CodeDistribution of Code
Achieved by exploiting the linker
Each portion is assigned to its own section
Example linker script for two tasks:
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Memory usageMemory usage
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Optimization TimeOptimization Time
Host machine: Dual Xeon L5420 @ 2.50GHz
Using a single core
Complete workflow consists of:

Compilation 
Analysis 
Optimization

: up to 3 minutes
: up to 1 hour / task
: up to 1 minute
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