Contract Theories for Embedded
Systems: users’ requirements,
failure or success to meet them,
and a new proposal

A team work presented by Albert Benveniste, INRIA

WFCD, ESWEEK 2009, Grenoble

EN
PROGRAMME

Contract Theories for Embedded Systems:
1: users’ requirements, failure or success to meet them
2: a new proposal

Part 1 of the talk: Eric Badouelt, Albert Benvenistet, Benoit Caillaudt,
Tom Henzinger§, Axel Legayt, and Roberto Passeronet

Part 2 of the talk: Benoit Caillaud and Jean-Baptiste Raclett

T: INRIA
§: EPFL
T: University of Trento

SEVENTH FRAMEWORK
PROGRAMME

Users’ Requirements

EN
PROGRAMME

Detailed system design

Enabling separate
development of components

Roles and duties of
component vs. environment
made explicit

Handling detailed design
models, functional & extra-
functional

Focus on scope, power, and
computational cost of analysis

Positioning contract-based design in embedded
systems design flow

Early requirements capture

— Contracts as legal bindings for
OEM-supplier chains; explicit
assumptions and guarantees

- Enabling separate
development of components
and viewpoints; facilitating
integration

— Should accommodate existing
design flows & system
architectures

SEVENTH FRAMEWORK
PROGRAMME

Detailed system design

Enabling separate
development of components

Roles and duties of
component vs. environment
made explicit

Handling detailed design
models, functional & extra-
functional

Focus on scope, power, and
computational cost of analysis

Positioning contract-based design in embedded
systems design flow: our focus

Early requirements capture

— Contracts as legal bindings for
OEM-supplier chains; explicit
assumptions and guarantees

- Enabling separate
development of components
and viewpoints; facilitating
Integration

- Should accommodate existing
design flows & system
architectures

SEVENTH FRAMEWORK
PROGRAMME

Positioning contract-based design in embedded
systems design flow: refining requirements

Explicit roles . Early requirements capture

— Component/Environment

_ Assumptions/Guarantees - Contracts as legal bindings for

OEM-supplier chains; explicit
assumptions and guarantees

- Enabling separate
development of components
and viewpoints; facilitating
integration

- Should accommodate existing
design flows & system
architectures

SEVENTH FRAMEWORK

Positioning contract-based design in embedded
systems design flow: refining requirements

Explicit roles . Early requirements capture

— Component/Environment

_ Assumptions/Guarantees — Contracts as legal bindings for

OEM-supplier chains; explicit

Conjunctive requirements assumptions and guarantees

— Multiple viewpoints -~ Enabling separate

— Doors/Excel Req capture development of components
and viewpoints; facilitating
integration

- Should accommodate existing
design flows & system
architectures

SEVENTH FRAMEWORK

Explicit roles

— Component/Environment
- Assumptions/Guarantees

Conjunctive requirements

Multiple viewpoints
Doors/Excel Req capture

. Allow for flexible design flow

Component first vs.
viewpoint first
System/service Architecture
= Execution Infrastructure

Positioning contract-based design in embedded
systems design flow: refining requirements

. Early requirements capture

— Contracts as legal bindings for
OEM-supplier chains; explicit
assumptions and guarantees

- Enabling separate
development of components
and viewpoints; facilitating
integration

- Should accommodate existing
design flows & system
architectures

SEVENTH FRAMEWORK

Positioning contract-based design in embedded
systems design flow: refining requirements

Explicit roles . Early requirements capture

— Component/Environment

_ Assumptions/Guarantees — Contracts as legal bindings for

OEM-supplier chains; explicit

Conjunctive requirements assumptions and guarantees

— Multiple viewpoints -~ Enabling separate
— Doors/Excel Req capture development of components
and viewpoints; facilitating
. Allow for flexible design flow integration

— Component first vs.
viewpoint first

- System/service Architecture
= Execution Infrastructure

- Should accommodate existing
design flows & system
architectures

Locality

SEVENTH FRAMEWORK

CI

Some frameworks for contract-based
design

SEVENTH FRAMEWORK
PROGRAMME

Attaching contracts &
Implementations to
components

— Component / Environment

- (A,G) = (Assume, Guarantee)

