
1

1

ESL Design in the context of embedded
systems education

Mladen Berekovic

Technische
Universität
Braunschweig

WESE 2009

Mladen Berekovic, TU Braunschweig, 2009 2

Overview

•  introduction – electronic system level design today

•  new software challenges in microelectronic systems

•  example: automotive electronics

•  consequences for ESL design education

•  curriculum in computer engineering & embedded system
platforms

•  conclusion

Mladen Berekovic, TU Braunschweig, 2009 3

Introduction - ESL Design Today

•  ESL (Electronic System Level) design is typically
understood as microelectronic design raised to higher
levels of abstraction
–  start with a coherent system function specification

•  specification might be adapted during the design process
–  validate system function
–  implement in HW and SW components
–  integrate components and test system

•  larger systems: V-Model

•  design goal
–  correct implementation of function specification
–  system optimization

•  objectives: cost, power, …
•  constraints: physical, reliability, …

Mladen Berekovic, TU Braunschweig, 2009 4

Introduction – Designer Qualification

•  required skills
–  hardware architectures
–  hardware system design incl. partitioning, accelerators, …
–  system modeling and verification technology – TLM,

SystemC, …
–  hardware design processes

•  helpful knowledge
–  application domain knowledge, e.g. signal processing, control,
–  compiler technology
–  fundamentals of basic software

•  e.g. exception handling, drivers, …

Mladen Berekovic, TU Braunschweig, 2009 5

Software in Microelectronic Systems

•  a growing number of microelectronic circuits are not
designed for a single final product
–  no coherent initial specification

•  a large part of the final system specification is delayed to a
later development process, including upgrades/updates

•  software is used for end product diversification
–  software is more than interfaces and drivers, but controls

hardware system function and adaptation
–  software has developed into an

integral part of microelectronic
system design

®  Multiprocessor Platforms (MpSoC)

•  examples:
–  wireless, consumer,

automotive, industrial, …

MpSoCs
Mladen Berekovic, TU Braunschweig, 2009 6

Software in ESL Design

•  software development follows different rules and processes
–  comes with its own layered architecture
–  follows different design objectives of

•  flexibility
•  systems evolution
•  dynamic adaptation

–  uses different organization
•  resource sharing strategies

(processors, buses, memories, …)
•  component protocols and signaling

«  system design effort has to a large part moved to software
development
–  just count number of people involved

2

Mladen Berekovic, TU Braunschweig, 2009 7

Software Efficiency and Hardware Organization

•  software efficiency very much depends on the underlying
hardware and its organization
–  so, embedded software developers should (finally) be

educated in hardware organization?
–  yes, but that is only one side

Mladen Berekovic, TU Braunschweig, 2009 8

Software Depends on Hardware - Consequences

•  hardware architectures that effectively support emerging
software architectures have become an (inherent) new
design objective

•  software architecture support influences
–  platform (re-)usability
–  design space for diversification
–  quality of the final hardware-software product

®  ESL hardware designer should have a basic understanding
of software to support system design

Mladen Berekovic, TU Braunschweig, 2009 9

How important is all this for systems engineering?

•  embedded systems and their software have become the
dominant driver for European microelectronics and
systems engineering

•  can be seen in market and cost shares

Mladen Berekovic, TU Braunschweig, 2009 10

Microelectronics – Market in 2006

automotive computer industrial
consumer telecom mil/aerospace

World Amer. Europe Japan Asia/Pac. Germany

source: German ZVEI 2007

embedded
systems
components
clearly
dominate
computer
components in
Europe

Mladen Berekovic, TU Braunschweig, 2009 11

Growth Rates in Automotive Systems Cost

semiconductor 292%
(ca. 12% of vehicle cost)

electronics 195%
(ca. 22% of vehicle cost)

 vehicle 131%

gr
ow

th
 ra

te
 (2

00
1

0
10

0%
)

cost share of automotive electronics
grows rapidly

vehicle
electronics
semiconductor

source: German ZVEI 2007

Mladen Berekovic, TU Braunschweig, 2009 12

Example: Current Automotive Design Chain

OEM
- BMW, Daimler, GM, PSA, Toyota, …

- global system, integration and network Gateway

ECU1
CAN1 CAN2

FlexRay

ECU2

ECU4

ECU5

ECU8 ECU7

ECU - Supplier
-  Bosch, Delphi, Valeo, …
-  ECU responsibility Bosch Delphi Valeo

