

Users’ Requirements

Positioning contract-based design in embedded
systems design flow

●  Detailed system design

–  Enabling separate
development of components

–  Roles and duties of
component vs. environment
made explicit

–  Handling detailed design
models, functional & extra-
functional

–  Focus on scope, power, and
computational cost of analysis

●  Early requirements capture

–  Contracts as legal bindings for
OEM-supplier chains; explicit
assumptions and guarantees

–  Enabling separate
development of components
and viewpoints; facilitating
integration

–  Should accommodate existing
design flows & system
architectures

Positioning contract-based design in embedded
systems design flow: our focus

●  Detailed system design

–  Enabling separate
development of components

–  Roles and duties of
component vs. environment
made explicit

–  Handling detailed design
models, functional & extra-
functional

–  Focus on scope, power, and
computational cost of analysis

●  Early requirements capture

–  Contracts as legal bindings for
OEM-supplier chains; explicit
assumptions and guarantees

–  Enabling separate
development of components
and viewpoints; facilitating
integration

–  Should accommodate existing
design flows & system
architectures

Positioning contract-based design in embedded
systems design flow: refining requirements

●  Explicit roles
–  Component/Environment
–  Assumptions/Guarantees

●  Early requirements capture

–  Contracts as legal bindings for
OEM-supplier chains; explicit
assumptions and guarantees

–  Enabling separate
development of components
and viewpoints; facilitating
integration

–  Should accommodate existing
design flows & system
architectures

Positioning contract-based design in embedded
systems design flow: refining requirements

●  Explicit roles
–  Component/Environment
–  Assumptions/Guarantees

●  Conjunctive requirements
–  Multiple viewpoints
–  Doors/Excel Req capture

●  Early requirements capture

–  Contracts as legal bindings for
OEM-supplier chains; explicit
assumptions and guarantees

–  Enabling separate
development of components
and viewpoints; facilitating
integration

–  Should accommodate existing
design flows & system
architectures

Positioning contract-based design in embedded
systems design flow: refining requirements

●  Explicit roles
–  Component/Environment
–  Assumptions/Guarantees

●  Conjunctive requirements
–  Multiple viewpoints
–  Doors/Excel Req capture

●  Allow for flexible design flow
–  Component first vs.

viewpoint first
–  System/service Architecture

≠ Execution Infrastructure

●  Early requirements capture

–  Contracts as legal bindings for
OEM-supplier chains; explicit
assumptions and guarantees

–  Enabling separate
development of components
and viewpoints; facilitating
integration

–  Should accommodate existing
design flows & system
architectures

Positioning contract-based design in embedded
systems design flow: refining requirements

●  Explicit roles
–  Component/Environment
–  Assumptions/Guarantees

●  Conjunctive requirements
–  Multiple viewpoints
–  Doors/Excel Req capture

●  Allow for flexible design flow
–  Component first vs.

viewpoint first
–  System/service Architecture

≠ Execution Infrastructure

●  Locality

●  Early requirements capture

–  Contracts as legal bindings for
OEM-supplier chains; explicit
assumptions and guarantees

–  Enabling separate
development of components
and viewpoints; facilitating
integration

–  Should accommodate existing
design flows & system
architectures

Some frameworks for contract-based
design

Some frameworks for contract-based
design: they all offer provision for

●  Attaching contracts &
implementations to
components

–  Component / Environment

–  (A,G) = (Assume, Guarantee)

●  Composing components ⊗

●  Additional services

–  Well-formedness

–  Deadlock avoidance

●  Satisfaction
M╞ C if when put under any E meeting

assumptions specified in C,
implementation M satisfies guarantees
entailed by C

●  Consistency
C is consistent if it admits a non-empty

implementation

●  Compatibility
C is compatible if it admits a non-empty

environment

●  Refinement
C’≤C if C’ has less implementations and

more environments that C

Some frameworks for contract-based
design

●  C=(A,G), M where A,G,M
are properties [SPEEDS]

–  A,G explicit, ¬X needed

–  Deadlock etc not considered

●  Interface Automata & variants
[de Alfaro-Henzinger]

