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Overview 

•  introduction – electronic system level design today 

•  new software challenges in microelectronic systems  

•  example: automotive electronics 

•  consequences for ESL design education 

•  curriculum in computer engineering & embedded system 
platforms  

•  conclusion 
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Introduction - ESL Design Today 

•  ESL (Electronic System Level) design is typically 
understood as microelectronic design raised to higher 
levels of abstraction 
–  start with a coherent system function specification 

•  specification might be adapted during the design process  
–  validate system function 
–  implement in HW and SW components 
–  integrate components and test system  

•  larger systems: V-Model 

•  design goal 
–  correct implementation of function specification 
–  system optimization 

•  objectives: cost, power, … 
•  constraints: physical, reliability, … 
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Introduction – Designer Qualification 

•  required skills 
–  hardware architectures  
–  hardware system design incl. partitioning, accelerators, … 
–  system modeling and verification technology –  TLM, 

SystemC, … 
–  hardware design processes 

•  helpful knowledge 
–  application domain knowledge, e.g. signal processing, control, 
–  compiler technology 
–  fundamentals of basic software  

•  e.g. exception handling, drivers, … 
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Software in Microelectronic Systems 

•  a growing number of microelectronic circuits are not 
designed for a single final product 
–  no coherent initial specification 

•  a large part of the final system specification is delayed to a 
later development process, including upgrades/updates 

•  software is used for end product diversification  
–  software is more than interfaces and drivers, but controls 

hardware system function and adaptation 
–  software has developed into an  

integral part of microelectronic  
system design  

®  Multiprocessor Platforms (MpSoC) 

•  examples: 
–  wireless, consumer, 

automotive, industrial, …  

MpSoCs 
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Software in ESL Design 

•  software development follows different rules and processes 
–  comes with its own layered architecture  
–  follows different design objectives of  

•  flexibility 
•  systems evolution  
•  dynamic adaptation 

–  uses different organization  
•  resource sharing strategies  

(processors, buses, memories, …) 
•  component protocols and signaling 

«  system design effort has to a large part moved to software 
development 
–  just count number of people involved 
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Software Efficiency and Hardware Organization 

•  software efficiency very much depends on the underlying 
hardware and its organization 
–  so, embedded software developers should (finally) be 

educated in hardware organization? 
–  yes, but that is only one side 
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Software Depends on Hardware - Consequences 

•  hardware architectures that effectively support emerging 
software architectures have become an (inherent) new 
design objective 

•  software architecture support influences  
–  platform (re-)usability 
–  design space for diversification 
–  quality of the final hardware-software product 

®  ESL hardware designer should have a basic understanding 
of software to support system design  
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How important is all this for systems engineering?   

•  embedded systems and their software have become the 
dominant driver for European microelectronics and 
systems engineering 

•  can be seen in market and cost shares   
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Microelectronics – Market in 2006 

automotive computer industrial 
consumer telecom mil/aerospace 

World Amer. Europe Japan Asia/Pac. Germany 

source: German ZVEI 2007  

embedded 
systems 
components  
clearly 
dominate 
computer 
components in 
Europe 
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Growth Rates in Automotive Systems Cost 

semiconductor 292% 
(ca. 12% of vehicle cost) 

electronics 195% 
(ca. 22% of vehicle cost) 

      vehicle 131% 
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cost share of automotive electronics 
grows rapidly  

vehicle 
electronics 
semiconductor 

source: German ZVEI 2007  
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Example: Current Automotive Design Chain 

OEM 
- BMW, Daimler, GM, PSA, Toyota, … 

- global system, integration and network   Gateway 

ECU1 
CAN1 CAN2 

FlexRay 

ECU2 

ECU4 

ECU5 

ECU8 ECU7 

ECU - Supplier 
-  Bosch, Delphi, Valeo, … 
-  ECU responsibility Bosch Delphi Valeo 

RTE - Supplier 
-  Vektor, ETAS, Elektrobit,  
  Mentor HW Component - Supplier 

-  Infineon, Freescale, ST, Toshiba, … 

specs ECUs 

specs SoCs 
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„Traditional“ ECU Design 

•  OEM defines, feature set, network, and specifies ECU 
function (using text, MatLab and other models, …), defines 
diagnosis and test procedures 

•  supplier develops and integrates ECU HW components, 
RTE and application function provides ECU   

•  HW component supplier designs IC specifically for the 
needs of the ECU function which is defined by the OEM 
specification  
®  single source „coherent“ specification 

•  supplier integrates and tests ECU and local RTE 

•  OEM integrates and tests ECUs, networks and final car 

®  V-Model 
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Requirements 

System Design System Test 

Requirements  Test 

Module Design 

Function Design Function Test 

Module Test 

V Model 

Implementation Integration 
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Automotive Design - Result 