RTE - Supplier
-  Vektor, ETAS, Elektrobit,
 Mentor HW Component - Supplier

-  Infineon, Freescale, ST, Toshiba, …

specs ECUs

specs SoCs

3

Mladen Berekovic, TU Braunschweig, 2009 13

„Traditional“ ECU Design

•  OEM defines, feature set, network, and specifies ECU
function (using text, MatLab and other models, …), defines
diagnosis and test procedures

•  supplier develops and integrates ECU HW components,
RTE and application function provides ECU

•  HW component supplier designs IC specifically for the
needs of the ECU function which is defined by the OEM
specification
®  single source „coherent“ specification

•  supplier integrates and tests ECU and local RTE

•  OEM integrates and tests ECUs, networks and final car

®  V-Model

Mladen Berekovic, TU Braunschweig, 2009 14

Requirements

System Design System Test

Requirements Test

Module Design

Function Design Function Test

Module Test

V Model

Implementation Integration

Mladen Berekovic, TU Braunschweig, 2009 15

Automotive Design - Result

•  complexity challenge
–  hundreds of

functions
–  50+ ECUs
–  networked control
–  many suppliers
–  heterogeneous

•  design challenges
–  supply chains
–  systems integration
–  verification

•  software architecture standards: single ECU => network

 OSEK => AUTOSAR

source: Daimler

55 ECUs & 7 Buses of 4 types with Gateways

Mladen Berekovic, TU Braunschweig, 2009 16

AUTOSAR Standard Goals (selection)

•  Modularity
–  tailor the SW-components according to the individual

requirements

•  Scalability
–  adaptability of SW-components to different vehicle platforms
–  avoid proliferation of software with similar functionality

•  Transferability
–  remapping of SW-components among different HW-

components

•  Re-usability
–  adaptability of SW-components across different product lines
–  shorten design process
–  improve quality and reliability of E/E systems

Mladen Berekovic, TU Braunschweig, 2009 17

AUTOSAR Methodology

•  SW-Components (SW-C)
–  encapsulate the applications

•  Virtual Functional Bus (VFB)
–  communication mechanisms
–  interface to Basic SW

•  Mapping
–  configuration and generation

of RTE and Basic SW

•  Runtime Environment (RTE)
–  VFB implementation on a

specific ECU

•  Basic Software (BSW)
–  infrastructural functionality

on an ECU

Source: www.autosar.org

Mladen Berekovic, TU Braunschweig, 2009 18

AUTOSAR – Consequences for ESL Design (1)

•  automotive systems become software platforms
–  no complete ECU function specification at application level
–  partially defined and evolving system functionality
–  mapping of software to platform remains open
–  abstract requirements to robustness and scalability

•  software is used for end product diversification
–  new types of resilient multicore architectures will become

interesting
–  software only partially accessible to the hardware designer

•  IP protection
•  later upgrades must be planed in advance
®  ESL design process has to adapt

4

Mladen Berekovic, TU Braunschweig, 2009 19

AUTOSAR – Consequences for ESL Design (2)

•  so, why not leave software design to software people as in
general purpose processor design?
–  benchmarking does not cover networked system functionality
–  embedded systems require performance guarantees
–  such guarantees require appropriate interplay of HW, RTE and

application
«  difference to general purpose processor design

Mladen Berekovic, TU Braunschweig, 2009 20

AUTOSAR – Consequences for ESL Design (3)