–  A,G implicit

–  Illegal states, game approach

●  Modal Interfaces & variants
[Larsen]

–  A,G “very” implicit, through
modalities for transitions: may/
must

–  Surprisingly simple and elegant

●  Satisfaction
M╞ C if when put under any E meeting

assumptions specified in C,
implementation M satisfies guarantees
entailed by C

●  Consistency
C is consistent if it admits a non-empty

implementation

●  Compatibility
C is compatible if it admits a non-empty

environment

●  Refinement
C’≤C if C’ has less implementations and

more environments that C

Some frameworks for contract-based
design

●  C=(A,G), M where A,G,M
are properties [SPEEDS]

–  A,G explicit, ¬X needed

–  Deadlock etc not considered

●  Interface Automata & variants
[de Alfaro-Henzinger]

–  A,G implicit

–  Illegal states, game approach

●  Modal Interfaces & variants
[Larsen]

–  A,G “very” implicit, through
modalities for transitions: may/
must

–  Surprisingly simple and elegant

Embeddings
exist

Some frameworks for contract-based
design

●  C=(A,G), M where A,G,M
are properties [SPEEDS]

–  A,G explicit, ¬X needed

–  Deadlock etc not considered

●  Interface Automata & variants
[de Alfaro-Henzinger]

–  A,G implicit

–  Illegal states, game approach

●  Modal Interfaces & variants
[Larsen]

–  A,G “very” implicit, through
modalities for transitions: may/
must

–  Surprisingly simple and elegant

●  Reflect the game nature of
Interface Automata as
follows:

–  Everything the Env is
allowed to submit must
be accepted by the
component

–  The Comp may output
what is allowed by the
interface

–  Everything the Env is
disallowed to submit
leads to a trap (exception
state, where anything can
happen afterwards)

Some frameworks for contract-based
design

●  C=(A,G), M where A,G,M
are properties [SPEEDS]

–  A,G explicit, ¬X needed

–  Deadlock etc not considered

●  Interface Automata & variants
[de Alfaro-Henzinger]

–  A,G implicit

–  Illegal states, game approach

●  Modal Interfaces & variants
[Larsen]

–  A,G “very” implicit, through
modalities for transitions: may/
must

–  Surprisingly simple and elegant

●  C is characterized by its set
of implementations:
{ M | E ⊆ A ⇒ M×E ⊆ G }

●  Regard A and G as Modal
Interfaces (with all transitions
being must); finding C
amounts to solving for X the
equation X⊗A = G

●  Solution: X=G/A the
residuation (or quotient)
of G by A

●  Contracts as quotients G/A

Failure or success to meet users’
requirements

Two issues that proved surprisingly
critical

Two issues that proved surprisingly critical

●  Conjunctive Contracts

–  Followed from users’
requirements

–  Allow for flexible design flow

●  Questions:

–  Is conjunction explicitly
needed or does there exist a
turn around?

–  How do the different
frameworks support
conjunction?

●  Locality of alphabets of
ports and actions

–  Seems like a little technical
detail, but still needed

●  Question:

–  How do the different
frameworks support alphabet
equalization?

The issue of Conjunctive Contracts

contract

contract

contract

contract

contract

contract

contract

contract

contract

contract

contract

contract

contract

contract

contract

contract

⊗

two sub-systems
with their different viewpoints

conjunction

is

explicitly needed

illustration on the case of refinement

The issue of Conjunctive Contracts

●  C=(A,G), M where A,G,M
are properties [SPEEDS]

–  A,G explicit, ¬X needed

–  Deadlock etc not considered

●  Interface Automata & variants
[de Alfaro-Henzinger]

–  A,G implicit

–  Illegal states, game approach

●  Modal Interfaces & variants
[Larsen]

–  A,G “very” implicit

–  Surprisingly simple and elegant

●  M╞ (A,G) iff M
∩ A ⊆ G ⇔ M ⊆ G ∪ ¬A

●  (A’,G’) ≤ (A,G) iff
A’⊆A and G’⊆G

–  Refinement is sound but not
complete!

