Composition of Interval and Probabilistic Timing Models

Rolf Ernst
Matthias Ivers

TU Braunschweig
Overview

• motivation
• probabilistic models in systems integration
• scheduling analysis using probabilistic bounds
• combining WC intervals and probabilistic bounds
• conclusion
Motivation 1/3

- performance analysis and optimization based on best case/worst case timing intervals have been established
 - all behavior captured, results not dependent on system state
 - conservative guarantees
 - compositionality (SymTA/S, MPA)
 - system predictability, sensitivity analysis possible
Motivation 2/3

• combination with less conservative analysis requested
 – worst case is observed to occur very infrequently
 • dropping tasks or jobs is regular overload action
 • typical argument from practice
 – probabilistic QoS requirements
 • e.g. 99.9% correct frame sequence
 • conservative result required
 – inclusion of statistic sources, such as transient faults
 • fault handling as exception or in regular WCET
 • conservative results e.g. for safety analysis

• try probabilistic performance models and related analysis
 – this talk
Requirements to Probabilistic Models and Analysis

- compositionality
- compatibility to WC models
 - needed for performance guarantees
 - needed for mixed criticality
 - e.g. safety critical with WC models, others probabilistic
- availability in practical design
 - derived from traces
 - derived from models
Limitations of Stochastic Analysis

• typically steady state assumption
• execution time distribution is context dependent
 – composition may change execution time distribution
 – de Alfaro, Henzinger, Jhala
 (Compositional Methods for Probabilistic Systems, 2001):
 • composition of probabilistic and non-deterministic component models (such as interval based timing models) is subject to strong limitations - non-determinism must not influence output of component
 • for composition, any dependencies of transitions (on state) and actions must be declared and modeled explicitly
 – usually not available in practice
Initial Requirements/Assumptions

• effects of changed execution time distribution appear too complicated
 – require that task execution time distribution must remain unchanged in composition
 – reduce task timing to core execution time
 – treat CRPD and blocking as scheduling effects

• function execution (traces) remains unchanged in composition
 – our work focuses on modeling and analysis in systems integration
 – assume that core execution time does not change with integration (see above)
Overview

• motivation
• probabilistic models in systems integration
• scheduling analysis using probabilistic bounds
• combining WC intervals and probabilistic bounds
• conclusion
Integration Example – Functional Dependency

- functional dependency of communicating tasks
 - dependency of communicating tasks cannot be avoided in realistic systems
 - resulting task execution times are dependent (if not enforced as state independent)
Task Timing – WC Execution Time Interval

BCRT t

WCRT t

CPU1
HW
Mem

CPU2
HW
Mem

T1
T2
End-to-End Response Time – WC Interval
Task Timing Distribution
Timing Distribution in Example

- Good
- Degraded
- Useless
Dependent Tasks
Addition of two Random Variables

“I think these samples are from error handling functions… in this case, they will always coincide!”
Dependent Random Variables
Dependent Random Variables

„co-monotonous“ execution time distributions
Underestimated Error

Incorrect result!

$5\% \times 5\% = 0.25\%$
Underestimated Error

$$5\% \times 5\% = 0.25\%$$
Stochastic & Uncertainty
Stochastic & Uncertainty

CDF for independence

CDF for co-monotonous distribution
Stochastic & Uncertainty
⇒ comonotonous distribution is not supremal
⇒ not conservative
Stochastic & Uncertainty

- using Frechet bounds for stochastic WCET analysis proposed by Newly, Bernat, Burns 2005
- not yet used for schedulability and response time analysis

Frechet-Höfﬁding bounds
- bounds over all possible dependencies
- theory available
- supremal
- conservative
Integration Example – More Dependencies

- execution time dependency via shared resources
 - task timing coupled via platform scheduling
 - additional side effects, such as CRPD
Analysis of Scheduled Stochastic Systems

• scheduling Analysis of Stochastic Task Models
 – Gardner et al. 1999 STDA
 – Diaz et al 2005
 – Manolache et al 2005

• assumptions
 – task independence
 – job independence
Integration Example – Scheduling

- scheduling
 - periodic activation
 - static priority preemptive (SPP)
 - T4 higher priority than T1

- input dependent execution times
 - execution annotated by symbols
Scheduling – Example of Symbol Coincidence

offset

period

offset

period
Symbol Coincidence Effect

- response time and jitter of T1 jobs are determined by the content of coinciding T4 symbols!
- composition of load models must provide the rate of coincidence of two symbols from different streams
 - must include stochastic task and job dependencies
Symbol Coincidence

- symbol frequency example
 - „a“ 35%, „b“ 65%
 - „c“ 25%, „d“ 40%, „e“ 25%, „f“ 10%

\[
\begin{align*}
35\% & = P_{1,1} + P_{1,2} + P_{1,3} + P_{1,4} \\
65\% & = P_{2,1} + P_{2,2} + P_{2,3} + P_{2,4}
\end{align*}
\]
Independence Assumption

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>35%</td>
<td>3.5%</td>
<td>8.75%</td>
<td>14%</td>
<td>8.75%</td>
</tr>
<tr>
<td>65%</td>
<td>6.5%</td>
<td>16.25%</td>
<td>26%</td>
<td>16.25%</td>
</tr>
<tr>
<td>f</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>25%</td>
<td>40%</td>
<td>25%</td>
<td></td>
</tr>
</tbody>
</table>
Independence vs. No Assumption