•  complexity challenge 
–  hundreds of  

functions 
–  50+ ECUs 
–  networked control 
–  many suppliers 
–  heterogeneous 

•  design challenges 
–  supply chains 
–  systems integration  
–  verification 

•  software architecture standards: single ECU => network  

   OSEK => AUTOSAR  

source: Daimler 

55 ECUs & 7 Buses of 4 types with Gateways 
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AUTOSAR Standard Goals (selection) 

•  Modularity 
–  tailor the SW-components according to the individual 

requirements 

•  Scalability 
–  adaptability of SW-components to different vehicle platforms 
–  avoid proliferation of software with similar functionality 

•  Transferability 
–  remapping of SW-components among different HW-

components 

•  Re-usability 
–  adaptability of SW-components across different product lines 
–  shorten design process 
–  improve quality and reliability of E/E systems 
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AUTOSAR Methodology 

•  SW-Components (SW-C) 
–  encapsulate the applications 

•  Virtual Functional Bus (VFB) 
–  communication mechanisms 
–  interface to Basic SW 

•  Mapping 
–  configuration and generation 

of RTE and Basic SW  

•  Runtime Environment (RTE) 
–  VFB implementation on a  

specific ECU 

•  Basic Software (BSW) 
–  infrastructural functionality 

on an ECU   

Source: www.autosar.org 
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AUTOSAR – Consequences for ESL Design (1) 

•  automotive systems become software platforms 
–  no complete ECU function specification at application level 
–  partially defined and evolving system functionality 
–  mapping of software to platform remains open 
–  abstract requirements to robustness and scalability  

•  software is used for end product diversification 
–  new types of resilient multicore architectures will become 

interesting 
–  software only partially accessible to the hardware designer 

•  IP protection  
•  later upgrades must be planed in advance 
®  ESL design process has to adapt  
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AUTOSAR – Consequences for ESL Design (2) 

•  so, why not leave software design to software people as in 
general purpose processor design? 
–  benchmarking does not cover networked system functionality 
–  embedded systems require performance guarantees  
–  such guarantees require appropriate interplay of HW, RTE and 

application 
«  difference to general purpose processor design 
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AUTOSAR – Consequences for ESL Design (3) 

•  hardware has significant influence on predictability, 
performance and correct concurrent task execution 
–  memory architectures, caches, multithreading, 

synchronization, power control, network topologies and 
protocols, …  

•  AUTOSAR is just a highly visible example for general 
trends in embedded systems design 
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Consequences for ESL Education (1) 

•  ESL design requires background in RTE and software 
platform architectures 
–  resource organization principles  

•  scheduling, arbitration, task activation and execution, QoS 
control 

–  embedded operating system principles 
•   memory assignment, communication and synchronization 

–  software performance evaluation techniques  
•  measurement, instrumentation, monitoring, WCET timing, 

… 
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Consequences for ESL education (2) 

•  ESL design requires background in application models 
–  examples: Simulink, FSMs, signal flow graphs, task graphs, …  
–  application models determine 

•  task activation frequencies (timing or event driven) 
•  task dependencies - causality 
•  communication frequency and volume 
•  buffer memory usage … 
•  crucial to identify system load and application timing 

–  explicit description lost in implementation language  
•  examples: SystemC, VHDL, C, … 
•  knowledge of implementation languages not sufficient 
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Consequences for ESL education (3) 

•  ESL design profits from software methodology background 
–  modeling, verification, and analysis tools, synthesis (compiler 

and code generation)  
–  software test strategies 
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What Software Skills are not in the ESL Focus ? 

•  general software engineering and programming skills  

•  software languages and standards with little influence on 
platform execution 

®  large part of software technology 
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Embedded Systems Education – Conflicting Goals 

•  education in CS tries to trade-off the growing importance of 
embedded systems software versus „classical“ CS topics  
–  result is an emphasis on the overlapping segments of software 

engineering and software modeling technologies 
–  emphasis off topics wrt. ESL design 

•  education in microelectronic design does not yet cover 
software topics  
–  major differences in classical and embedded computing 
–  software for MpSoC is an emerging field asking for course 

contents to be developed 
–  software contents compete for shares in current 

microelectronic education 

•  compromise needed 
–  tried to address in curriculum at TU Braunschweig 
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Computer & Communication Systems Engineering 

•  curriculum CCSE introduced in fall 99 at Technische 
Universität Braunschweig (concurrently with TU Dresden) 
–  German title “Informations-Systemtechnik” 

•  covers embedded system design - not restricted to MpSoC 

•  originally diploma, now BSc/MSc degrees  

•  cooperation of departments of CS and EE&IT 

•  4 balanced parts in BSc and MSc program:  
EE, CS, mathematics, practical labs 

•  example for embedding ESL software education in 
embedded systems curriculum 
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BSc Mandatory Courses (selection) 

