Igurable SID-based Multi-core Simulators for
Embedded System Education

Chung-Wen Huang,
Wel-Kuan Shih,
Yarsun Hsu,

Jenq Kuen Lee (kiee@cs.nthu.edu.tw)

National Tsing-Hua University, Taiwan.
Embedded Software Consortium, Taiwan.

Ew Embedded Saftware Consortium 2:?-

mailto:jklee@cs.nthu.edu.tw

ound
SID Simulation Framework
Heterogeneous Multi-core Simulation Platform

Embedded System Courses/Projects based on
SID Framework

Conclusion

Embedded

' Consortium % Workshop on Embedded Systems Education, 2009

n Embedded
oftware Consortium

The Embedded Software Consortium, established in February 2004 in
Taiwan, Is the consortium funded by the Ministry of Education (Other
consortiums including EDA, heterogeneous integrations, etc).

« The ESW Consortium focuses
the development of embedded
software curriculum.

 We hope to provide a reference
curriculum for universities in
Taiwan to develop their
embedded program.

» Developing embedded multi-core
curriculum is becoming a focus
for this program.

7 *” Workshop on Embedded Systems Ed

CourseWare: Multi-core
Simulation Tools

With the emerging of multi-core designs for embedded systems,
there is a need of multi-core simulation tools for courseware and
class experiments.

Several issues are considered.
1. To have a sequence of course work based on similar toolkits

2. To be able to configure the architectures with a variety of processor IPs
(including MPU and DSP processors).

To accommodate ingenious local IPs for experiments.

Experiment with multi-core programming models.

Experiment with interconnection networks.

Experiment with embedded multi-core applications.

Learn how to track and debug multi-core programs and performance tuning.
Experiment with middleware experiments.

S e Ol B

Messenger — Distributed Radio Transmitter System

Sl A-Core

PAC &

ﬁmglus

S-Core
Transmission Links § M
Ultra Low Power

In Chip Systems

(ULP) DSP Core
Low-Power Dual-Processor
System

NSoC 2008

Experiments with Various Parallel Programming Models

e MCAPI e OpenCL

— Released the first spec at 2008 by the — Released the first spec at 2008 by Khronos
Multicore Association Groups with many industry-leading

— Astandardized API for communication and companies and institutions
synchronization — Target for heterogeneous multicore

— Focus on high performance and low memory environment
footprint — For general purpose applications

— Defines three communications type: e OpenMAX
Messages, Packet channels, and Scalar — Released the first spec at 2007 by Khronos
channels Groups

- CUDA — Defined three layers of API interface to

— Introduced by NVIDIA at 2006 for GPU abstract software and hardware difference for
architecture portability

— C extensions and need compiler support — For multi-media applications

— SPMD-like programming model — Lacked of multicore support

— Fine-grained data parallelism and thread e Streaming RPC
parallelism — ICPP 2008

— Integration of Remoting with streaming
S TR mechainisms
L e L AU AL el | mrE i
ey by o || o || e
DRAM DRAM (CperMAX OpenMAX DL - Development Layer o GoretiaDadke
=4 =1~ I - - o p

Source: Giulio Urlini, “The OpenMAX Integration Layer Source: Neil Trevett, “OpenCL the Open Standard for
Source: http://wwwmulticore-association:ong/ Source: NVIDIA Corp., “NVIDIA CUDA Compute Unified Standard,” CELF Embedded Linux Conference, 2007 Heterogeneous Parallel Programming,” SIGGRAPH Asia, 2008
Device Architecture Programming Guide V2.0”, 2008

SID Multicore Simulation Milestones

SID Origins (<2001)

— SID is an open source framework for building computer system
simulations.

— The simulation framework is comprised of a set of loosely coupled
components (in C, C++ or TCL).

— SID was first released at 2001 Embedded System Conference.
SID in the Public Domain (http://sourceware.org/sid/)
— 100+ components are source code available in public domains.
e such as processors, memory, DMAs, LCDs, and peripherals.
— 10+ architecture description files available for references.

SID Components of Taiwan Dual-core Platform (2007-2008)

2008.11
Video-Cam
Component
Implementation

2008.12
ESL C90 Pass
Rate: 100%

-
wn
&
=1
—+
@D
D
()
o
=
S
D
(@)
Eain
o
=
o
Q
£

— 5-way issues VLIW DSP component (NTHU, ITRI STC) f\%%gpﬁng Open
— Virtual I/Os of Video Camera and Network Interface. (NTHU) gg(;g;rotocol
SID Multicore Simulation (2008~2009) (NTHU) ESL DSPStone.

