Mandatory Properties of Component Concepts

Manfred Broy

Technische Universität München Institut für Informatik D-85748 Garching, Germany

• What is a system component concept?

A concept of a self-contained, independent unit carrying functionality that can be analysed, refined and composed to form larger systems:

- deployable
- ♦ executable
- ♦ adaptable

Mandatory ingredients: concept of component

- specification implementation independent
- composition/decomposition architecture
- refinement properties and levels of abstraction
- implementation executable system descriptions
- ♦ abstraction
 - relating implementations to specifications
 - relating components at different levels of abstraction

πп

2

Towards a comprehensive theory of system modelling: meta model

These notions ...

... form a taxonomy

But this is not enough!

We need a semantic modelling theory!

Towards a uniform model: Basic system model

Basic system model

Timed Streams: Semantic Model for Black-Box-Behavior

С	set of channels
Type: C → TYPE	type assignment
$x:C\to(N\{0\}\!\to\!M^*)$	channel history for messages of type M
C or IH[C]	set of channel histories for channels in C

Channel: Identifier of Type stream

I = { x_1 , x_2 , ... } set of typed input channels O = { y_1 , y_2 , ... } set of typed output channels

Set of interface behaviours with input channels I and output channels O: IF[$I \triangleright O$] A component

Set of all interface behaviours:

πп

System interface behaviour - causality

(I ► O)

A system has a proper time flow

 $F: \vec{I} \rightarrow \wp(\vec{O}) \qquad semantic \ interface \ for \ (I \triangleright O) \\ with \ timing \ property \ addressing \ strong \ causality \\ (let x, z \in \vec{I}, y \in \vec{O}, t \in IN):$

$x \downarrow t = z \downarrow t \Rightarrow \{y \downarrow t+1: y \in F(x)\} = \{y \downarrow t+1: y \in F(z)\}$

 $x \downarrow t$ prefix of history x of length t

A system shows a total behavior

ТΠ

ТΠ

Verification: Proving properties about specified compondents

From the interface assertions we can prove

• Safety properties

$$\{m\}\#y > 0 \land y \in \mathsf{TMC}(x) \Rightarrow \{m\}\#x > 0$$

• Liveness properties

$$\{m\}\#x > 0 \land y \in \mathsf{TMC}(x) \Rightarrow \{m\}\#y > 0$$

A system specification

• can be structured by logical properties and

πп

• can be used to prove properties

State Machines

A state machine $(\Delta, \Lambda)~$ consists of

- a set Σ of states the state space
- a set $\Lambda \subseteq \Sigma$ of initial states
- a state transition function Δ
 - in case of a state machine with input/output: events (inputs E) trigger the transitions and events (outputs A) are produced by them respectively:

$$\Delta: \Sigma \times E \twoheadrightarrow \Sigma \times A$$

in the case of nondeterministic machines:

$$\Delta: \Sigma \times E \twoheadrightarrow \wp(\Sigma \times A)$$

• Given a syntactic interface with sets I and O of input and output channels:

 $E = I \rightarrow M^*$ $A = O \rightarrow M^*$

A system has an implementation

πп

Computations of a State Machine with Input/Output

A state machine (Δ, Λ) defines for each initial state

 $\sigma_0 \in \Lambda$

and each sequence of inputs

$$\mathsf{e}_1,\,\mathsf{e}_2,\,\mathsf{e}_3,\,\ldots\in\mathsf{E}$$

a sequence of states

$$\sigma_1, \sigma_2, \sigma_3, \ldots \in \Sigma$$

and a sequence of outputs

$$a_1, a_2, a_3, ... \in A$$

through

$$(\sigma_{i+1}, a_{i+1}) \in \Delta(\sigma_i, e_{i+1})$$

Implementations define computations

ТЛ

Computations of a State Machine with Input/Output

In this manner we obtain con

A system has an interface abstractionthat correctly reflects computations

$$\sigma_0 \xrightarrow{a_1/b_1} \sigma_1 \xrightarrow{a_2/b_2} \sigma_2 \xrightarrow{a_3/b_3} \sigma_3 \quad \dots$$

