

An Undergraduate Embedded Software Laboratory for the Masses

André Stollenwerk, Chate Jongdee, Stefan Kowalewski

stollenwerk@embedded.rwth-aachen.de

Workshop on Embedded Systems Education (WESE'09) October 15th 2009

Outline

- Motivation
- Short Facts on the new Lab Course
- Organizational Aspects
- Evaluation Board
- Topics
- Experiences
- Summary and Outlook

Bologna Process \rightarrow Impact to Curricula

- Graduation Scheme was Adapted to Bachelor and Master of Science
- Courses have to be Rearranged
- New Courses were Established
- Analysis of Existing Curriculum was Performed

Particular Requirements to new Courses

- Experiences with Hardware Related Issues
 - CPU and Hardware Registers
 - Interrupts
 - Memory-Models
- Getting in Practical Touch with System Software
 - Bootloader
 - Scheduling
 - Memory Management
 - Programming Paradigms (Especially Hardware Programming)

Outline of the new Lab Course

- Mandatory 3rd Semester BSc (with no Requirements)
- Implementing an Operating System on an ATmega in C
- Practically Familiarizing with Operating Systems Algorithms
- Working with restricted hardware resources
- Testing and Documenting Code
- Teamwork
- Presenting ones Results (5 Min Presentations)

Facts and Figures on the Lab Course

- Used Microcontroller: ATmega 644
- 2nd Year Students
- 4 ECTS Credits
 - 18 Hours of Presence Exercises
 - ~ 100 Hours of Self Studies (Homework)
- ~ 200 Students (in Teams of 2 Students)
- Experiments Spread over approx. 3.5 Months
- No Grades (just Passed of Failed)
- Established in Winter Term 2007 (3rd Time this Semester)

Organizational Aspects

- 6 Experiments with 3 Hours of Presence Exercise each
- Guided by 1 Research Assistant and 3 Student Assistants
- Group Sizes of approx. 30 Students (15 Teams)
- Test Programs for each Experiment
- Different Ways of Supporting the Students
 - Guiding Documentations
 - Consultation-Hours
 - Moderated Bulletin Board
 - Reliable and Easy to Handle Evaluation Board
 - Testing on Real Hardware

Our Evaluation Board

Topics

Bootloader Cominina nol Flow of thring Schletchalin (§ S232)

Topics

- Memory Management
 - Dynamically A
 - Read-Write-D 8 k Byte RAM
 - Access Restri
 - Different Alloc
 8 Bit Latch →
 - Accessing Inte
 - External Mem

10 / 15

Topics

- Task Manager
 - User Interface to Previous Components
 - Start / Stop / Pause Different User Applications
 - Change Scheduling Priorities / Strategies
 - Change Memory Allocation Strategies

- Application Tasks (Last Experiment Choice 1 out of 4)
 - Communication Between Two Microcontroller Boards
 - PS/2 Keyboard Driver + Simple Text-Based Game
 - RFID Reader + Access Control to Task Manager
 - Digital Picture Frame

Application Tasks

- Communication
 - Serial Communication via UART
 - Different Format Settings
 - Handling Frame Format and Parity Errors
 - Serial Communication via Optical Interface
 - LED + Photo Resistor
 - Reading from ADC
 - Taking Care of Electrical Issues like Noise
- PS/2 Keyboard Driver
 - Using USART for Basic Electrical Communication
 - Handling different Keyboard Maps
 - Timing during Communication

Application Tasks

Experiences

- Easy and Reliable Hardware is a very Basic Requirement
- Testing Environments are Needed for Preparation at Home
- Auxiliary Documentation \rightarrow Everybody on the same Level
- Experiments' Documentation as Detailed as Possible
- Not to Restrict Students Creativity
- Biggest Challenge Finding the Right Trade-Off
- Resulting in Better Skilled and Motivated Students

Conclusions and Outlook

- Covering Huge Amounts of Students
- Introducing Students to Embedded Hardware Programming
- Familiarizing Students with System Software Concepts

- Create more Testing Possibilities
- Evaluate the new Application Tasks

Tanks for your attention

Details on the Evaluation Board

- Exchangeable Microcontroller (ATmega 16...ATmega 644)
- Exchangeable Crystal Oscillator (currently 20 MHz)
- All Ports (32 PINs) Lead Through to the Outside
- 2x16 Character LCD
- JTAG
- ISP
- RS232 Interface
- 4 Buttons
- 8 LEDs

Resulted Curriculum

Extract of the BSc Curriculum in Computer Science at RWTH Aachen University

- 1st Semester
 - Lecture "Computer Engineering"
 - Lecture "Programming"
- 2nd Semester
 - Lab Course "Electrical Engineering"
 - Lecture "Data Structures and Algorithms"
- 3rd Semester
 - Lecture "Operating Systems and System Software"
 - Lab Course "Hardware Programming"

Memory Arrangment