Composing components ®

Additional services

— Well-formedness

-~ Deadlock avoidance

Some frameworks for contract-based
design: they all offer provision for

Satisfaction

M E C if when put under any E meeting
assumptions specified in C,
implementation M satisfies guarantees
entailed by C

Consistency

C is consistent if it admits a non-empty
implementation

Compatibility

C is compatible if it admits a non-empty
environment

Refinement

C’'<C if C’ has less implementations and
more environments that C

ttttttttttttttttt

Some frameworks for contract-based
design

C=(A,G), M where A,G,M

. Satisfaction
are properties [SPEEDS]

M |= C if when put under any E meeting

. assumptions specified in C,
- A,G explicit, =X needed implementation M satisfies guarantees
_ Deadlock etc not considered entailed by C

Interface Automata & variants . Consistency
[de AIfaro-Henzmger] C is consistent if it admits a non-empty

- A,G implicit implementation
— lllegal states, game approach

. Compatibility
Modal Interfaces & variants

Cis Cor_npatible if it admits a non-empty
[Larsen] environment

- A,G “very” implicit, through

modalities for transitions: may/ - Refinement

must C’<C if C’ has less implementations and

more environments that C
— Surprisingly simple and elegant

SEVENTH FRAMEWORK
PROGRAMME

Some frameworks for contract-based
design

C=(A,G), M where A,G,M
are properties [SPEEDS]

- A,G explicit, =X needed

— Deadlock etc not considered
Interface Automata & variants
[de Alfaro-Henzinger]

Embeddings
- A,G implicit

exist
— lllegal states, game approach

Modal Interfaces & variants
[Larsen]
- A,G “very” implicit, through
modalities for transitions: may/
must

— Surprisingly simple and elegant

ttttttttttttttttt
PR

Some frameworks for contract-based
design

Reflect the game nature of

Interface Automata as
follows:

— Everything the Env is

Interface Automata & variants ﬁgog‘é%% ;(t)ezut?;nti; (TUSI‘
[de Alfaro-Henzinger] component
- AG implicit

— The Comp may output

- lllegal states, game approach what is allowed by the

Modal Interfaces & variants interface
[Larsen] — Everything the Env is
- A,G “very” implicit, through disallowed to submit
modalities for transitions: may/ leads to a trap (exception
must state, where anything can
— Surprisingly simple and elegant happen afterwards)

SEVENTH FRAMEWORK
PROGRAMME

design

C=(A,G), M where A,G,M
are properties [SPEEDS]

- A,G explicit, =X needed

-~ Deadlock etc not considered

Modal Interfaces & variants
[Larsen]

- A,G “very” implicit, through
modalities for transitions: may/
must

— Surprisingly simple and elegant

Some frameworks for contract-based

C is characterized by its set
of implementations:
{MIECA=MxECG}

Regard A and G as Modal
Interfaces (with all transitions
being must); finding C
amounts to solving for X the
equation X®A =G

Solution: X=G/A the
residuation (or quotient)
of Gby A

Contracts as quotients G/A

SEVENTH FRAMEWORK
PROGRAMME

Failure or success to meet users’
requirements

Two issues that proved surprisingly
critical

SEVENTH FRAMEWORK

Conjunctive Contracts

- Followed from users’
requirements

— Allow for flexible design flow

Questions:

— Is conjunction explicitly
needed or does there exist a
turn around?

- How do the different
frameworks support
conjunction?

Two issues that proved surprisingly critical

Locality of alphabets of
ports and actions

- Seems like a little technical
detail, but still needed
Question:

-~ How do the different
frameworks support alphabet
equalization?