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>3.5%</th>
<th>8.75%</th>
<th>14%</th>
<th>8.75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independence</td>
<td>35%</td>
<td>6.5%</td>
<td>16.25%</td>
<td>26%</td>
<td>16.25%</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>0-10%</td>
<td>0-25%</td>
<td>0-35%</td>
<td>0-25%</td>
</tr>
<tr>
<td>No Assumption</td>
<td>35%</td>
<td>0-10%</td>
<td>0-25%</td>
<td>0-40%</td>
<td>0-25%</td>
</tr>
<tr>
<td></td>
<td>65%</td>
<td>0-10%</td>
<td>0-25%</td>
<td>0-40%</td>
<td>0-25%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>c</th>
<th>d</th>
<th>e</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Independence</td>
<td>f 10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td></td>
<td>40%</td>
<td>25%</td>
</tr>
<tr>
<td>No Assumption</td>
<td>10%</td>
<td>25%</td>
<td>40%</td>
<td>25%</td>
</tr>
</tbody>
</table>
Consequences for Composition

• response time distribution dependencies do not only come from functional dependencies but also from non functional platform effects

• so, according to de Alfaro et al. resource scheduling must be restricted to isolated platform usage (e.g. in TDMA) – unless all effects explicitly modeled
 – counter the required effect of higher efficiency

• however, even if unknown, platform dependency effects can be captured by probability bounds!

⇒ can allow composition using scheduling with unknown side effects

⇒ BUT: need composition operators for scheduling algorithms on bounded probabilities
Overview

- motivation
- probabilistic models in systems integration
- scheduling analysis using probabilistic bounds
- combining WC intervals and probabilistic bounds
- conclusion
Application to Algorithm of Diaz (2005 et al.)

• Diaz scheduling algorithm and task model
 – static priority preemptive scheduling
 – periodic task activation patterns (hyperperiod exists)
 – stochastic job execution times
 – load backlog beyond hyperperiod permitted

 (U>1, uses Markov analysis)

 – independent tasks, independent jobs

• modified task model (this talk)
 – dependent tasks and jobs
 – (currently) no load backlog beyond hyperperiods (U<=1)
 – stochastic task activation times
 (omitted in the following slides)
Example System

Task under analysis (lowest priority)
Example – First Task Execution

First Activation
– empty Queue
Backlog = Execution Profile of Task

Queue Backlog – initially surely empty $P(0 \text{ backlog}) = 100\%$
Time passes – Queue shrinks
„Negative“ backlog accumulates at 0
Assume INDEPENDENCE
Take first sample 4tu, 33%
Shift backlog by the new value: 4tu
Scale Backlog by weight: 33%
Assume INDEPENDENCE
Take second sample 7tu, 33%
Shift backlog by the new value: 7tu
Scale Backlog by weight: 33%
Assume INDEPENDENCE
Take last sample 8tu, 33%
Shift backlog by the new value: 8tu
Scale Backlog by weight: 33%
Calculate the sum of all cases

Done for INDEPENDENCE
Construct BOUND:
Take a sample (4tu 33%)
Align it with best/worst case of the backlog
Shift it by the delay: 4tu
Construct BOUND:
Take next sample (7tu 33%)
Align it with best/worst case of the backlog
Shift it by the delay: 7tu
Construct BOUND:
Take next sample (8tu 33%)
Align it with best/worst case of the backlog
Shift it by the delay: 8tu
Calculate the sum of all cases

Done for BOUNDS
Update Bounds and Independent Distribution
(now in a single step)
Red task is task under analysis.
We no longer shrink the Backlog.
Only future part of the distribution is updated.
We’re Done!
Final Result

Independence Assumption

Sharp Upper and Lower Bound for any dependency
What Did We Gain? - State of the Art (Diaz)

Analysis (Diaz)

Stable & exact Distribution

Independency assumption
Step 1 - Handling any Dependency

Frechet Bounds

Analysis (Diaz + Frechet)

Stable & exact Distribution
Step 2: Input Modeling Restrictions Lifted

- time invariance may be captured in input bounds
- input and output models compatible!
Overview

• motivation
• probabilistic models in systems integration
• scheduling analysis using probabilistic bounds
• combining WC intervals and probabilistic bounds
• conclusion
Reminder: Modeling with WC bounds (Nondeterministic)

• WC response time and jitter intervals of T1 is independent of the symbol

• similar effects
 – unknown timing (WC bounds)
 – unknown dependency (Frechet bounds)
Mixed Modeling

• The response time is distributed as follows

 100%

 unknown timing
 (Epistemic uncertainty)

 probabilistic timing
 (Aleatoric uncertainty)

• mixed modeling generally feasible
Overview

• motivation
• probabilistic models in systems integration
• scheduling analysis using probabilistic bounds
• combining WC intervals and probabilistic bounds
• conclusion
Motivation - revisited

• combination with less conservative analysis requested
 – probabilistic QoS requirements
 • e.g. 99.9% correct frame sequence
 • *yes, conservative bounds, precise for unknown dependencies*
 – inclusion of statistic sources, such as transient faults
 • *yes, conservative bounds, even better for random sources*
 – worst case is observed to occur very infrequently, regular task/job dropping
 • *less suitable for low required probabilities (wide bounds)*
 • *currently limited to max U=1, not what is expected for this application, no task dropping, ...*
Conclusion

• functional and resource sharing dependencies modify response time distribution and counter compositionality

• no single conservative distribution – but is required!

• compositionality can be achieved using probability bounds, at least in some cases

• developed solution for SPP – revealed limitation of previous work

• probability bounds are compatible with WC bounds

• suitable for probabilistic guarantees, not for „probabilistic design“

• only a first step - still many problems to solve
Some Open Issues

• only SPP: what other strategies can we capture and what are the limits?
• narrower bounds by better source modeling?
• $U > 1$
• combination with event models in WC analysis
• bridge to statistics