— Configurable multi-core simulation with one MPU and four DSPs. 2009.3
— Multi-core GUI development environment. PACDSP

)))) Profiling Support
— OCP compllant Interconnect |mplementat|on. 2000.5

— Multi-core data profiling and tracing. Support TLM-level
Interconnection

http://sourceware.org/sid/

Imulation

CoWare™ SID QEMU
Architecture . . open source processor
' Simulation Framework
Designer emulator
Language C++/SystemC C++/C/Tcl C
IP-based
(Configurabl Yes Yes No
e)

Free No Yes Yes
Source code No Yes Yes
Scheduler/ Central clock Individual time

none
Clock Gen source quantum
Performance High Middle Less
Accuracy of (Most IPs are (Processor IPs are (Most IPs are

Simulation cycle-accurate.) cycle-accurate.) functional-accurate.)

Workshop on Embedded Systems Education, 2009 8

Connect
components

Execute N cycles

Cycle accurate

scheduler =

NN

"

: —l I
[] Run D]EIR/eady
[TTTTTT]

cfgroot
N _
Conf. —_ Config
File Parser
Sim. loop
_____ | Stop
0 P,
: component : Deinit.
L ——— d

g

Time accurate
scheduler x

Refresh data
"]

Time accurate
scheduler_y

L

/

/Refresh data

MPU, DSP,
DMA, ...

LCD,

console,
GPIO,

e According to the types of modeling targets, SID components can be
classified into hardware, software, and system components.

 The most important system components are the main controller
(cfgroot) and the scheduler component.

— The cfgroot controls the compositions of components and the main
execution of simulation.

f — The Scheduler then arranges the execution sequences of components.
Workshop on Embedded Systems Education, 2009

W Consortium %%

9

Algorithm

VideoCam Memory
|
: < SID bus mapper FUI’]CtIOﬂEﬂ I
, | Transaction level
I SID LCDC ‘ SID Andes Core | SID PAC DSP TILM model
N\ e e e e = e = -
C Transaction-based
e T-BCA bus cycle accurate
| NEW gpperpnens . il Pin accurate bus
I : PA-BCA cycle accurate
| /!
| CA Cycle accurate
I Configurable Interconnect model |
I * * EN;Q ' Register transfer
| 1 |RTL level
I SIDLCDC SID Andes Core SID PACDSP |
q.__________________/
—— __ Embedded
- }v égﬁggﬁﬁum Workshop on Embedded Systems Education, 2009 10

Configurable Interconnection Model

For the original SID
framework, the bus
mechanism is
emulated by look-up
tables and the
memory addresses
are mapped to the
read/write functions
of components.

Original SID Functional Address Mapper Architecture]L """"" SIDMemory """"" :
SID] : slave :
Peripherals VideoCam SID Memory A
| | I N bus->read/write()
< SID Mapper) Y
| | [}

LCDC MPU

‘ ‘ PACDSP ‘

<-7 New SID TLM Interconnection Architecture

SID

SID Memory | /

| Interconnection Adaptor |

I X

write(*pkt)

write(*pkt)

Y

| Interconnection Adaptor | :

I 3

bus->read/write()
A

Peripherals VideoCam | | SID Memory
N -h .
< Conflgurable Interconnecnon Model >
LCDC MPU PACDSP |

master
PACDSP

We add new data communication flows of the mterconnectlon networks.

* An new interconnection adaptor (I1A) accepts the bus control and
transforms data packages.

 The new interconnection component is a package of mathematical
models with the statistics of package transmission history and a

probabilistic analysis of communication predictions.

 The interconnection model now can be configured as bus, crossbar,
and on-chip network.

Video Cam

Driver

L

b

VideoCam

1A

@

A

Memory

|) (][]]

