Mandatory Properties of Component Concepts

Manfred Broy

Technische Universitat Mlnchen 523X
Institut fur Informatik §3%:
D-85748 Garching, Germany EARE

Content

* What is a system component concept?

A concept of a self-contained, independent unit carrying
functionality that can be analysed, refined and composed
to form larger systems:

¢ deployable

¢ executable

¢ adaptable

* Mandatory ingredients: concept of component
¢ specification - implementation independent
¢ composition/decomposition - architecture
¢ refinement - properties and levels of abstraction
¢ implementation - executable system descriptions
¢ abstraction

¢ relating implementations to specifications
¢ relating components at different levels of abstraction

WFCD Grenoble, ESWEEK October 2009 Manfred Broy T |

S architecture ...

v/

Requireme S2
Engineerin
Validation >
Formalized I
v systej;m/mé <
i s of
S rvice taxo

{1®R2®R3®R4 v
- I- —>
—>([][R4[R3]

4—
_} A
R 2
/5 .
/ /@%/'@
[s

s F
<

<+ Q/g@ Component
| {C\" implementation
. verification
' ' reg); R1 = S1
Arch!tecture des.lgn . f 3lizg tior R2 z o
Architecture verification s o

WFCD Grenoble, ESWEEK October 2009 Manfred Broy Tum | 3

Towards a comprehensive theory of system modelling: meta model

Hierarchy
and
architecture

Feature model ‘ Is sub-feature

Interface model: components
Input and output

Composition

e Refinement
uses

Process transition model:
Events, actions and causal relations

uses
State transition model:
States and state machines

Data model:
Types/sorts and characteristic functions

Tum

WFCD Grenoble, ESWEEK October 2009 Manfred Broy

These notions ...

... form a taxonomy
But this is not enough!

We need a semantic modelling theory!

WFCD Grenoble, ESWEEK October 2009 Manfred Broy Tum |

Towards a uniform model: Basic system model

System class: distributed, reactive systems

component
name

component }\ l KC
[0

> cr >
LM Control ‘
<« < @ @

N

channel channel
name

System consists of

* named components (with local state)
* named channels

driven by a global, discrete clock

WFCD Grenoble, ESWEEK October 2009 Manfred Broy Tum | 6

Basic system model

Timed Streams: Semantic Model for Black-Box-Behavior

—>
E
e Q
// \
Message set: R AN
M { h } R4 N infinite channel
= 1d C, ... / \ ;
P 7t t+1 , t+2 , t+3 D history

o
Messages
transmitted at time t

WFCD Grenoble, ESWEEK October 2009 Manfred Broy Tum |

The Basic Behaviour Model: Timed Streams and Channels

C set of channels

Type: C — TYPE type assignment
X : C — (N{0} — M*) channel history for messages of type M

C or IH[C] set of channel histories for channels in C

WFCD Grenoble, ESWEEK October 2009 Manfred Broy Tum | 8

System interface model

Channel: Identifier of Type stream

I={x,,X,, ..} setof typed input channels
O={y,,Y,, ... setof typed output channels

Xl:Sl yl:Tl

Interface behavior

F - fe {0(6) Xn: Sp - Ym* Tm —

Set of interface behaviours with input channels I and

output channels O:
[F[I » O] A component is a system

Set of all interface behaviours: IF

WFCD Grenoble, ESWEEK October 2009 Manfred Broy T |

System interface behaviour - causality

I » 0)
A system has a proper time flow

F:1— 50(6) semantic interface for (I » O)
with timing property addressing strong causality

(letx,z & I,yEO t €IN):

x{t=z|{t={y|{t+l: yEFX)} ={y|t+l: yEF(z)}

X | t prefix of history x of length t

4 o
Component interface

WFCD Grenoble, ESWEEK October 2009 Manfred Broy Tum | 10

Examt interface specification

A transmission component TMC x-T

in @ A system has a logical specification
| outy: T -

X~y= T: {m}#x = {m}#y)

{m}#x denotes the nWin stream Xx

WFCD Grenoble, ESWEEK October 2009 Manfred Broy Tum | 11

Verification: Proving properties about specified compondents

From the interface assertions we can prove
* Safety properties

{m}#y >0 Ay € TMC(X) = {Mm}#x > 0
* Liveness properties

{M}#Xx>0Ay e TMC(X) = {m}#y >0

A system specification
e can be structured by logical properties and
e can be used to prove properties

WFCD Grenoble, ESWEEK October 2009 Manfred Broy T | 12

State Machines

A state machine (A, A) consists of

* aset X of states - the state
°* aset ACZof initial states
* a state transition function A

space

¢ in case of a state machine with input/output:

events (inputs E) trigger the transitions and events (outputs A) are
produced by them respectively:

in the case of nondeter

A:2ZxE—=2xA
ministic machines:
A:ZxE— p(ExA)

* Given a syntactic interface with sets I and O of input and output channels:

E=1-— M
A=0— M*

A system has an implementation

WFCD Grenoble, ESWEEK October 2009

Manfred Broy T|_|T| |

13

Computations of a State Machine with Input/Output

A state machine (A, A) defines for each initial state
Oy €EA
and each sequence of inputs
e, €, e ... €E
a sequence of states
Oy, Oy, O3, .. €E X
and a sequence of outputs
ay, Ay, a3, ... EA
through
(0i11s Aiv1) € A0y, €41)

Implementations define computations

WFCD Grenoble, ESWEEK October 2009 Manfred Broy Tum |

14

Computations of a State Machine with Input/Output

A system has an interface abstraction

In this manner we obtain con i
o that correctly reflects computations

/b /b /b
g a1 /by >0, ag /by >0, ag /bg >0
For each initial state o0 € = we define a function

FOO 1= W(O)
with
FoX)={y:30:00=0,AViE€IN: (0,4, X,1) = A(C, Vir1)}
F , denotes the interface behavior of the transition function A for the initial
state o0.

Furthermore we define
Abs((A, A)) = F,
where:
F.X)={yEF(X):YEF(X) A cE A}
F, is called the interface behavior of the state machine (A, A)

WFCD Grenoble, ESWEEK October 2009 Manfred Broy TUT] | 15

Moore Machines

* A Mealy machine (A, A) with
A:ZxE— p(ZxA)

is called a Moore machine if for all states c € X and all inputs e € E
the set

out(o, e) ={a € A: (o,a) = Ao, e) }
does not depend on the input e but only on the state o.
* Formally: then for all e, €’ € E we have
out(o, e) = out(o,)

Theorem: If is (A, A) a Moore machine the F, is strongly causal.

An interface abstraction of an implementation
e has the required properties
e |leads to correct assertions

WFCD Grenoble, ESWEEK October 2009 Manfred Broy TUT] | 16

Sub-Services, Functional Features

Technische Universitat Mlnchen 523X
Institut fur Informatik §3%:
D-85748 Garching, Germany EARE

Syntactic sub-interfaces and projection

A typed channel set C’ is called a sub-fype of a
typed channel set C if

* C’is asubsetof C

°* The message types of the channels in C’ are subsets of the message
sets of these channels in C

We write then

C’ subtype C
Then we denote for the channel history x € IH[C] by
X|C’ € IH[C]
the restriction of x to the channels and messages in C’

WFCD Grenoble, ESWEEK October 2009 Manfred Broy TUT] | 18

Sub-types between interfaces

For syntactic interfaces (I » O) and (I' » O') where
I’ subtype I and O’ subtype O

we call (I'™ An interface behaviour can be structured into
e independent sub-services
e a system offers services

For a behavior F € IF[I» O] we define its projection
Fi(I'»O") € IF[I'» 0]
to the syntactic interface (I'»QO") by (for all x € IH[I']):
Fr(I'»ON(X) = {y|O= AxeIH[I]: X' =x|I"AyE F(X)}

The projection is called faithful, if for all x € dom(F)
F()[0" = (F(I'»O0))(x|T')

WFCD Grenoble, ESWEEK October 2009 Manfred Broy Tum | 19

Composing Systems

Technische Universitat Minchen K299y
Institut fir Informatik 13%
D-85748 Garching, Germany £788

— s B = o=

Composition
e of system models is compositional
e is hierarchical: a system is a component is a system

Fl EIF[Il ’Ol] II\C2 r Cl . 02\C2
F, EIF[I, > 0,] » i [B >
Ci=0;NI O,\C C IL,\C

1 1 o) < 1Y~1 2 | < 21
C2 — 02 N Il

I — Il\CZ U 12\C1
O — Ol\Cl U 02\C2

F,®F, EIF[I » O],

(Fi®F,).x ={zIO: x =zlI A zIO; € F(zlI}) A zIO; € F»(zll,) }

WFCD Grenoble, ESWEEK October 2009 Manfred Broy M | 21

Interface specification composition rule

xl | FI®QF2 712 y2
> F1 > F2 >
yl z21 X2
< <« <
H Interf fication is modul
in x1.7221: 1 nterrace specirication IS modular
out yl,zI12: T out y2,z21: T
P1 P2
FI®F2
in x1,x2:T
out yl,y2: T
dz12,z21: P1 A P2

WFCD Grenoble, ESWEEK October 2009

Manfred Broy T|_|T| | 22

Composition of the two state machines

Consider Moore machines M, = (A, A,) (k =1, 2):
A 2 x (I = M) = (5 x (O, = M))

We define the composed state machine
ArZx(I—=M)— (Zx (0—=M))

as follows o : : :
s =3, x] Composition for the implementation concept is
for x €T and available

A((sy, Sy), X) = {((sy) $,), Z|O): x=2z|I A V ki (s, Z|Oy) = A(Sy, Z|I}) }

This definition is based on the fact that we consider Moore machines.
We write

A=Al A,
M=M;[| My= (A [l Ay; Ay x Ay)

WFCD Grenoble, ESWEEK October 2009 Manfred Broy Tum | 23

An example of an essential property ...

