
Technische Universität München
Institut für Informatik

D-85748 Garching, Germany

Mandatory Properties of Component Concepts

Manfred Broy



                             Manfred Broy 2WFCD Grenoble, ESWEEK October 2009

Content

• What is a system component concept?
A concept of a self-contained, independent unit carrying
functionality that can be analysed, refined and composed
to form larger systems:
◊ deployable
◊ executable
◊ adaptable

• Mandatory ingredients: concept of component
◊ specification - implementation independent
◊ composition/decomposition -  architecture
◊ refinement - properties and levels of abstraction
◊ implementation - executable system descriptions
◊ abstraction

• relating implementations to specifications
• relating components at different levels of abstraction
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Feature model   
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Time

Implementation

Implementation
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Data model: 
Types/sorts and characteristic functions

State transition model: 
States and state machines

Composition
Refinement
Time

Process transition model: 
Events, actions and causal relations

Composition
Refinement
Time

Interface model: components 
Input and output

Composition
Refinement
Time

Abstraction

Hierarchy 
and 
architecture

Abstraction

Is sub-feature

Towards a comprehensive theory of system modelling: meta model
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... form a taxonomy

But this is not enough!

We need a semantic modelling theory!

These notions ...
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System class: distributed, reactive systems

Towards a uniform model: Basic system model

lc

clLM Control RM
cr

rc

kc
component

channel

System consists of
• named components (with local state)
• named channels

driven by a global, discrete clock

channel
name

component
name
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Basic system model

E

eq

qe
Q

t t+1 t+2 t+3

〈a,d,a,b〉 〈〉

Timed Streams: Semantic Model for Black-Box-Behavior

Messages
transmitted at time t

infinite channel
history

Message set:

M = {a, b, c, ...}
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The Basic Behaviour Model: Timed Streams and Channels
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System interface modelSystem interface model

A component is a system
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I O

Component interface

System interface behaviour - causality

(I ! O)                    syntactic interface with set of  

 input channels I and of output channels O 

 

F :   
! 

I  ! "(  
! 

O )         semantic interface for (I ! O)  

 with timing property addressing strong causality 

  (let x, z #   
! 

I , y #   
! 

O , t # IN):  

x$t = z$t % {y$t+1: y # F(x)} = {y$t+1: y # F(z)} 

x $ t     prefix of history x of length t              

A system shows a total behavior

A system has a proper time flow
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Example: Component interface specification

TMC
x ~ y

x:T y:T

Input channel

Output channel

Specifying assertion

Spec name

A system has a logical specification
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Verification: Proving properties about specified compondents

From the interface assertions we can prove

• Safety properties

{m}#y > 0 ∧ y ∈ TMC(x) ⇒ {m}#x > 0

• Liveness properties

{m}#x > 0 ∧ y ∈ TMC(x) ⇒ {m}#y > 0

A system specification 
• can be structured by logical properties and
• can be used to prove properties



                             Manfred Broy 13WFCD Grenoble, ESWEEK October 2009

State Machines

A state machine (Δ, Λ)  consists of
• a set Σ of states - the state space
• a set Λ ⊆ Σ of initial states
• a state transition function Δ

◊ in case of a state machine with input/output:
events (inputs E) trigger the transitions and events (outputs A) are
produced by them respectively:

Δ : Σ × Ε → Σ × Α

in the case of nondeterministic machines:

Δ : Σ × Ε → ℘(Σ × Α)

• Given a syntactic interface with sets I and O of input and output channels:
E = I → M*

A = O → M*

A system has an implementation
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Computations of a State Machine with Input/Output

A state machine (Δ, Λ) defines for each initial state
σ0 ∈ Λ

and each sequence of inputs
e1, e2, e3, ... ∈ E

a sequence of states
σ1, σ2, σ3, ... ∈ Σ

and a sequence of outputs
a1, a2, a3, ... ∈ A

through
(σi+1, ai+1) ∈ Δ(σi, ei+1)

Implementations define computations
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Computations of a State Machine with Input/Output

In this manner we obtain computations of the form

For each initial state σ0 ∈ Σ we define a function

with
Fσ0(x) = {y: ∃ σi: σ0 = σ0 ∧ ∀ i ∈ IN: (σi+1, xi+1) = Δ(σi, yi+1)}

Fσ0 denotes the interface behavior of the transition function Δ for the initial
state σ0.

Furthermore we define

Abs((Δ, Λ)) = FΛ
where:

FΛ(x) = {y ∈ Fσ(x) : y ∈ Fσ(x) ∧ σ ∈ Λ}

FΛ is called the interface behavior of the state machine (Δ, Λ)

  

! 

"0

a1 / b1# $ # # "1

a2 / b2# $ # # "2

a3 / b3# $ # # "3 ...

    

! 

F"0 :
! 
I #$(

! 
O )

A system has an interface abstraction
• that correctly reflects computations
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Moore Machines

• A Mealy machine (Δ, Λ) with
Δ : Σ × Ε → ℘(Σ × Α)

is called a Moore machine if for all states σ ∈ Σ and all inputs e ∈ E
the set

out(σ, e) = {a ∈ A: (σ, a) = Δ(σ, e) }
does not depend on the input e but only on the state σ.

• Formally: then for all e, e’ ∈ E we have
out(σ, e) = out(σ, e’)

Theorem: If is (Δ, Λ) a Moore machine the FΛ is strongly causal.