For each initial state $\sigma \mathbf{0} \in \Sigma$ we define a function

$$F_{\sigma 0}: \vec{I} \twoheadrightarrow \mathscr{D}(\vec{O})$$

with

$$\mathsf{F}_{\sigma 0}(\mathsf{x}) = \{\mathsf{y}: \exists \sigma_{\mathsf{i}}: \sigma 0 = \sigma_{\mathsf{0}} \land \forall \mathsf{i} \in \mathsf{IN}: (\sigma_{\mathsf{i}+1}, \mathsf{x}_{\mathsf{i}+1}) = \Delta(\sigma_{\mathsf{i}}, \mathsf{y}_{\mathsf{i}+1})\}$$

 $F_{\sigma 0}$ denotes the interface behavior of the transition function Δ for the initial state $\sigma 0$.

Furthermore we define

$$Abs((\Delta, \Lambda)) = F_{\Lambda}$$

where:

$$\mathsf{F}_{\Lambda}(\mathsf{x}) = \{\mathsf{y} \in \mathsf{F}_{\sigma}(\mathsf{x}) : \mathsf{y} \in \mathsf{F}_{\sigma}(\mathsf{x}) \land \sigma \in \Lambda\}$$

Manfred Broy

πп

15

• A Mealy machine (Δ, Λ) with

 $\Delta: \Sigma \times E \twoheadrightarrow \wp \left(\Sigma \times A \right)$

is called a Moore machine if for all states $\sigma\in\Sigma$ and all inputs $e\in\mathsf{E}$ the set

out(
$$\sigma$$
, e) = {a \in A: (σ , a) = $\Delta(\sigma, e)$ }

does not depend on the input e but only on the state $\boldsymbol{\sigma}.$

• Formally: then for all $e, e' \in E$ we have

$$out(\sigma, e) = out(\sigma, e')$$

Theorem: If is (Δ, Λ) a Moore machine the F_{Λ} is strongly causal.

An interface abstraction of an implementation

- has the required properties
- leads to correct assertions

πп

Sub-Services, Functional Features

Technische Universität München Institut für Informatik D-85748 Garching, Germany

Syntactic sub-interfaces and projection

A typed channel set C' is called a *sub-type* of a typed channel set C if

- C' is a subset of C
- The message types of the channels in C' are subsets of the message sets of these channels in C

We write then

C' **subtype** C

Then we denote for the channel history $x \in IH[C]$ by

 $x|C' \in \mathsf{IH}[C']$

the restriction of x to the channels and messages in C'

πп

Sub-types between interfaces

For syntactic interfaces $(I \triangleright O)$ and $(I' \triangleright O')$ where

I' **subtype** I and O' **subtype** O

we call (I' An interface behaviour can be structured into
 independent sub-services
 a system offers services

For a behavior $F \in IF[I \triangleright O]$ we define its *projection*

 $\mathsf{F}^{\dagger}(\mathsf{I}' \triangleright \mathsf{O}') \in \mathsf{IF}[\mathsf{I}' \triangleright \mathsf{O}']$

to the syntactic interface $(I' \triangleright O')$ by (for all $x \in IH[I']$):

 $F^{\dagger}(I' \triangleright O')(x') = \{ y | O': \exists x \in IH[I]: x' = x | I' \land y \in F(x) \}$

The projection is called *faithful*, if for all $x \in dom(F)$

 $\mathsf{F}(\mathsf{x})|\mathsf{O}' = (\mathsf{F}^{\dagger}(\mathsf{I'} \triangleright \mathsf{O'}))(\mathsf{x}|\mathsf{I'})$