SEVENTH FRAMEWORK
PROGRAMME

easy

contract

contract

contract

contrac

conjunction

two sub-¢ IS
with their differe

explicitly needed
o B PP oot
' conract [

contract contract

contract

contract

........
iy

/]|

C=(A,G), M where A,G,M
are properties [SPEEDS]

- A,G explicit, =X needed

— Deadlock etc not considered

The issue of Conjunctive Contracts

ME (A,G) iff M
NACG < MCGU-A

(A,G) =< (A,G) iff
A'CA and G'CG

- Refinement is sound but not
complete!

(A,G) A (AG) = (AUA,GNG)
(A",G) ® (A,G)
= (

(ANNA)U-(G'NG), (GNG))

Seems OK

SEVENTH FRAMEWORK
PROGRAMME

Interface Automata & variants
[de Alfaro-Henzinger]

— A,G implicit

— lllegal states, game approach

The issue of Conjunctive Contracts

Refinement is by alternating
simulation: C’<C iff, from
respective initial state

- EnvVv’ can do whatever Env can

- Comp can do whatever Comp’ can

and the two moves lead to states
where the same repeats

Conjunction < Shared Refinemt.

— Very subtle and solved only for a
special class of synchronous
transition systems [Emsoft09]

Problematic.
Alternative: ATL logic?

SEVENTH FRAMEWORK
PROGRAMME

e Modal Interfaces & variants
[Larsen]

— A,G “very” implicit

— Surprisingly simple and elegant

The issue of Conjunctive Contracts

C is an automaton in which
transitions are labeled
may or must

Actions are labeled either ?
=Env or !'=Comp

MEC iff M offers all must
transitions and some may
transitions

Refining: turning some may into
must and removing other may’s

Conjunction: take product
structure and intersection of may
and union of must

SEVENTH FRAMEWORK
PROGRAMME

The issue of alphabet equalization

Usually not considered a problem: . Suppose A, is non-trivial, A,=true

two automata with different and the two contracts
alphabets must synchronize on possess disjoint alphabets
their shared actions and otherwise
interleave . Then equalizing by inverse
projections yields
Amounts to equalization by (A1,Gy) A (A,,G)) =
inverse projections: add in each (' (A)UTA),-) =
state self-loops with missing (m'(A))Utrue ,-) =(true,G)
symbols
Although the two contracts do not
Take Assume/Guarantee interact, the second one Kills the
contracts as an example assumptions of the first one !
Apply this to (A,G;) A (A,,G,)? . Mathematically consistent but

highly non satisfactory

SEVENTH FRAMEWORK

Reason for this artifact is that
equalization by inverse projection
is not neutral for conjunction

(it is neutral for composition)

Problem: how can we have two
different alphabet extensions
that can respectively be

— Neutral for ®

— Neutral for A

No solution found so far in the
framework of (A,G) contracts

The issue of alphabet equalization

Suppose A, is non-trivial, A,=true
and the two contracts
possess disjoint alphabets

Then equalizing by inverse
projections yields
(A1,Gq) A (A3,Gy)

(' (AUT(AS) , -)
(7 1(A)Utrue , -)

(true,G)

Although the two contracts do not
interact, the second one Kills the
assumptions of the first one !!!

Mathematically consistent but
highly non satisfactory

ttttttttttttttttt

Reason for this artifact is that
equalization by inverse projection
is not neutral for conjunction

(it is neutral for composition)

Problem: how can we have two
different alphabet extensions
that can respectively be

— Neutral for ®

— Neutral for A

No solution found so far in the
framework of (A,G) contracts

The issue of alphabet equalization

Modal Interfaces offer enough
flexibility for having a positive
answer to this problem

Strong extension:

— add in each state must self-loops
with missing symbols

Weak extension:
— add in each state may self-loops

with missing symbols

It turns out that strong extension is
neutral for ® and weak extension
is neutral for A

SEVENTH FRAMEWORK
PROGRAMME

Reason for this artifact is that
equalization by inverse projection
is not neutral for conjunction

(it is neutral for composition)

Problem: how can we have two
different alphabet extensions
that can respectively be

