Modeling, Analysis, and Synthesis of Quantitative System Requirements

Tom Henzinger IST Austria

Joint work with Krishnendu Chatterjee and Laurent Doyen.

Outline

- 1 A Quantitative Systems Theory
- 2 Some Basic Open Problems
- 3 Some Promising Directions

-measure of "fit" between system and spec -could be cost, quality, etc.

-could be cost, quality, etc.

-could be cost, quality, etc.

Q1 Assigning values to behaviors

Q2 Assigning values to systems/properties

Q3 Assigning values to pairs of systems/properties

Q1 Assigning values to behaviors Boolean case: correct vs. incorrect behaviors

Q2 Assigning values to systems/properties Boolean case: sets of behaviors (nondeterminism)

Q3 Assigning values to pairs of systems/properties Boolean case: preorders (refinement)

Q1 Assigning Values To Behaviors

a. Probabilities

Q1 Assigning Values To Behaviors

a. Probabilities

b. Resource use

-worst case vs. average case (e.g. response time, QoS) -peak vs. accumulative (e.g. power consumption) a. Probabilities

b. Resource use

-worst case vs. average case (e.g. response time, QoS) -peak vs. accumulative (e.g. power consumption)

c. Quality measures

-discounting vs. long-run averaging (e.g. reliability)

Q1 Assigning Values To Behaviors: Safety

Q1 Assigning Values To Behaviors: Safety

a: ok b: fail Discounted value (0 < d < 1): aaaaaaaaaa... 1 - d⁸ aaaaaaab... 1 - d³ aab... b... 0 Long-run average value: 1 aaaaaaaaaa... abaabaaab... 3/4 aaabaaabaaab... babbabbba... 0

- x: behaviors
- w: observations (infinite words)
- A,B: systems

$$A(w) = \sup_{x} \{ val(x) : obs(x) = w \}$$

x: behaviors

- w: observations (infinite words)
- A,B: systems

x: behaviors

- w: observations (infinite words)
- A,B: systems

$$A(w) = \sup_{x} \{ val(x) : obs(x) = w \}$$

= exp_x { val(x) : obs(x) = w }

Q3 Assigning Distances To Systems

- x: behaviors
- w: observations (infinite words)
- A,B: systems

Q3 Assigning Distances To Systems

- behaviors **X**:
- observations (infinite words) W:
- A,B: systems

Boolean compositionality: if $A \le A'$ then $A||B \le A'||B$

Quantitative compositionality: $diff(A||B,A'||B) \leq f(diff(A,A'))$ [AFHMS]

Is there a Quantitative Systems Theory with -an appealing mathematical formulation, -useful expressive power, and -good algorithmic properties?

(Like the boolean theory of ω -regularity.)

Outline

- 1 A Quantitative Systems Theory
- 2 Some Basic Open Problems:
 - -Language inclusion for MDPs
 - -Language inclusion for weighted automata
- 3 Some Promising Directions

Property = Language

Alphabet: Σ $\Sigma = \{a,b,c\}$

Language:

$$\begin{split} L &\subseteq \Sigma^{\omega} \\ L &= (a^+b)^+ (a^{\omega} \cup c^{\omega}) \cup (a^+b)^{\omega} \\ abaabaaabccccc... &\in L \\ abcabc... \not\in L \end{split}$$

Boolean Language

Alphabet:	Σ $\Sigma = \{a,b,c\}$
Language:	$L \subseteq \Sigma^{\omega}$ $L = (a^{+}b)^{+}(a^{\omega} \cup c^{\omega}) \cup (a^{+}b)^{\omega}$
	abaabaaabccccc ∈ L abcabc ∉ L

L: $\Sigma^{\omega} \to \mathbb{B}$

Specification = Automaton

 $Q \\ \lambda: Q \rightarrow \Sigma \\ q_0 \in Q \\ \Gamma \\ \delta: Q \times \Gamma \rightarrow Q$

states labeling initial state choices transition function

Specification = Automaton

states labeling initial state choices transition function

Specification = Automaton

Q $\lambda: \mathbf{Q} \to \Sigma$ $\mathbf{q}_0 \in \mathbf{Q}$ Γ $\delta: \mathbf{Q} \times \Gamma \to \mathbf{Q}$ states labeling initial state choices transition function

 $\begin{array}{lll} \mbox{Scheduler:} & x: Q^+ \to \Gamma \\ & S \hdots \mbox{ set of schedulers} \\ \mbox{Outcome:} & f(x) = q_0 q_1 q_2 \hdots \\ & where \enskip \forall i: q_{i+1} = \delta(q_i, \ x(q_0 \hdots q_i)) \\ \mbox{Language:} & L = \{ \ \lambda(f(x)): x \in S \ \} \end{array}$

Satisfaction = Language Inclusion

Given two automata A and B, is $L(A) \subseteq L(B)$?