●  (A’,G’) ∧ (A,G) = (A’∪A , G’∩G)

●  (A’,G’) ⊗ (A,G)
= (,
(A’∩A)∪¬(G’∩G) , (G’∩G),)

●  Seems OK

The issue of Conjunctive Contracts

●  C=(A,G), M where A,G,M
are properties [SPEEDS]

–  A,G explicit, ¬X needed

–  Deadlock etc not considered

●  Interface Automata & variants
[de Alfaro-Henzinger]

–  A,G implicit

–  Illegal states, game approach

●  Modal Interfaces & variants
[Larsen]

–  A,G “very” implicit

–  Surprisingly simple and elegant

●  Refinement is by alternating
simulation: C’≤C iff, from
respective initial state

–  Env’ can do whatever Env can

–  Comp can do whatever Comp’ can

and the two moves lead to states
where the same repeats

●  Conjunction ⇔ Shared Refinemt.
–  Very subtle and solved only for a

special class of synchronous
transition systems [Emsoft09]

●  Problematic.
Alternative: ATL logic?

The issue of Conjunctive Contracts

●  C=(A,G), M where A,G,M
are properties [SPEEDS]

–  A,G explicit, ¬X needed

–  Deadlock etc not considered

●  Interface Automata & variants
[de Alfaro-Henzinger]

–  A,G implicit

–  Illegal states, game approach

●  Modal Interfaces & variants
[Larsen]

–  A,G “very” implicit

–  Surprisingly simple and elegant

●  C is an automaton in which
transitions are labeled
may or must

●  Actions are labeled either ?
=Env or !=Comp

●  M╞ C iff M offers all must
transitions and some may
transitions

●  Refining: turning some may into
must and removing other may’s

●  Conjunction: take product
structure and intersection of may
and union of must

The issue of alphabet equalization

●  Usually not considered a problem:
two automata with different
alphabets must synchronize on
their shared actions and otherwise
interleave

●  Amounts to equalization by
inverse projections: add in each
state self-loops with missing
symbols

●  Take Assume/Guarantee
contracts as an example

Apply this to (A1,G1) ∧ (A2,G2)?

●  Suppose A1 is non-trivial, A2=true
and the two contracts
possess disjoint alphabets

●  Then equalizing by inverse
projections yields
(A1,G1) ∧ (A2,G2) =
(π-1(A1) ∪ π-1(A2) , -) =
(π-1(A1) ∪ true , -) = (true,G)

●  Although the two contracts do not
interact, the second one kills the
assumptions of the first one !!!

●  Mathematically consistent but
highly non satisfactory

The issue of alphabet equalization

●  Reason for this artifact is that
equalization by inverse projection
is not neutral for conjunction
(it is neutral for composition)

●  Problem: how can we have two
different alphabet extensions
that can respectively be

–  Neutral for ⊗

–  Neutral for ∧

●  No solution found so far in the
framework of (A,G) contracts

●  Suppose A1 is non-trivial, A2=true
and the two contracts
possess disjoint alphabets

●  Then equalizing by inverse
projections yields
(A1,G1) ∧ (A2,G2) =
(π-1(A1)∪π-1(A2) , -) =
(π-1(A1)∪true , -) = (true,G)

●  Although the two contracts do not
interact, the second one kills the
assumptions of the first one !!!

●  Mathematically consistent but
highly non satisfactory

The issue of alphabet equalization

●  Reason for this artifact is that
equalization by inverse projection
is not neutral for conjunction
(it is neutral for composition)

●  Problem: how can we have two
different alphabet extensions
that can respectively be

–  Neutral for ⊗

–  Neutral for ∧

●  No solution found so far in the
framework of (A,G) contracts

●  Modal Interfaces offer enough
flexibility for having a positive
answer to this problem

●  Strong extension:
–  add in each state must self-loops

with missing symbols

●  Weak extension:
–  add in each state may self-loops

with missing symbols

●  It turns out that strong extension is
neutral for ⊗ and weak extension
is neutral for ∧

The issue of alphabet equalization

●  Reason for this artifact is that
equalization by inverse projection
is not neutral for conjunction
(it is neutral for composition)