An interface abstraction of an implementation
• has the required properties 
• leads to correct assertions  
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Sub-Services, Functional Features
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Syntactic sub-interfaces and projection

A typed channel set C’ is called a sub-type of a
typed channel set C if
• C’ is a subset of C
• The message types of the channels in C’ are subsets of the message

sets of these channels in C

We write then

C’ subtype C
Then we denote for the channel history x ∈ IH[C] by

x|C’ ∈ IH[C’]
the restriction of x to the channels and messages in C’
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Sub-types between interfaces

For syntactic interfaces (I ! O) and (I’ ! O’) where 

I’ subtype I and O’ subtype O 

we call (I’"O’) a sub-type of (I ! O) and write: 

 (I’ ! O’) subtype (I ! O) 

 

For a behavior F ! IF[I"O] we define its projection  

F†(I’"O’) ! IF[I’"O’]  

to the syntactic interface (I’"O’) by (for all x ! IH[I’]): 

 

F†(I’"O’)(x’) =  {y|O’:  x ! IH[I]: x’ = x|I’ " y ! F(x)} 

 

The projection is called faithful, if for all x ! dom(F)  

F(x)|O’ = (F†(I’"O’))(x|I’) 

An interface behaviour can be structured into
• independent sub-services
• a system offers services
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Composing Systems
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Composition and Decomposition of Systems

F1 ! IF[I1!O1] 

F2 ! IF[I2!O2] 

 

C1 = O1 " I2  

C2 = O2 " I1  

I = I1\C2 # I2\C1 

O =  O1\C1 # O2\C2 

 

F1$F2 ! IF[I ! O], 

 

(F1$F2).x = {z|O: x = z|I % z|O1 ! F1(z|I1) % z|O2 ! F2(z|I2)} 

I2\C1

O2\C2C1

C2O1\C1

I1\C2
F1 F2

Composition 
• of system models is compositional
• is hierarchical: a system is a component is a system 
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Interface specification composition rule

Interface specification is modular
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Composition of the two state machines

Consider Moore  machines Mk = (Δk, Λk) (k = 1, 2):
Δk: Σk × (Ik → M*) → (Σk × (Ok → M*) )

We define the composed state machine
Δ: Σ × (I → M*) → (Σ × (O → M*) )

as follows
Σ = Σ1 × Σ2

for x ∈ I and (s1, s2) ∈ Σ we define:

Δ((s1, s2), x) = {((s1’, s2’), z|O):  x = z|I ∧ ∀ k: (sk’, z|Ok) = Δk(sk, z|Ik) }

This definition is based on the fact that we consider Moore machines.
We write

Δ = Δ1 || Δ2

M = M1 || M2 = (Δ1 || Δ2 , Λ1 × Λ2)

Composition for the implementation concept is 
available
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An example of an essential property ...

Abs((Δ1, σ1) || (Δ2, σ2) ) =

         Abs((Δ1, σ1)) ⊗ Abs((Δ2, σ2))

Interface abstraction distributes for 
state machines over composition
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Component Architectures
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Composition of Specifications into Architectures

System composition = logical and

Channel Hiding = existential quantification

Input channels Output channels

Internal channels

Architectures
• have components with

- interface specifications
- implemented by

• state machines
• architectures

• are hierarchical forming systems of systems
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Refining Systems
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Horizontal Refinement
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Vertical Refinement: Changing Levels of Abstraction

Refinement of State Machines
Given two state machine (!k, "k) for k := 1, 2 where "k is a set "k  of pairs (#0, y0) and !k is a

state transition function

 !k: ($k % (Ik & M*)) & '($ k % (Ok & M*))

we call !2 a refinement of !1 if there exists a mapping

 abs: $2 & $1

such that

 {(abs.#, AO.y0) : (#0, y0) ( "2 } ) "1

and for each reachable state # ( $2 of the state machine (!2, "2) we have

 B!2(#, y0) ) AI ˚ B!1(abs.#, AO.y0) ˚ RO
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Expressive power: time

• The system model can express timing properties

y ∈ TMC(x) ⇒ {m}#x↓t ≤ {m}#y↓t+δ

• The time granularity can be refined
◊ a special case of vertical refinement



                             Manfred Broy 31WFCD Grenoble, ESWEEK October 2009

Mandatory properties

• Concept of interface - interface abstraction
◊ syntactic interface
◊ interface specification - behaviour
◊ verification of interface properties
◊ relating components (compatibility, refinement)
◊ behavioural abstraction

• Implementation
◊ interface abstraction - correctness
◊ verification of properties - testing, model checking and deductive proofs

• Composition
◊ architectures
◊ compositional

• behavioural specification
• implementations
• architectures

◊ hierarchical (system of systems)
◊ modular for refinement

• Further aspects
◊ sub-functions (function hierarchy)
◊ time
◊ probability
◊ performance
◊ ...
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Open Issues

• Probability
• Non-functional properties
• Modelling of
◊ hardware issues
◊ mechanical aspects
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Refinement layers

• A layer refinement pair are two layers that form the time
independent identity

O

II'

O'O

I
L L'

=

O

I

Two layers L and L' are called a refinement pair for if 
 

  L!L' = Id(I!O)  
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Layered protocols

Service
layer
L'k

IkOk

Ok-1

Ik-1

Ok-1

Ik-1

Ok-2

Ik-1

Ik-2

Ok-1

Service
layer
L'k-1

Ok-1
Ik-1

Service
layer
Lk-1

Ok-2

Ik-2
Service
layer
L'k-1

Service
layer
Lk-1

Service
layer

Lk

OkIk
O

II'

O'O

I
L L'

=

O

I
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The comprehensive model

conceptional architecture

Technical architecture

Tasks
• T1
• T2
• T3
• T4
• ...

T1
...

T2
...

T3
T4
...

Deployment

Usage function hierarchy

    service taxonomy

Logical architecture

Software architecture

Hardware architecture