Satisfaction = Language Inclusion

Given two automata A and B, is $L(A) \subseteq L(B)$? i.e. $\forall w \in \Sigma^{\omega} : L(A)(w) \le L(B)(w)$

Given two automata A and B, is $L(A) \subseteq L(B)$? i.e. $\forall w \in \Sigma^{\omega} : L(A)(w) \leq L(B)(w)$

For finite/Buechi automata, PSPACE-complete.

Word: Probabilistic Word: Probabilistic Language: element of Σ^{ω} probability space on Σ^{ω} set of probabilistic words

w: $ab\Sigma^{\omega} \rightarrow 1/2$ $aab\Sigma^{\omega} \rightarrow 1/4$ $aaab\Sigma^{\omega} \rightarrow 1/8$

. . .

 $\begin{array}{l} \mathsf{Q} \\ \lambda \colon \mathsf{Q} \to \Sigma \\ \mathsf{q}_0 \in \mathsf{Q} \\ \Gamma \\ \delta \colon \mathsf{Q} \times \Gamma \to \mathsf{D}(\mathsf{Q}) \end{array}$

states labeling initial state choices transition function

 $\begin{array}{l} \mathsf{Q} \\ \lambda \colon \mathsf{Q} \to \Sigma \\ \mathsf{q}_0 \in \mathsf{Q} \\ \Gamma \\ \delta \colon \mathsf{Q} \times \Gamma \to \mathsf{D}(\mathsf{Q}) \end{array}$

states labeling initial state choices transition function

. . .

Q $\lambda: \mathbf{Q} \to \Sigma$ $q_0 \in Q$ Г δ: Q × Γ → D(Q) states labeling initial state choices transition function

Pure scheduler: Probabilistic scheduler: $x: Q^+ \rightarrow D(\Gamma)$

 $x: Q^+ \to \Gamma$

 $\begin{array}{l} \mathsf{Q} \\ \lambda \colon \mathsf{Q} \to \Sigma \\ \mathsf{q}_0 \in \mathsf{Q} \\ \Gamma \\ \delta \colon \mathsf{Q} \times \Gamma \to \mathsf{D}(\mathsf{Q}) \end{array}$

states labeling initial state choices transition function

Given two MDPs A and B, is $L(A) \subseteq L(B)$?

Given two MDPs A and B, is $L(A) \subseteq L(B)$?

Given two MDPs A and B, is $L(A) \subseteq L(B)$?

?

Open even if specification B is deterministic (i.e. $|\Gamma| = 1$) and implementation scheduler required to be pure. If both sides are deterministic, then it can be solved in polynomial time (equivalence of Rabin's probabilistic automata) [Tzeng, DHR].

 $L(ab^{\omega}) = 1/2$ $L(aab^{\omega}) = 1/4$ $L(aaab^{\omega}) = 1/8$

. . .

Weighted Automaton

 $\begin{array}{l} \mathsf{Q} \\ \lambda \colon \mathsf{Q} \to \Sigma \\ \mathsf{q}_0 \in \mathsf{Q} \\ \Gamma \\ \delta \colon \mathsf{Q} \times \Gamma \to \mathbb{R} \times \mathsf{Q} \end{array}$

states labeling initial state choices transition function

Weighted Automaton

states labeling initial state choices transition function

Max value: $val(q_0v_1q_1v_2q_2...) = sup\{v_i : i \ge 1\}$

Limsup value: val = $\lim_{n\to\infty} \sup\{v_i : i \ge n\}$

 $\begin{array}{ll} \text{Max value:} & \text{val}(q_0v_1q_1v_2q_2...) = \sup\{\ v_i: i \geq 1\ \} \\ & (\text{only 0 and 1 costs: finite automaton}) \\ \text{Limsup value:} & \text{val} = \lim_{n \rightarrow \infty} \sup\{\ v_i: i \geq n\ \} \\ & (\text{only 0 and 1 costs: Buechi automaton}) \end{array}$

Max value:	val($q_0v_1q_1v_2q_2$) = sup{ $v_i : i \ge 1$ } (only 0 and 1 costs: finite automaton)
Limsup value:	val = $\lim_{n\to\infty} \sup\{v_i : i \ge n\}$ (only 0 and 1 costs: Buechi automaton)
Limavg value:	$val = \lim_{n \to \infty} 1/n \cdot \sum_{1 \le i \le n} v_i$

Max value:	val($q_0v_1q_1v_2q_2$) = sup{ $v_i : i \ge 1$ } (only 0 and 1 costs: finite automaton)
Limsup value:	val = $\lim_{n\to\infty} \sup\{v_i : i \ge n\}$ (only 0 and 1 costs: Buechi automaton)
Limavg value:	$val = \lim_{n \to \infty} 1/n \cdot \sum_{1 \le i \le n} v_i$
Discounted:	val = $\sum_{i>1} d^i \cdot v_i$ for some 0 <d<1< td=""></d<1<>

Weighted Automaton

Given two weighted automata A and B, is $\forall w \in \Sigma^{\omega} : L(A)(w) \leq L(B)(w)$?

