
Technische Universität München
Institut für Informatik

D-85748 Garching, Germany

Mandatory Properties of Component Concepts

Manfred Broy

 Manfred Broy 2WFCD Grenoble, ESWEEK October 2009

Content

• What is a system component concept?
A concept of a self-contained, independent unit carrying
functionality that can be analysed, refined and composed
to form larger systems:
◊ deployable
◊ executable
◊ adaptable

• Mandatory ingredients: concept of component
◊ specification - implementation independent
◊ composition/decomposition - architecture
◊ refinement - properties and levels of abstraction
◊ implementation - executable system descriptions
◊ abstraction

• relating implementations to specifications
• relating components at different levels of abstraction

 Manfred Broy 3WFCD Grenoble, ESWEEK October 2009

R
System delivery

System verification
R ⇒ S

 Specification, verification, architecture ...
Informal

requirements

S

Formalized
system requirements
 in terms of
 service taxonomies

Requirements
Engineering
Validation

S1
S2

S4 S3
Architecture design
Architecture verification
S ⇐ S1⊗S2⊗S3⊗S4

R1
R2

R4 R3

Component
implementation
verification
R1 ⇒ S1
R2 ⇒ S2
R3 ⇒ S3
R4 ⇒ S4

R1
R2

R4 R3

Integration
R = R1⊗R2⊗R3⊗R4

int
eg

rat
ion

S

S1 S2 S3 S4S2

realization

architecture

form
alisation

de
liv

er

 Manfred Broy 4WFCD Grenoble, ESWEEK October 2009

Feature model

Composition
Refinement
Time

Implementation

Implementation

uses

uses

uses
Abstraction

Data model:
Types/sorts and characteristic functions

State transition model:
States and state machines

Composition
Refinement
Time

Process transition model:
Events, actions and causal relations

Composition
Refinement
Time

Interface model: components
Input and output

Composition
Refinement
Time

Abstraction

Hierarchy
and
architecture

Abstraction

Is sub-feature

Towards a comprehensive theory of system modelling: meta model

 Manfred Broy 5WFCD Grenoble, ESWEEK October 2009

... form a taxonomy

But this is not enough!

We need a semantic modelling theory!

These notions ...

 Manfred Broy 6WFCD Grenoble, ESWEEK October 2009

System class: distributed, reactive systems

Towards a uniform model: Basic system model

lc

clLM Control RM
cr

rc

kc
component

channel

System consists of
• named components (with local state)
• named channels

driven by a global, discrete clock

channel
name

component
name

 Manfred Broy 7WFCD Grenoble, ESWEEK October 2009

Basic system model

E

eq

qe
Q

t t+1 t+2 t+3

〈a,d,a,b〉 〈〉

Timed Streams: Semantic Model for Black-Box-Behavior

Messages
transmitted at time t

infinite channel
history

Message set:

M = {a, b, c, ...}

 Manfred Broy 8WFCD Grenoble, ESWEEK October 2009

The Basic Behaviour Model: Timed Streams and Channels

 Manfred Broy 9WFCD Grenoble, ESWEEK October 2009

System interface modelSystem interface model

A component is a system

 Manfred Broy 10WFCD Grenoble, ESWEEK October 2009

I O

Component interface

System interface behaviour - causality

(I ! O) syntactic interface with set of

 input channels I and of output channels O

F :
!

I ! "(
!

O) semantic interface for (I ! O)

 with timing property addressing strong causality

 (let x, z #
!

I , y #
!

O , t # IN):

x$t = z$t % {y$t+1: y # F(x)} = {y$t+1: y # F(z)}

x $ t prefix of history x of length t

A system shows a total behavior

A system has a proper time flow

 Manfred Broy 11WFCD Grenoble, ESWEEK October 2009

Example: Component interface specification

TMC
x ~ y

x:T y:T

Input channel

Output channel

Specifying assertion

Spec name

A system has a logical specification

 Manfred Broy 12WFCD Grenoble, ESWEEK October 2009

Verification: Proving properties about specified compondents

From the interface assertions we can prove

• Safety properties

{m}#y > 0 ∧ y ∈ TMC(x) ⇒ {m}#x > 0

• Liveness properties

{m}#x > 0 ∧ y ∈ TMC(x) ⇒ {m}#y > 0

A system specification
• can be structured by logical properties and
• can be used to prove properties

 Manfred Broy 13WFCD Grenoble, ESWEEK October 2009

State Machines

A state machine (Δ, Λ) consists of
• a set Σ of states - the state space
• a set Λ ⊆ Σ of initial states
• a state transition function Δ

◊ in case of a state machine with input/output:
events (inputs E) trigger the transitions and events (outputs A) are
produced by them respectively:

Δ : Σ × Ε → Σ × Α

in the case of nondeterministic machines:

Δ : Σ × Ε → ℘(Σ × Α)

• Given a syntactic interface with sets I and O of input and output channels:
E = I → M*