●  Problem: how can we have two
different alphabet extensions
that can respectively be

–  Neutral for ⊗

–  Neutral for ∧

●  No solution found so far in the
framework of (A,G) contracts

●  We do not know whether there is
a solution to this problem in the
framework of Interface Automata
& variants

Summary of situation

Summary of situation

●  Embeddings exist

–  (A,G) contracts → Modal Interfaces ← Interface Automata

●  Modal Interfaces address all difficulties in an elegant way

–  They are the best candidate for future developments

A new proposal: Convex Acceptance
Interfaces

InterSMV: a tool under development by
Benoit Caillaud at INRIA for handling
Convex Acceptance Interfaces

Objectives of InterSMV

●  Supporting all basic operations
–  Refinement
–  Conjunction
–  Parallel composition
–  Quotient (Residuation)
–  Weak & Strong alphabet

extensions

●  Supporting fundamental
relations:

–  Implementation
–  Consistency
–  Compatibility

●  A front-end for NuSMV

●  Handling Modal Interfaces

●  Supporting both interleaving
and synchronous semantics

–  Interleaving: theory well
developed

–  Synchronous: new, non-trivial
adaptation

The unexpected difficulty

●  Modal Interfaces having Synchronous Symbolic
Transition Systems as their implementations, i.e.:

●  M = (D,Σ,T), where
–  D is a universal domain of values (for simplification), possibly

equipped with a distinguished element to encode absence
–  Σ is a finite alphabet of variables, S=DΣ is the set of states
–  T ⊆ DΣ × DΣ is the symbolic transition relation, relating previous

and current variables

●  This model is not closed under weak alphabet extension:
see next counter-example

Modal Synchronous Transition Systems

●  Synchronous Implementation: M = (D,V,T), where
–  D is a universal domain of values (for simplification), possibly

equipped with a distinguished element to encode absence
–  V is a finite alphabet of variables, Σ=DV is the set of states
–  T ⊆ Σ × Σ is the symbolic transition relation, relating previous

and current variables;

●  Modal STS: C = (D,V,may,must), where
–  may, must ⊆ Σ × Σ ; consistency holds if must ⊆ may
–  Implementation: M╞ C if must ⊆ T ⊆ may
–  In particular, the set of implementations is stable under

intersection: if M,M’╞ C then must ⊆ (T∩T’) ⊆ may

The unexpected difficulty: counter-example

●  Signature : V = { x: boolean }

●  Modal specification : C = « always (must x)∧(may x)»

●  Possible implementations satisfying the specification: in every state
x must be enabled and ¬x must be disabled.

●  How to extend C to signature W = { x,y: boolean }, so that we are
neutral w.r.t. any specification B over W , taken conjunctively?

●  We should allow { x.y } or { x. ¬y } or {x.y, x. ¬y}, and nothing else.

●  Problem : this set is not closed under intersection since
{ x.y } ∩ { x. ¬y } = ∅, which is not part of the above
set. .
Thus the above set is not expressible as a modal specification.

What is the problem?

●  Modalities are not flexible
enough at specifying the
allowed transition relations

What is the problem? What is the solution?

●  Modalities are not flexible
enough at specifying the
allowed transition relations

●  Relax modalities by
considering instead
Acceptance Relations

●  Acceptance relation =
enumeration of the allowed
transition relations, from each
given source state

●  A comprehensive theory of
Acceptance Interfaces has
been developed by J-B Raclet
in his thesis [Raclet PhD 2007]

What is the problem? What is the solution?

●  A ⊆ Σ × 2Σ

(modal: must ⊆ may ⊆ Σ × Σ)

●  C ⊆ C’ iff A ⊆ A’
C ∧ C’ : A ∧ A’
A ⊗ A’ = { X∩X’ | X∈A, X’∈A’ }
A/A’ = { X | ∀X’∈A’ : X∩X’∈A }

●  Strong and weak extensions:
Σ’ = Σ ∪ {a}
A⇑Σ’ = { X ∪ {a} | X∈A }
A↑Σ’ = A ∪ A⇑Σ’

●  Very elegant, but very costly

●  Relax modalities by
considering instead
Acceptance Relations

●  Acceptance relation =
enumeration of the allowed
transition relations, from each
given source state

●  A comprehensive theory of
Acceptance Interfaces has
been developed by J-B Raclet
in his thesis [Raclet PhD 2007]

What is the problem? What is the solution?