ТШ

Composing Systems

Technische Universität München Institut für Informatik D-85748 Garching, Germany

ТΠ

 $(F_1 \otimes F_2).x = \{z | O: x = z | I \land z | O_1 \in F_1(z | I_1) \land z | O_2 \in F_2(z | I_2)\}$

 $F_1 \otimes F_2 \in IF[I \triangleright O],$

 $I = I_1 \setminus C_2 \cup I_2 \setminus C_1$ $O = O_1 \setminus C_1 \cup O_2 \setminus C_2$

• of system models is compositional

Composition

Interface specification composition rule

ТЛ

Composition of the two state machines

 $\begin{array}{l} \text{Consider Moore machines } \mathsf{M}_k = (\Delta_k, \ \Lambda_k) \ (k = 1, \ 2): \\ \Delta_k: \ \Sigma_k \times (I_k \to M^*) \to (\Sigma_k \times (O_k \to M^*) \) \\ \text{We define the composed state machine} \\ \Delta: \ \Sigma \times (I \to M^*) \to (\Sigma \times (O \to M^*) \) \\ \text{as follows} \\ \Sigma = \ \Sigma_1 \times \Sigma_2 \\ \text{for } x \in I \ \text{and} \end{array} \right$

 $\Delta((s_1, s_2), x) = \{((s_1', s_2'), z|O): x = z|I \land \forall k: (s_k', z|O_k) = \Delta_k(s_k, z|I_k) \}$

This definition is based on the fact that we consider Moore machines. We write

 $\Delta = \Delta_1 \mid \mid \Delta_2$ $M = M_1 \mid \mid M_2 = (\Delta_1 \mid \mid \Delta_2, \Lambda_1 \times \Lambda_2)$

πп

$Abs((\Delta 1, \sigma 1) || (\Delta 2, \sigma 2)) =$ $Abs((\Delta 1, \sigma 1)) \otimes Abs((\Delta 2, \sigma 2))$

Interface abstraction distributes for state machines over composition

ТΠ

Component Architectures

Technische Universität München Institut für Informatik D-85748 Garching, Germany

Composition of Specifications into Architectures

ТΠ

Refining Systems

Technische Universität München Institut für Informatik D-85748 Garching, Germany

F:
$$\vec{I} \rightarrow$$
 Compositionality of refinement

 is refined by:
 $\forall k: F_k \gg_F \hat{F}_k$
 $\hat{F}: \vec{I} \rightarrow$
 $\otimes \{F_k: k \in \mathbb{K}\} \gg_F \otimes \{\hat{F}_k: k \in \mathbb{K}\}$

 if
 $\forall x \in \vec{I}: \hat{F}(x) \subseteq F(x)$

 we write
 $F \gg_F \hat{F}$

ТЛП

Vertical Refinement: Changing Levels of Abstraction

• The system model can express timing properties

 $y \in \mathsf{TMC}(x) \Rightarrow \{m\} \# x {\downarrow} t \leq \{m\} \# y {\downarrow} t + \delta$

The time granularity can be refined

 a special case of vertical refinement

Mandatory properties

- Concept of interface interface abstraction
 - ♦ syntactic interface
 - interface specification behaviour
 - verification of interface properties
 - relating components (compatibility, refinement)
 - ♦ behavioural abstraction
- Implementation
 - interface abstraction correctness
 - verification of properties testing, model checking and deductive proofs
- Composition
 - ♦ architectures
 - compositional
 - behavioural specification
 - implementations
 - architectures
 - hierarchical (system of systems)
 - modular for refinement
- Further aspects
 - sub-functions (function hierarchy)
 - ♦ time
 - probability
 - ♦ performance
 - <u>ه</u> ...

- Probability
- Non-functional properties
- Modelling of
 - hardware issues
 - ♦ mechanical aspects

• A layer refinement pair are two layers that form the time independent identity

Two layers L and L' are called a *refinement pair* for if

 $L \otimes L' = Id(I \triangleright O)$

٦Л

Layered protocols

ТЛП

The comprehensive model