.L IA '|.|,.E

PACDSP

PACDSP

Interconnection Model

4 PACDSP I\
-‘ PACDSP |~

" LCDC I

[

1320.290) - 4bpa . DCA

Embedded

Consortium

L

imulator
by GDB protocol

Multi-core Eclipse-based IDE

Deb

prog.c - Eclipse SDK

3

File Edit Refactor MNavigate Search Project R@n Window Help
| Fav SRRV M I ER e %/ [3Debug »
%5 Debug 52 = O | 9= Variables §2 = O || 188 Registers 52 = 0O || @g Breakpoints 59 =]
" o s
- B|§& = &%~ LB T| XRBEE N BB
> = &z = 00 int | = 39644 ~ i Main : :]
- intdata=10 W int32 10 =10 | k: Multi
< [E] Multicare [C/C++ Local Application] B inkdats g [MESL | W @ frootjworkspace/ Multicore
ihs Int32_1 11 = 435452) frootiworkspace, Multicore B
= &2 GDB Debugger | | (2009721 £F 1149) N sl i : gL
: UM int32_tr2 - 1073742168 | @ frootiworkspace/ Multicore_ H
- m’i? Thread [0] (Suspended: Brezkpaint hit.) ¥
1 rraini) Mint3z2_tr3=0 W @ frootiworkspace! Multicore_ ST
maini) at it
1 int32 1 rd = 536543232 vl||E] B
pﬂ Debugger Process (2009721 _£F 11:49) e
il frootworkspace/ Multicore_ yDebugh - m@ pac_linus.conf = = B/ [f Disassembly 52 =5
pac 01 [C/C++ Local Application] I i ~ UXDEIUEZZE <malnt44> Jal EXE5CH <enable_intrs [~
b g i a1t nain|void) i init all DSP(): |
GDB Deb PAC) (2009/7/21 1150 oo .
z mauZgEr (FAC) (20030772 ! ig‘ s 0XD0I0B2ec <mainidBs; sl OX9020 einit_all DSPs
.5 Debugger Process (2009721 _EF 1L50) .““ H
41 int data = @: 1/D5PA1
Jﬁ Frootweorkspace/ Multicore_Pac/dsp_prog_01.e1 42 DEMO_interrupt_data - @xlo9e; DEMO 61 address = 50;
= [E] pac 02 [CIC++ Local Application] 43 //sinulator address=0xboogzooe (=DSPOL 1n & e 0x00I0EIF O —maini52s sethi $r 4720807 il
s it atrl); x0006B2(4 <naimssbai ori $r5, $r5, #6xD
7 : i : . X . e
b &% GDB Debugger (PAC) (2009721 EF 1150) :; .enéile{:ngg't):;. OKODICEZTE <mainsb0si movi §rd.#50
o Debugger Process(2009/721 EF 11509 i SIS L Ox0030B2fc <maintBdz swi $rd, [$r3+H0]
. . start_DSP01();
o1 frootiworkspace/ Multicore Pacfdsp prog 02.0: :g ‘Bg‘)gpgi " - 000000300 <nain+GBz jal 0xS0ct sstart DSPOLs
3 pac 03 [C/C++ Local Application] e
- 50 start_DSPOL(|; test int DSPOLI
[pac 04 [C/C++ Local Application] 51 A em:;gain erl.'up;E :'IJ.‘ axoiet ot)
| [o) o test_interrupt_DSPOL(); 2l e “maini72= ja ! est_interrupt_
- [i=a; . . .
s . Ox0008308 <main+T6= movi $r5, #0
sid 5 Start | Terminate = 5 || % while[DIHO 0L address=i0) o] || oxomcE3dc wnainiBOs swi $rS. [$FpesR])
o5 { =) L~
5D [] > [I [2]
SID Process Problems | & Consale 52 Ex B = B £iv = OB consele 2 =5
SI0: froatwarkspace) Multicare_ dpac_linuy | |J8ID Consnla pac_01 [C/C++ Local Application] Debugger Process
[PACB4] load pac text image (.bin) done -~ = s
=] [>| |NPAC®4] Load pac data image |.bin) done = B & | ot B> Fiv
kocketiohase: using fd 4 Mo source file named dsp_prog_ 4. c, ~
Select Config File: kocketiobase: server at 0.0, 0.0:4000 Mo scurce file named dsp_prog 84.c.
- OB 1nit ... Mo source Tile naned dsp_prog_63.c.
frootiworkspace/_Multicore_ sfpac_linux.conf socketio: accepted connection from 127.0.06, 1:38076, fd 22 Mo scurce file named dsp prog 83.c.
Mo scurce file named dsp prog A2.c. e
[) || [2)
l Writable smart Insert 47 15 s10 @

Simulation
launcher

Workshop on Embedded Systems Education, 2009

12

o Based on Open64 compiler

 VLIW DSP compilers for distributed
register files

e PALF scheduling policies for ILP
(CPC 2006)

 GRA scheme for distributed register
files (CPC 2007)

o SIMD compiler optimizations +
Intrinsics/extrinsics

» Copy propagations for distributed
register architectures (LCPC 2006)

* Register spills among distributed
register banks (CPC 2009)