●  Are we done? Not quite so

L  Due to extensional
enumeration, acceptance
relations are computationally
intractable

J  Idea: search for a framework
that sits between Modalities
and Acceptance Relations:

•  Convex Acceptance Relations
•  They are characterized via

their extremal elements
•  Stable under all operations

●  Relax modalities by
considering instead
Acceptance Relations

●  Acceptance relation =
enumeration of the allowed
transition relations, from each
given source state

●  A comprehensive theory of
Acceptance Interfaces has
been developed by J-B Raclet
in his thesis [Raclet PhD 2007]

What is the problem? What is the solution?

●  Are we done? Not quite so

L  Due to extensional
enumeration, acceptance
relations are computationally
intractable

J  Idea: search for a framework
that sits between Modalities
and Acceptance Relations:

•  Convex Acceptance Relations
•  They are characterized via

their extremal elements
•  Stable under all operations

●  The coding of Interval
Acceptance
Relations: .
Σ=DV ∍ s → { tt, ff, ┴,
┬ } .
[a-(s),a+(s)] = tt if s∈a- ∧ s∈a+

[a-(s),a+(s)] = ff if s∉a- ∧ s∉a+

[a-(s),a+(s)] = ┴ if s∈a- ∧ s∉a+
[a-(s),a+(s)] = ┬ if s∉a- ∧ s∈a+

●  With this coding, handling
Convex Acceptance Interfaces
can be done using NuSMV:
tool InterSMV

Some concluding remarks

●  Modal interfaces are a very good basis for
contract-based design

●  Convex Acceptance Interfaces seem a
good compromise

●  InterSMV is a tool under development at
INRIA for handling modal interfaces

●  Still, the situation is far from being
satisfactory…

Still, the situation is far from being
satisfactory…

●  They look simple but the devil is in
the details

–  They differ for each different
framework

–  Authors may even disagree in
what they are

–  There are many variations

●  While contracts are appealing to
the industry, engineers struggle
grasping what these relations are

–  an ongoing effort at CESAR SP2

●  Satisfaction
M╞ C if when put under any E meeting

assumptions specified in C,
implementation M satisfies guarantees
entailed by C

●  Consistency
C is consistent if it admits a non-empty

implementation

●  Compatibility
C is compatible if it admits a non-empty

environment

●  Refinement
C’≤C if C’ has less implementations and

more environments that C

Still, the situation is far from being
satisfactory…

●  Consistency and compatibility look
dual

–  and should be dual (Env and
Comp should be dual players);

–  unfortunately they are not!

●  Conclusion:

–  The theories should be cleaned
up to make fundamental relations
crystal clear

–  Or alternatively relations should
be made flexible as they become
clear in most practical cases

●  Satisfaction
M╞ C if when put under any E meeting

assumptions specified in C,
implementation M satisfies guarantees
entailed by C

●  Consistency
C is consistent if it admits a non-empty

implementation

●  Compatibility
C is compatible if it admits a non-empty

environment

●  Refinement
C’≤C if C’ has less implementations and

more environments that C

Still, the situation is far from being
satisfactory…

●  Consistency and compatibility look
dual

–  and should be dual (Env and
Comp should be dual players);

–  unfortunately they are not!

●  Conclusion:

–  The theories should be cleaned
up to make fundamental relations
crystal clear

–  Or alternatively relations should
be made flexible as they become
clear in most practical cases

●  Need for cleaner theories

–  Clarify fundamental relations

–  Clean compatibility vs.
consistency

–  Be either functional (In→Out)
or relational; avoid hybrids

●  Need to smoothly embed
contracts into requirements
engineering

THANK YOU

Well, assuming that
the audience paid proper attention

Did the speaker meet its promises?