— Neutral for ®

— Neutral for A

No solution found so far in the
framework of (A,G) contracts

The issue of alphabet equalization

We do not know whether there is
a solution to this problem in the
framework of Interface Automata

& variants

SEVENTH FRAMEWORK
PROGRAMME

Summary of situation

EN
PROGRAMME

Summary of situation

Embeddings exist

- (A,G) contracts — Modal Interfaces <— Interface Automata

Modal Interfaces address all difficulties in an elegant way

— They are the best candidate for future developments

SEVENTH FRAMEWORK
PROGRAMME

A new proposal: Convex Acceptance
Interfaces

InterSMV: a tool under development by
Benoit Caillaud at INRIA for handling
Convex Acceptance Interfaces

SEVENTH FRAMEWORK
PR

Supporting all basic operations
- Refinement

— Conjunction

— Parallel composition

— Quotient (Residuation)

- Weak & Strong alphabet
extensions

Supporting fundamental
relations:

- Implementation
-~ Consistency
— Compatibility

Objectives of InterSMV

A front-end for NuSMV
Handling Modal Interfaces

Supporting both interleaving
and synchronous semantics

— Interleaving: theory well
developed

- Synchronous: new, non-trivial
adaptation

SEVENTH FRAMEWORK
PROGRAMME

The unexpected difficulty

Modal Interfaces having Synchronous Symbolic
Transition Systems as their implementations, i.e.:

M= (D,Z,T), where

— D is a universal domain of values (for simplification), possibly
equipped with a distinguished element to encode absence

- 2 is a finite alphabet of variables, S=D*is the set of stafes

- T C D* x D* is the symbolic transition relation, relating previous
and current variables

This model is not closed under weak alphabet extension:

see next counter-example

SEVENTH FRAMEWORK
PROGRAMME

Modal Synchronous Transition Systems

. Synchronous Implementation: M = (D,V,T), where

- D is a universal domain of values (for simplification), possibly
equipped with a distinguished element to encode absence

- Vs a finite alphabet of variables, =DV is the set of states

- TC X x X isthe symbolic transition relation, relating previous
and current variables;

. Modal STS: C = (D,V,may,must), where
- may, must C X x X ; consistency holds if must C may
— Implementation: MEC if mustCTC may

- In particular, the set of implementations is stable under
intersection: if M,M’ F C then must C (TNT’) C may

SEVENTH FRAMEWORK
PROGRAMME

The unexpected difficulty: counter-example

Signature : V = { x: boolean }
Modal specification : C = « always (must x) A (may x)»

Possible implementations satisfying the specification: in every state
X must be enabled and -x must be disabled.

How to extend C to signature W = { x,y: boolean }, so that we are
neutral w.r.t. any specification B over W , taken conjunctively?

We should allow { x.y } or { x. =y } or {x.y, X. =y}, and nothing else.

Problem : this set is not closed under intersection since
{xy}N{x. -y}=3, which is not part of the above

set. _

Thus the above set is not expressible as a modal specification.

SEVENTH FRAMEWORK
PROGRAMME

What is the problem?

Modalities are not flexible
enough at specifying the
allowed transition relations

SEVENTH FRAMEWORK
PROGRAMME

Modalities are not flexible
enough at specifying the
allowed transition relations

What is the problem? What is the solution?

Relax modalities by
considering instead
Acceptance Relations

Acceptance relation =
enumeration of the allowed
transition relations, from each
given source state

A comprehensive theory of
Acceptance Interfaces has
been developed by J-B Raclet
in his thesis [Raclet PhD 2007]

SEVENTH FRAMEWORK
PROGRAMME

ACXx 2>
(modal: must € may C X x X))

CCC iff AC A
CAC:AAA

ARA ={XNX | XEA, XEA’'}
A/A ={X|VXeA : XNX'EA}

Strong and weak extensions:
> =2 U{a}

Ay ={XU{a} | X&A }

Ay =AU A

Very elegant, but very costly

What is the problem? What is the solution?