Memory Subsystem

ust
‘ N
CT pivaere 10 [===
I
Dispatch Unit ﬁ T T
I
| A, A,
Interrupt [oa
Handler ™
I
Program Sequehce I i I i Accelerators
Control Unit |] |]
Const | A b iplic Ping-Pong RF [+ | C978t | {{Public Ping-Pong RF [
RF i | RF i |
I I I I
I I I I
I I I I
Arithmetic Unit Arithmetic Unit
Custmoized Custmoized
N S N\ e
Scalar Unit VLIW Data Path
Customized
DSP Kernel Function Units

Bus Interface Unit

PACDSP Compiler

New Phase for
PAC DSP

specially Tuned
for PAC DSP

Ported [or Target
Dependency

Original Phases of
OPEN64

Source Codes

i — —— — " — —

Lowering / Code Selection / Intrisic

I |
| Hyperblock Formation / If-Conversion |
| EBO Pre Process |
I |

Control Flow Optimization

Loop Optimization
[Unroll | [SWP |
e

B il

Control Flow Optimization

I |
| EBO Process |
| LC-GRFA |
| Global Scheduling (Before RA) |

GRA
PALF-LRFA _SA- Based LRFA

I S

EBO Post Process

(Global Scheduling (After RA)

Local Instruction Scheduling

I |
I |
| w |
| Global Code Motion |
I |
I |

Low-Power Optimization
i

Code Emition

Assembly Codes 13

SID Framework for Embedded System Course

 The tool is developed to hope to be able to provide labs
for several graduate embedded courses.
1. Toolchain for Embedded Software (ES-Y04-2)
. Embedded Compiler Design (ES-Y05-1)
. Embedded Multimedia Design (ES-Y08-1)

2
3
4. Embedded Hw/Sw Co-design and Analysis (ES-Y08-3)
5

Heterogeneous Multi-cores Course (ES-Y09-1)

Snapshots of execution

ne

e

4.

9 hulf_dacoda

conte

B Jcyee_rab _tatte
nlngs

Timaling View Chart View

Calls Self InsC Self CyeC | Self Insg) Self CycCicall
0 11,385 540 243477818 560,277 47,173,005 85
y2_fancy upsample izo 4,550,400 377695015 14,2000 1.180,296 92
20 3,542,080 127,196,045 1231500 1,022,487 64
20 2,320,320 192,589,445 7.251.00 601.84202
= Profile
PAC Profile
Functions Cycles Cycles(%) Called
atl start 20 0.001857862380702... 1
main 22 0.002043648618772.. 2
BB2_main 15 0.001393396785526... 2
BB3_main 9 0.000836038071315
8BS _main 15 0.001393396785526... 2
BB6_main 29 0002693900452017
Ackermann 321270 [29.8437723524068% 21418 DI
BB2 Ackermann 128508 11.9375089400627% (5295 -
8B4_Ackermann 1452 0.134880808838966% 121
BB5_Ackermann 91191 8.47101641792986% [242 H
BB7_Ackermann 74102 688356590673902% 10585 |
8B8_Ackermann 52030 491683279052787% 10586 I
o fl BB10 Ackermann 406942 |37.8021116463819% I

Time Percentage.

SID Framework for Embedded Courses

 The on-going courses and lab modules on the SID simulation framework at
NTHU EE/CS.

1. Category of System Tool: (Prof. Jeng Kuen Lee)

Embedded Compiler Design (ES-Y05-1), Special Topics on Advanced
Programming Languages

» Streaming RPC on Multi-core Platform
» Enable the Software Cache on DSP Processors
2. Category of Architecture: (Prof. Yarsun Hsu)

Advanced Computer Architecture, Embedded Hw/Sw Co-design and
Analysis (ES-Y08-3)

» Comparisons of SID Interconnection to SystemC TLM IP

3. Category of Applications: (Prof. Wei-Kuan Shih and Prof. S. H. Lai)
Embedded Multimedia Design (ES-Y08-1), Toolchain for Embedded
Software (ES-Y04-2), Special Topics on Embedded System Designs

» Face Recognition Applications
» Belief Propagation Method for Stereo Vision

15

Streaming RPC on Multi-core Platform

— Key environment setting:
MPU, DSP, Interconnection, Interrupts, and OS
— Project goal:

Experiment with DMA effects with streaming remoting
programming model on SID multi-core platforms