A = O → M*

A system has an implementation

 Manfred Broy 14WFCD Grenoble, ESWEEK October 2009

Computations of a State Machine with Input/Output

A state machine (Δ, Λ) defines for each initial state
σ0 ∈ Λ

and each sequence of inputs
e1, e2, e3, ... ∈ E

a sequence of states
σ1, σ2, σ3, ... ∈ Σ

and a sequence of outputs
a1, a2, a3, ... ∈ A

through
(σi+1, ai+1) ∈ Δ(σi, ei+1)

Implementations define computations

 Manfred Broy 15WFCD Grenoble, ESWEEK October 2009

Computations of a State Machine with Input/Output

In this manner we obtain computations of the form

For each initial state σ0 ∈ Σ we define a function

with
Fσ0(x) = {y: ∃ σi: σ0 = σ0 ∧ ∀ i ∈ IN: (σi+1, xi+1) = Δ(σi, yi+1)}

Fσ0 denotes the interface behavior of the transition function Δ for the initial
state σ0.

Furthermore we define

Abs((Δ, Λ)) = FΛ
where:

FΛ(x) = {y ∈ Fσ(x) : y ∈ Fσ(x) ∧ σ ∈ Λ}

FΛ is called the interface behavior of the state machine (Δ, Λ)

!

"0

a1 / b1# $ # # "1

a2 / b2# $ # # "2

a3 / b3# $ # # "3 ...

!

F"0 :
!
I #$(

!
O)

A system has an interface abstraction
• that correctly reflects computations

 Manfred Broy 16WFCD Grenoble, ESWEEK October 2009

Moore Machines

• A Mealy machine (Δ, Λ) with
Δ : Σ × Ε → ℘(Σ × Α)

is called a Moore machine if for all states σ ∈ Σ and all inputs e ∈ E
the set

out(σ, e) = {a ∈ A: (σ, a) = Δ(σ, e) }
does not depend on the input e but only on the state σ.

• Formally: then for all e, e’ ∈ E we have
out(σ, e) = out(σ, e’)

Theorem: If is (Δ, Λ) a Moore machine the FΛ is strongly causal.

An interface abstraction of an implementation
• has the required properties
• leads to correct assertions

Technische Universität München
Institut für Informatik

D-85748 Garching, Germany

Sub-Services, Functional Features

 Manfred Broy 18WFCD Grenoble, ESWEEK October 2009

Syntactic sub-interfaces and projection

A typed channel set C’ is called a sub-type of a
typed channel set C if
• C’ is a subset of C
• The message types of the channels in C’ are subsets of the message

sets of these channels in C

We write then

C’ subtype C
Then we denote for the channel history x ∈ IH[C] by

x|C’ ∈ IH[C’]
the restriction of x to the channels and messages in C’

 Manfred Broy 19WFCD Grenoble, ESWEEK October 2009

Sub-types between interfaces

For syntactic interfaces (I ! O) and (I’ ! O’) where

I’ subtype I and O’ subtype O

we call (I’"O’) a sub-type of (I ! O) and write:

 (I’ ! O’) subtype (I ! O)

For a behavior F ! IF[I"O] we define its projection

F†(I’"O’) ! IF[I’"O’]

to the syntactic interface (I’"O’) by (for all x ! IH[I’]):

F†(I’"O’)(x’) = {y|O’: x ! IH[I]: x’ = x|I’ " y ! F(x)}

The projection is called faithful, if for all x ! dom(F)

F(x)|O’ = (F†(I’"O’))(x|I’)

An interface behaviour can be structured into
• independent sub-services
• a system offers services

Technische Universität München
Institut für Informatik

D-85748 Garching, Germany

Composing Systems

 Manfred Broy 21WFCD Grenoble, ESWEEK October 2009

Composition and Decomposition of Systems

F1 ! IF[I1!O1]

F2 ! IF[I2!O2]

C1 = O1 " I2

C2 = O2 " I1

I = I1\C2 # I2\C1

O = O1\C1 # O2\C2

F1$F2 ! IF[I ! O],

(F1$F2).x = {z|O: x = z|I % z|O1 ! F1(z|I1) % z|O2 ! F2(z|I2)}

I2\C1

O2\C2C1

C2O1\C1

I1\C2
F1 F2

Composition
• of system models is compositional
• is hierarchical: a system is a component is a system

 Manfred Broy 22WFCD Grenoble, ESWEEK October 2009

Interface specification composition rule

Interface specification is modular

 Manfred Broy 23WFCD Grenoble, ESWEEK October 2009

Composition of the two state machines

Consider Moore machines Mk = (Δk, Λk) (k = 1, 2):
Δk: Σk × (Ik → M*) → (Σk × (Ok → M*))

We define the composed state machine
Δ: Σ × (I → M*) → (Σ × (O → M*))

as follows
Σ = Σ1 × Σ2

for x ∈ I and (s1, s2) ∈ Σ we define:

Δ((s1, s2), x) = {((s1’, s2’), z|O): x = z|I ∧ ∀ k: (sk’, z|Ok) = Δk(sk, z|Ik) }

This definition is based on the fact that we consider Moore machines.
We write

Δ = Δ1 || Δ2

M = M1 || M2 = (Δ1 || Δ2 , Λ1 × Λ2)

Composition for the implementation concept is
available

 Manfred Broy 24WFCD Grenoble, ESWEEK October 2009

An example of an essential property ...