•  Hardware fundamentals (40 CP) 
–  EE Fundamentals  9 CP 
–  Circuits&Systems  13 CP 
–  Computer Engineering  14 CP 
–  Metrology  4 CP 

•  Software courses (30 CP) 
–  Algorithms & Data Structures  8 CP 
–  Programming  10 CP 
–  Software Engineering  4 CP 
–  Operating Systems  4 CP 
–  CS theory  4 CP  

•  Systems engineering (16 CP) 
–  Computer Networks  4 CP 
–  Communications Engineering  8 CP 
–  Signal Processing  4 CP 

general software 
technology  

provides  
application  
foundation 

classical CE 
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Master Curriculum 

Elective Areas 56 CP 

Computer 

Engineering and 

Embedded System 

Platforms 

Software and 

System 

Engineering 

Communications 

Engineering 

Lab modules 12 CP Profess. 

16 CP Mathematics  8 CP 

Master Thesis 30 CP 

•  1 elective area as major (min. 20 CP)  

•  min. 1 area as minor (min. 12 CP) 
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Computer Engineering & Embedded System Platforms (1) 

•  includes introductory course to embedded system platforms as 
elective core course (6 CP) 

–  application models and implementation  
•  reactive and transformative system descriptions, automata 

networks, state diagrams, signal flow graphs, Kahn graphs, Petri-
Nets,… 

•  correct implementation, identifying design space, exploiting  non 
determinism, … 

–  embedded architectures 
•  embedded system architecture principles 
•  microcontroller and DSP – principles of specialization 
•  example: different types of media processors (including failures) 
•  complex multicore architectures: network processors, DSP, 

Emotion Engine (PS 2), Cell Processor (PS 3), reconfigurable 
architectures 

–  platform organization  
•  real-time platform organization, resource sharing,  
•  software organization and architectures, … 
•  real-time analysis and predictability 
•  power control and optimization 
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Computer Engineering & Embedded System Platforms (2) 

•  several in depth elective courses on (selection) 
–  dependable computing  
–  advanced computer architecture 
–  advanced VLSI design 
–  analog circuit design 
–  avionics platforms 
–  automotive electronics 
–  system level EDA 
–  … 
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Example Course: MPSoC Design 

•  Module for ESL-VLSI Design: 6CPs 

•  Lecture MPSoC Design 
–  Electronic-System-Level Design Methodology, SystemC 
–  Transaction-Level Modeling (TLM 2.0) 
–  Networks, Busses & Protocols, Networks-on-Chip 
–  Low-Power MPSoC System-Level Design Techniques 

•  Accompanying Lab Course MPSoC Design 
–  SystemC based Design of a project: Digital Camera 
–  Introduction to System-C based System Design 
–  Coware (Multi-Core) Platform Creator 
–  Component Design in System-C 
–  Abstraction Models 
–  Busses & Communication 
–  Accelerator Design 

32 

SDRAM 
Controller 

DSP MJPEG 
NTSC/

PAL 
encoder 

Video  
D/A 

LCD/TV 

Bus 
bridge 

SSFDC 
Controller 

DRAM 
Controller 

UART 
2x IrDA PCMCIA 

Controller 

SIO, 
PIO, 
PWM 

DMA 
Controller 

Audio 
D/A, A/D RISC Smart 

Media 

Flash 

DRAM 

SDRAM 

CCD 

Computer Architecture and Design, Patterson & Hennessy 

16 bits 

32 bits (Signal bus) 

16 bits (CPU bus) 

MIC 
Speaker 

10 bits 

VLSI-MPSoC Design Lab: Digital Camera 

Sanyo VPC-SX500 

Architecture of a off-the shelve camera 
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Curriculum Summary 

•  BSc provides broad insights in HW, SW, and application areas 
avoiding early bias 

–  emphasis on general software technology – will be the focus of most 
BSc embedded software developers 

•  MSc includes ESL software in the context of microelectronics, 
application and in-depth software engineering  

–  concentrates special ESL software aspects in a single ECC (6 CP) 
–  supports combination with in-depth microelectronic and embedded 

computer architecture courses 
–  requires further in-depth education in application and systems 

engineering areas stressing the interdisciplinary role of embedded 
system platform design 

•  specialization is taken by 30-40 students each year 
–  student evaluation very positive but introductory MSc course 

considered time consuming due to insufficient textbook material  
–  very positive feedback from industry  
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Conclusion 

•  trend towards software controlled MpSoC leads to 
separated hardware design and software configuration and 
update processes 

•  software architectures are moving fast and start to 
dominate the overall embedded system design 

•  software architectures impose new challenges that affect 
hardware design  

•  now, the hardware architect is not only working for the 
application developer, but also for the software architect 

•  with multicore and networked architectures, good hardware 
design is more than ever needed to reach system efficiency 

•  it is about time to include selected software topics in the 
curriculum 