- - RPC
4 RPC ; PG\ >
client / server
\._ _ / \ __,/f Application
P T _| T Remote procedurs
.’ RPC stub s Stream communication
controller Streaming layer
} Pl i
_ Communication protocol
S e o . External data representation
S’[rea'mng .:.treammg channel
huffer Operating systems
OV o N/ Shared N/ ..\ Architecture-supported
k‘u’IC A Mailoox J__memory /IKDMP‘ jl communication mechanism

Software Architecture of Streaming RPC

** Enabling Streaming Remoting on Embedded Dual-core Processors, Kun-Yuan Hsieh, Yen-Chih Liu,

Po-Wen Wu, Shou-Wei Chang, Jenq Kuen Lee, ICPP 2008, Portand, Oregon, Sep. 8-12, 2008.
16

Experiments with Software Cache on DSP Processor

e Key environment setting: ... :

_] Internal !
MPU, DSP, Interconnection, DMA, i !
and Local/External Memory el Memony, B, External
_ i : Memory
* Project goal: i soft !
: Cache

1. Implement Software Cache on ‘e 1
the non-data-cached PAC DSP.

Software Cache
API

2. Experiment with DMA to
accelerate the software cache. S A—

access

MName Description
pCore_sw_cache_readi) Feturn the data value from the cache.
pCore_sw_cache_write() Write the value inlo the cache.
pCore_sw_hlock_read() Fast data block rezd function reducing
address lookup overhead. Y w—
pore_sw_block_wriei) Fast daca block write runction to data from
rl-\.--\. avtariial maosrmor eXternaI aCll LIOICACTIC
LLE .'R. Sl L Ll JI.J'LJJI.'.'I_:T. . memory and W
pCore_sw_block_trans_done() Indicate that the block transaction move the Write The
is dl‘Jl'J-i_" data into data into
pCore_sw_cache_lock() Functicn that locks the specified
cache line.
pCore_sw_cache_anlocki) Functicn that unlocks the specified

cache line. 17

on Method on Embedded
ulti-core Processors for Stereo Vision

e Key environment setting:
MPU, DSP, DMA, and Local/External Memory

* Project goal:
Parallelize the belief propagation method on multi-core PAC DSP
environment

e Strategies:

Level 2

Level 1

(b) Ground-truth.

(a) Original image pair.

Building the data pyramid from

lowest level data layer o |
(b) Result of parallelized BP.

Workshop on Embedded Systems Education, 2009 18

Experiments with SID Interconnection and
SystemC TLM IP

e Key environment setting:
Processor, Interconnection, Memory, and CoWare™ tools

* Project goal:

1. Evaluate performance variations of benchmarks in SID
and CoWare™ SystemC IPs.

2. Evaluate accuracy variations of benchmarks in SID and
CoWare™ SystemC IPs.

o Strategies:

* Trace the accessing patterns of SID interconnections
and compare to the SystemC TLM model.

19

Feedbacks and Experiences

Virtual 1/0 components provide the graphical experience to
attract students’ interests on the multimedia projects.

Embedded multi-core platforms can be configured for
embedded multi-core compiler testbed.

The interconnection of the multi-core platform in our testbed
can reflect different topology and communication types.

For debugging multi-core applications, the multi-core IDE can
provide a source-code-level debugging.

For a difficult bug or a hardware bug, students can use trace
unit component to record the detailed activities of the whole
system.

Bugs and version fixes slow down student project progresses.
TAs efforts are needed to help move lab. forwards.

20

Conclusion

We developed an embedded multi-core platform based
on SID framework.

It Included MPU, DSP, interconnection, and trace unit. .

It accommodated ingenious local IPs such as MPU and
DSP.

It’s useful for a variety of experiments and lab modules
with embedded multi-core topics.

Several courses are designed based on this tool for lab
experiments.

21

	Configurable SID-based Multi-core Simulators for Embedded System Education
	Outline
	Background of Taiwan Embedded Software Consortium
	CourseWare: Multi-core Simulation Tools
	Slide Number 5
	Experiments with Various Parallel Programming Models
	SID Multicore Simulation Milestones
	Comparison of ESL Simulation
	SID Simulation Framework
	Layers of Simulation Models
	Configurable Interconnection Model
	Heterogeneous Multicore Simulation Platform
	PACDSP Compiler
	SID Framework for Embedded System Course
	SID Framework for Embedded Courses
	Streaming RPC on Multi-core Platform
	Experiments with Software Cache on DSP Processor
	Belief Propagation Method on Embedded Multi-core Processors for Stereo Vision
	Experiments with SID Interconnection and SystemC TLM IP
	Feedbacks and Experiences
	Conclusion