•  hardware has significant influence on predictability,
performance and correct concurrent task execution
–  memory architectures, caches, multithreading,

synchronization, power control, network topologies and
protocols, …

•  AUTOSAR is just a highly visible example for general
trends in embedded systems design

Mladen Berekovic, TU Braunschweig, 2009 21

Consequences for ESL Education (1)

•  ESL design requires background in RTE and software
platform architectures
–  resource organization principles

•  scheduling, arbitration, task activation and execution, QoS
control

–  embedded operating system principles
•  memory assignment, communication and synchronization

–  software performance evaluation techniques
•  measurement, instrumentation, monitoring, WCET timing,

…

Mladen Berekovic, TU Braunschweig, 2009 22

Consequences for ESL education (2)

•  ESL design requires background in application models
–  examples: Simulink, FSMs, signal flow graphs, task graphs, …
–  application models determine

•  task activation frequencies (timing or event driven)
•  task dependencies - causality
•  communication frequency and volume
•  buffer memory usage …
•  crucial to identify system load and application timing

–  explicit description lost in implementation language
•  examples: SystemC, VHDL, C, …
•  knowledge of implementation languages not sufficient

Mladen Berekovic, TU Braunschweig, 2009 23

Consequences for ESL education (3)

•  ESL design profits from software methodology background
–  modeling, verification, and analysis tools, synthesis (compiler

and code generation)
–  software test strategies

Mladen Berekovic, TU Braunschweig, 2009 24

What Software Skills are not in the ESL Focus ?

•  general software engineering and programming skills

•  software languages and standards with little influence on
platform execution

®  large part of software technology

5

Mladen Berekovic, TU Braunschweig, 2009 25

Embedded Systems Education – Conflicting Goals

•  education in CS tries to trade-off the growing importance of
embedded systems software versus „classical“ CS topics
–  result is an emphasis on the overlapping segments of software

engineering and software modeling technologies
–  emphasis off topics wrt. ESL design

•  education in microelectronic design does not yet cover
software topics
–  major differences in classical and embedded computing
–  software for MpSoC is an emerging field asking for course

contents to be developed
–  software contents compete for shares in current

microelectronic education

•  compromise needed
–  tried to address in curriculum at TU Braunschweig

Mladen Berekovic, TU Braunschweig, 2009 26

Computer & Communication Systems Engineering

•  curriculum CCSE introduced in fall 99 at Technische
Universität Braunschweig (concurrently with TU Dresden)
–  German title “Informations-Systemtechnik”

•  covers embedded system design - not restricted to MpSoC

•  originally diploma, now BSc/MSc degrees

•  cooperation of departments of CS and EE&IT

•  4 balanced parts in BSc and MSc program:
EE, CS, mathematics, practical labs

•  example for embedding ESL software education in
embedded systems curriculum

Mladen Berekovic, TU Braunschweig, 2009 27

BSc Mandatory Courses (selection)

•  Hardware fundamentals (40 CP)
–  EE Fundamentals 9 CP
–  Circuits&Systems 13 CP
–  Computer Engineering 14 CP
–  Metrology 4 CP

•  Software courses (30 CP)
–  Algorithms & Data Structures 8 CP
–  Programming 10 CP
–  Software Engineering 4 CP
–  Operating Systems 4 CP
–  CS theory 4 CP

•  Systems engineering (16 CP)
–  Computer Networks 4 CP
–  Communications Engineering 8 CP
–  Signal Processing 4 CP

general software
technology

provides
application
foundation

classical CE

Mladen Berekovic, TU Braunschweig, 2009 28

Master Curriculum

Elective Areas 56 CP

Computer

Engineering and

Embedded System

Platforms

Software and

System

Engineering

Communications

Engineering

Lab modules 12 CP Profess.

