
Comparing
Implicit Path Enumeration

and
Model Checking - based

WCET Analysis

Benedikt Huber, Martin Schöberl
Vienna University of Technology

benedikt@vmars.tuwien.ac.at
mschoebe@mail.tuwien.ac.at

mailto:benedikt@vmars.tuwien.ac.at�
mailto:mschoebe@mail.tuwien.ac.at�

Why consider Model Checking ?
 Instruction timing depends on execution history
 ILP – based WCET calculation
 Expressive constraints, efficient solvers
 Needs good abstractions and/or graph duplication to take

execution history into account

 Model Checking
 Use a model checker to calculate a WCET bound
 States generated on the fly, provide execution context
 No need to enumerate all paths
 Easy to model hardware
 Reports worst-case path

Determining the WCET using UPPAAL

 Control flow graph Timed Automaton
 Clocks represent elapsed time (global, basic block)
 Bounded integer variables
 Loop Counters
 Hardware State

 Guards on clocks and variables
 Model instruction timing
 Exclude infeasible paths

 Verify whether the task always finishes within T time units
 Binary search with known upper bound

Example: Loop with Branch Prediction

 Verify: A[](Task.E imply elapsed ≤ WCET)
 Find path: E<>(Task.E && elapsed == WCET)

 UPPAAL reports worst-case path: ACDABDACDABD…E

elapsed .. total elapsed time
t .. time spend in basic block
b .. state of branch predictor
cnt .. loop counter

Invariants
Timing Guards
Loop Guards
Clock Reset
Variable Update

Implementation Context
 New version of our WCET analysis tool for Java

processors
 Target: The Java Optimized Processor (JOP)
 But the approach also works for other platforms

 Analysis of Java byte code
 Close to target platform, but much easier than assembler
 Analysis: Call graph, Dynamic Dispatch, Loop Bounds

 Common Tool infrastructure
 CFG construction & analysis
 Report generation
 Microcode Analysis

Evaluation: IPET and Model Checking
 Target: JOP + variable block method cache (FIFO replacement)
 IPET
 Static cache approximation
 We use this property: If during the execution of some method, the

cache is guaranteed not to overflow, each method is loaded at most
once.

 Model Checking: Cache simulation
 Cache is an array of bounded integer variables
 Update on access, wait on miss

 Questions we wanted to answer
 Is model checking in principle capable of handling our applications ?
 Comparison of static cache approximation with cache simulation

Benchmark Results

 Method Cache: Simulation and Static Approximation
 Simulation does not scale well
 On evaluation platform, approximation is good enough

 +3% - +7% compared to simulation
 Took much longer to develop

JOP Apps Methods Calc. WCET IPET (s) Verify (s)

MatrixMult 3 1088497 0.01 0.23

CRC 6 191825 0.01 0.52

Lift 13 8355 0.01 0.18

UdpIp 28 129638 0.04 1.78

Kfl (8 blocks) 46 37963 0.13 31.77

Kfl (1 block) 0.57

Kfl (16 blocks) Timeout

Conclusion and Discussion
 IPET as ‘the standard method’ is a good idea
 Model Checking ?
 Use model checking for important code fragments
 Combine with Implicit Path Enumeration
 Well suited to distinguish tractable number of hardware states

 UPPAAL has a nice abstraction for time
 But only simple integer variables for hardware components
 Binary search could be eliminated

 Future Work
 Apply model checking to JOP multiprocessor
 Work on other processors

Thank you.

	�Comparing�Implicit Path Enumeration�and�Model Checking - based�WCET Analysis
	Why consider Model Checking ?
	Determining the WCET using uppaal
	Example: Loop with Branch Prediction
	Implementation Context
	Evaluation: IPET and Model Checking
	Benchmark Results
	Conclusion and Discussion
	Thank you.