Abs((Δ1, σ1) || (Δ2, σ2)) =

 Abs((Δ1, σ1)) ⊗ Abs((Δ2, σ2))

Interface abstraction distributes for
state machines over composition

Technische Universität München
Institut für Informatik

D-85748 Garching, Germany

Component Architectures

 Manfred Broy 26WFCD Grenoble, ESWEEK October 2009

Composition of Specifications into Architectures

System composition = logical and

Channel Hiding = existential quantification

Input channels Output channels

Internal channels

Architectures
• have components with

- interface specifications
- implemented by

• state machines
• architectures

• are hierarchical forming systems of systems

Technische Universität München
Institut für Informatik

D-85748 Garching, Germany

Refining Systems

 Manfred Broy 28WFCD Grenoble, ESWEEK October 2009

Horizontal Refinement

 Manfred Broy 29WFCD Grenoble, ESWEEK October 2009

Vertical Refinement: Changing Levels of Abstraction

Refinement of State Machines
Given two state machine (!k, "k) for k := 1, 2 where "k is a set "k of pairs (#0, y0) and !k is a

state transition function

 !k: ($k % (Ik & M*)) & '($ k % (Ok & M*))

we call !2 a refinement of !1 if there exists a mapping

 abs: $2 & $1

such that

 {(abs.#, AO.y0) : (#0, y0) ("2 }) "1

and for each reachable state # ($2 of the state machine (!2, "2) we have

 B!2(#, y0)) AI ˚ B!1(abs.#, AO.y0) ˚ RO

 Manfred Broy 30WFCD Grenoble, ESWEEK October 2009

Expressive power: time

• The system model can express timing properties

y ∈ TMC(x) ⇒ {m}#x↓t ≤ {m}#y↓t+δ

• The time granularity can be refined
◊ a special case of vertical refinement

 Manfred Broy 31WFCD Grenoble, ESWEEK October 2009

Mandatory properties

• Concept of interface - interface abstraction
◊ syntactic interface
◊ interface specification - behaviour
◊ verification of interface properties
◊ relating components (compatibility, refinement)
◊ behavioural abstraction

• Implementation
◊ interface abstraction - correctness
◊ verification of properties - testing, model checking and deductive proofs

• Composition
◊ architectures
◊ compositional

• behavioural specification
• implementations
• architectures

◊ hierarchical (system of systems)
◊ modular for refinement

• Further aspects
◊ sub-functions (function hierarchy)
◊ time
◊ probability
◊ performance
◊ ...

 Manfred Broy 32WFCD Grenoble, ESWEEK October 2009

R
System delivery

System verification
R ⇒ S

 Specification, verification, architecture ...
Informal

requirements

S

Formalized
system requirements
 in terms of
 service taxonomies

Requirements
Engineering
Validation

S1
S2

S4 S3
Architecture design
Architecture verification
S ⇐ S1⊗S2⊗S3⊗S4

R1
R2

R4 R3

Component
implementation
verification
R1 ⇒ S1
R2 ⇒ S2
R3 ⇒ S3
R4 ⇒ S4

R1
R2

R4 R3

Integration
R = R1⊗R2⊗R3⊗R4

int
eg

rat
ion

realization

architecture

form
alisation

de
liv

er

 Manfred Broy 33WFCD Grenoble, ESWEEK October 2009

Open Issues

• Probability
• Non-functional properties
• Modelling of
◊ hardware issues
◊ mechanical aspects

 Manfred Broy 34WFCD Grenoble, ESWEEK October 2009

Refinement layers

• A layer refinement pair are two layers that form the time
independent identity

O

II'

O'O

I
L L'

=

O

I

Two layers L and L' are called a refinement pair for if

 L!L' = Id(I!O)

 Manfred Broy 35WFCD Grenoble, ESWEEK October 2009

Layered protocols

Service
layer
L'k

IkOk

Ok-1

Ik-1

Ok-1

Ik-1

Ok-2

Ik-1

Ik-2

Ok-1

Service
layer
L'k-1

Ok-1
Ik-1

Service
layer
Lk-1

Ok-2

Ik-2
Service
layer
L'k-1

Service
layer
Lk-1

Service
layer

Lk

OkIk
O

II'

O'O

I
L L'

=

O

I

Remember

 Manfred Broy 36WFCD Grenoble, ESWEEK October 2009

The comprehensive model

conceptional architecture

Technical architecture

Tasks
• T1
• T2
• T3
• T4
• ...

T1
...

T2
...

T3
T4
...

Deployment

Usage function hierarchy

 service taxonomy

Logical architecture

Software architecture

Hardware architecture