16 CP Mathematics 8 CP

Master Thesis 30 CP

•  1 elective area as major (min. 20 CP)

•  min. 1 area as minor (min. 12 CP)

Mladen Berekovic, TU Braunschweig, 2009 29

Computer Engineering & Embedded System Platforms (1)

•  includes introductory course to embedded system platforms as
elective core course (6 CP)

–  application models and implementation
•  reactive and transformative system descriptions, automata

networks, state diagrams, signal flow graphs, Kahn graphs, Petri-
Nets,…

•  correct implementation, identifying design space, exploiting non
determinism, …

–  embedded architectures
•  embedded system architecture principles
•  microcontroller and DSP – principles of specialization
•  example: different types of media processors (including failures)
•  complex multicore architectures: network processors, DSP,

Emotion Engine (PS 2), Cell Processor (PS 3), reconfigurable
architectures

–  platform organization
•  real-time platform organization, resource sharing,
•  software organization and architectures, …
•  real-time analysis and predictability
•  power control and optimization

Mladen Berekovic, TU Braunschweig, 2009 30

Computer Engineering & Embedded System Platforms (2)

•  several in depth elective courses on (selection)
–  dependable computing
–  advanced computer architecture
–  advanced VLSI design
–  analog circuit design
–  avionics platforms
–  automotive electronics
–  system level EDA
–  …

6

Mladen Berekovic, TU Braunschweig, 2009 31

Example Course: MPSoC Design

•  Module for ESL-VLSI Design: 6CPs

•  Lecture MPSoC Design
–  Electronic-System-Level Design Methodology, SystemC
–  Transaction-Level Modeling (TLM 2.0)
–  Networks, Busses & Protocols, Networks-on-Chip
–  Low-Power MPSoC System-Level Design Techniques

•  Accompanying Lab Course MPSoC Design
–  SystemC based Design of a project: Digital Camera
–  Introduction to System-C based System Design
–  Coware (Multi-Core) Platform Creator
–  Component Design in System-C
–  Abstraction Models
–  Busses & Communication
–  Accelerator Design

32

SDRAM
Controller

DSP MJPEG
NTSC/

PAL
encoder

Video
D/A

LCD/TV

Bus
bridge

SSFDC
Controller

DRAM
Controller

UART
2x IrDA PCMCIA

Controller

SIO,
PIO,
PWM

DMA
Controller

Audio
D/A, A/D RISC Smart

Media

Flash

DRAM

SDRAM

CCD

Computer Architecture and Design, Patterson & Hennessy

16 bits

32 bits (Signal bus)

16 bits (CPU bus)

MIC
Speaker

10 bits

VLSI-MPSoC Design Lab: Digital Camera

Sanyo VPC-SX500

Architecture of a off-the shelve camera

Mladen Berekovic, TU Braunschweig, 2009 33

Curriculum Summary

•  BSc provides broad insights in HW, SW, and application areas
avoiding early bias

–  emphasis on general software technology – will be the focus of most
BSc embedded software developers

•  MSc includes ESL software in the context of microelectronics,
application and in-depth software engineering

–  concentrates special ESL software aspects in a single ECC (6 CP)
–  supports combination with in-depth microelectronic and embedded

computer architecture courses
–  requires further in-depth education in application and systems

engineering areas stressing the interdisciplinary role of embedded
system platform design

•  specialization is taken by 30-40 students each year
–  student evaluation very positive but introductory MSc course

considered time consuming due to insufficient textbook material
–  very positive feedback from industry

Mladen Berekovic, TU Braunschweig, 2009 34

Conclusion

•  trend towards software controlled MpSoC leads to
separated hardware design and software configuration and
update processes

•  software architectures are moving fast and start to
dominate the overall embedded system design

•  software architectures impose new challenges that affect
hardware design

•  now, the hardware architect is not only working for the
application developer, but also for the software architect

•  with multicore and networked architectures, good hardware
design is more than ever needed to reach system efficiency

•  it is about time to include selected software topics in the
curriculum