Abs((Al, ol) || (A2, 62)) =
Abs((Al, o1)) ® Abs((A2, 62))

Interface abstraction distributes for
state machines over composition

WFCD Grenoble, ESWEEK October 2009 Manfred Broy Tum | 24

Component Architectures

Technische Universitat Mlnchen oIl
Institut flr Informatik §3%;
D-85748 Garching, Germany AR

Composition of Specifications into Architectures

[Input channels Output channels
Composed compon SPEC — Internal channels

II1 X]_ M v o N A
Archltectures

out ﬁ* e have components with
EI\ Ci, Gy, - interface specifications
- implemented by
« state machines
« architectures
e are hierarchical forming systems of systems M,

SYysStelm Composition = 10giCal dand

Channel Hiding = existential quantification

WFCD Grenoble, ESWEEK October 2009 Manfred Broy Tum | 26

Refining Systems

Technische Universitat Minchen K299y
Institut fir Informatik 13%
D-85748 Garching, Germany £788

Horizontal Refinement

F: f%

1s refined by ¢

VN

F:f%

Compositionality of refinement

Vk:F, = F,

F:kEK } >r®{F :kEIK}

it

VxeEI:F(x) CFx)

we write

F=> F

WFCD Grenoble, ESWEEK October 2009 Manfred Broy T |

Vertical Refinement: Changing Levels of Abstraction

>
»

F Ol abstract level

~

Refined
Given 1

state tr:

we call

such th|

and for]

Theorems

* Horizontal refinement implies vertical
refinement

* Compositionality of vertical refinement

e \/ertical refinement distributes over
composition

e Abstractions of vertical refinements of
Implementations are vertical refinements of
abstractions

e \Vertical refinement is a Galois connection

- T U

WFCD Grenoble, ESWEEK October 2009 vVidnirea broy LI |

439

Expressive power: time

* The system model can express timing properties
y € TMC(X) = {m}#x|t < {m}#y|t+d

* The time granularity can be refined
¢ a special case of vertical refinement

WFCD Grenoble, ESWEEK October 2009 Manfred Broy T |

30

Mandatory properties

* Concept of interface - interface abstraction

o
o
o
o
o

syntactic interface

interface specification - behaviour

verification of interface properties

relating components (compatibility, refinement)
behavioural abstraction

* Implementation

%

interface abstraction - correctness

¢ verification of properties - testing, model checking and deductive proofs
* Composition

o
o

o
o

architectures

compositional
e behavioural specification
¢ implementations
e architectures
hierarchical (system of systems)

modular for refinement

* Further aspects

%

SO0

sub-functions (function hierarchy)
time

probability

performance

WFCD Grenoble, ESWEEK October 2009 Manfred Broy

nm |

31

Specification, verification, architecture ...

|
v
Requirements \ 4 _D
Engineering R
velieigar System delivery
Formalized System verification f
¥ system requirements R— S o
Linggerms of L) Ee %
4:» S service taxonomies /" Integration LU/ N
R = RI®R2®R3®R4 *
ey ~ ekl
Ze —>

_ 2 B
—> Q/g@ Component N\

& implementation
. . verification

4—
—>
Architecture design

Architecture verification

\S <= S1®S2®S3®S4 /

Rl = S1
R2 = S2
R3 = S3

R4 = S4 /

WFCD Grenoble, ESWEEK October 2009 Manfred Broy Tum | 32

I g
g/, /Za & /On

Open Issues

* Probability

* Non-functional properties

* Modelling of
¢ hardware issues
¢ mechanical aspects

WFCD Grenoble, ESWEEK October 2009

Manfred Broy

nm |

33

Refinement layers

* A layer refinement pair are two layers that form the time
independent identity

Two layers L and L' are called a refinement pair for 1f

L®L' = Id(I1»O)

I I , I
» L —» L > Ly
0 o} 0 0
< <« < <

WFCD Grenoble, ESWEEK October 2009 Manfred Broy Tm | 34

Layered protocols

Remember
A —I> L I‘= L' —I> I A
ol ol e o
T I ; : Lo : Ly —
Service Service Service Service
layer layer layer layer
' !
Lk O L](—l O](—2 L k-1 O](—l L k
i k-1 i
I O
k-l O, k-l L,
\ 4 I A 4
Service k-2 » Service
layer layer
L < L
k-1 O, k-1
WFCD Grenoble, ESWEEK October 2009 Manfred Broy TUT] | 35

The comprehensive model

<+ Usage function hierarchy

Technical architecture

Software architecture

Deployment

Hardware architecture

WFCD Grenoble, ESWEEK October 2009

Manfred Broy T|_|T| |

36