Relax modalities by
considering instead
Acceptance Relations

Acceptance relation =
enumeration of the allowed
transition relations, from each
given source state

A comprehensive theory of
Acceptance Interfaces has
been developed by J-B Raclet
In his thesis [Raclet PhD 2007]

SEVENTH FRAMEWORK
PROGRAMME

Are we done? Not quite so

Due to extensional
enumeration, acceptance
relations are computationally
intractable

|dea: search for a framework
that sits between Modalities
and Acceptance Relations:

» Convex Acceptance Relations

 They are characterized via
their extremal elements

« Stable under all operations

What is the problem? What is the solution?

Relax modalities by
considering instead
Acceptance Relations

Acceptance relation =
enumeration of the allowed
transition relations, from each
given source state

A comprehensive theory of
Acceptance Interfaces has
been developed by J-B Raclet
In his thesis [Raclet PhD 2007]

SEVENTH FRAMEWORK
PROGRAMME

Are we done? Not quite so

Due to extensional
enumeration, acceptance
relations are computationally
intractable

|dea: search for a framework
that sits between Modalities
and Acceptance Relations:

» Convex Acceptance Relations

 They are characterized via
their extremal elements

« Stable under all operations

What is the solution?

The coding of Interval
Acceptance
Relations: :
>=DV>s — {ft, ff, L1,

[a(s),a*(s)] = tt if s€a A s&a*
a(s),a*(s)] = ff if sa- A s&at
a(s),a*(s)] =L if s€a A s¢a*
a(s),a*(s)] = T if s¢&a A sea*

With this coding, handling
Convex Acceptance Interfaces
can be done using NuUSMV:
tool InterSMV

SEVENTH FRAMEWORK
PROGRAMME

Some concluding remarks

Modal interfaces are a very good basis for
contract-based design

Convex Acceptance Interfaces seem a
good compromise

InterSMV is a tool under development at
INRIA for handling modal interfaces

Still, the situation is far from being
satisfactory...

SEVENTH FRAMEWORK

satisfactory...

They look simple but the devil is in
the details

- They differ for each different
framework

— Authors may even disagree in
what they are

— There are many variations
While contracts are appealing to

the industry, engineers struggle
grasping what these relations are

— an ongoing effort at CESAR SP2

Still, the situation is far frombeing

Satisfaction

M |= C if when put under any E meeting
assumptions specified in C,
implementation M satisfies guarantees
entailed by C

Consistency

C is consistent if it admits a non-empty
implementation

Compatibility

C is compatible if it admits a non-empty
environment

Refinement

C’<C if C’ has less implementations and
more environments that C

SEVENTH FRAMEWORK
PROGRAMME

satisfactory...

Consistency and compatibility look
dual

— and should be dual (Env and
Comp should be dual players);

- unfortunately they are not!

Conclusion:

— The theories should be cleaned
up to make fundamental relations
crystal clear

— Or alternatively relations should
be made flexible as they become
clear in most practical cases

Still, the situation is far frombeing

Satisfaction

M |= C if when put under any E meeting
assumptions specified in C,
implementation M satisfies guarantees
entailed by C

Consistency

C is consistent if it admits a non-empty
implementation

Compatibility

C is compatible if it admits a non-empty
environment

Refinement

C’<C if C’ has less implementations and
more environments that C

SEVENTH FRAMEWORK
PROGRAMME

Still, the situation is far frombeing
satisfactory...

. Consistency and compatibility look . Need for cleaner theories
dual

— Clarify fundamental relations
— and should be dual (Env and

Comp should be dual players); — Clean compatibility vs.

consistenc
- unfortunately they are not! y

— Be either functional (In—=0ut)
. Conclusion: or relational; avoid hybrids

— The theories should be cleaned
up to make fundamental relations ~ + Need to smoothly embed

crystal clear contracts into requirements

_ Or alternatively relations should engineering
be made flexible as they become

clear in most practical cases

THANK YOU

Well, assuming that
the audience paid proper attention

Did the speaker meet its promises?

SEVENTH FRAMEWORK