Given two weighted automata A and B, is $\forall w \in \Sigma^{\omega} : L(A)(w) \leq L(B)(w)$?

For max and limsup values: PSPACE. For limavg and discounted values: Open. Given two weighted automata A and B, is $\forall w \in \Sigma^{\omega} : L(A)(w) \leq L(B)(w)$?

For max and limsup values: PSPACE. For limavg and discounted values: Open.

If specification B is deterministic, then it can be solved in polynomial time [CDH].

Quantitative Simulation

Quantitative Simulation

Quantitative Simulation

Simulation game solvable in P for max values; in NP \cap coNP for limsup, limavg, discounted values [CDH].

E.g. limavg automata not determinizable [CDH]:

 $\Sigma^* b^\omega$ expressible by a nondeterministic limavg automaton.

E.g. limavg automata not determinizable [CDH]:

 $\Sigma^* b^{\omega}$ expressible by a nondeterministic limavg automaton.

 $\Sigma^* b^{\omega}$ not expressible by a deterministic limavg automaton.

Every b-cycle would need weight 1. Consider $w_n = (ab^n)^{\omega}$. Then $val(w_n) = 1$ for sufficiently large n, but $w_n \notin \Sigma^* b^{\omega}$.

Quantitative Closure Properties

E.g. limavg automata not closed under min [CDH]:

Quantitative Closure Properties

E.g. limavg automata not closed under min [CDH]:

 $min(L_1,L_2)$ not expressible by a limavg automaton.

Consider $w_n = (a^n b^n)^{\omega}$ for large n.

Some a-cycle or b-cycle would need average positive weight. Then some word ua^{ω} or ub^{ω} would have a positive value.

Outline

- 1 The Quantitative Verification Agenda
- 2 Some Basic Open Problems:

-Language inclusion for MDPs-Language inclusion for weighted automata

3 Some Promising Directions

Outline

- 1 The Quantitative Verification Agenda
- 2 Some Basic Open Problems
- 3 Some Promising Directions:
 - -Quantitative Synthesis -Robust Systems

Boolean Systems Theories

Synthesis: From Automata to Games

Automaton states are partitioned into min and max states.

Game: minimizer against maximizer

-in min states, minimizer chooses successor -in max states, maximizer chooses successor

-minimizer tries to minimize value of a word -maximizer tries to maximize value of a word

Scheduler is replaced by two strategies, one for the minimizer and one for the maximizer:

 $L(w) = \sup \inf \dots$

Games for Quantitative Synthesis

1 Constrained Resources

-every weight is a resource cost (e.g. power consumption)
-optimize peak resource use: max objective
-optimize accumulative resource use: sum objective
[Chakrabarti et al.]

Max Game

Max Game

C: 5 + max(0,min(59,99)) = 64

E: 15 + max(0, max(9, -9)) = 24

Iteration 2.

Iteration 3.

Iteration 4 = fixpoint.

Games for Quantitative Synthesis

- 1 Constrained Resources
- 2 Preference between Different Implementations

-boolean spec, but certain implementations preferred -formalized using lexicographic objectives [Jobstmann et al.]

$$\langle f, g_1, \dots g_n \rangle$$

 \uparrow \uparrow
boolean objective quantitative objectives

Request-Grant Limavg Automaton 1

Following a request, all steps until the next grant are penalized.

Request-Grant Limavg Automaton 2

Following a request, all repeated grants are penalized.

Outline

- 1 The Quantitative Verification Agenda
- 2 Some Basic Open Problems
- 3 Some Promising Directions:
 - -Quantitative Synthesis -Robust Systems

1 Robustness as Mathematical Continuity:

-small input changes should cause small output changes -only possible in a quantitative framework

 $\forall \epsilon > 0. \exists \delta > 0.$ input-change $\leq \delta \Rightarrow$ output-change $\leq \epsilon$

In general programs are not continuous. But they can less continuous:

In general programs are not continuous. But they can less continuous:

[Majumdar et at., Gulwani et al.]

Robust Systems

1 Robustness as Mathematical Continuity:

-small input changes should cause small output changes -only possible in a quantitative framework

 $\forall \epsilon > 0. \exists \delta > 0.$ input-change $\leq \delta \Rightarrow$ output-change $\leq \epsilon$

Example of a Robustness Theorem [AHM]: If discountedBisimilarity(A,B) > 1 - ε , then $\forall w : |A(w) - B(w)| < f(\varepsilon)$.

Robust Systems

1 Robustness as Mathematical Continuity:

-small input changes should cause small output changes -only possible in a quantitative framework

2 Robustness w.r.t. Faulty Assumptions:

-environment may violate assumptions
-few environment mistakes should cause few system mistakes
-ratio of system to environment mistakes as quantitative quality measure
[Greimel et al.]

Conclusions

-"Quantitative" is more than "timed" and "probabilistic."

-Weighted automata offer a natural quantitative specification language.

-We need to move from boolean correctness criteria to quantitative system preference metrics.

-We have interesting point solutions, but no convincing overall framework.