
Modeling, Analysis, and Synthesis              
of                                        

Quantitative System Requirements

Tom Henzinger
IST Austria

Joint work with Krishnendu Chatterjee and Laurent Doyen.



Outline

1 A Quantitative Systems Theory

2 Some Basic Open Problems

3 Some Promising Directions



Boolean Systems Theories

Property/ 
Specification

Yes/No

Analysis

Program/ 
System



Boolean Systems Theories

Property/ 
Specification

Yes/No
-perhaps a proof                                 
-perhaps some counterexamples        
-perhaps even a proposed fix

Analysis

Program/ 
System



Boolean Systems Theories

Satisfaction 
Relation

Property/ 
Specification

Yes/No
-perhaps a proof                                 
-perhaps some counterexamples        
-perhaps even a proposed fix

Structure Formula
Program/ 
System



Boolean Systems Theories

Program/ 
System

Property/ 
Specification

Yes/No
-perhaps a proof                                 
-perhaps some counterexamples        
-perhaps even a proposed fix

Analysis

Every request is 
followed by a grant.

Transition 
system.



Boolean Systems Theories

Quantitative 
Program/ 
System

Quantitative 
Property/ 

Specification

Yes/No
-perhaps a proof                                 
-perhaps some counterexamples        
-perhaps even a proposed fix

Analysis

Every request is 
followed by a grant 
within 5 time units.

Timed 
automaton.



Boolean Systems Theories

Quantitative 
Program/ 
System

Quantitative 
Property/ 

Specification

Yes/No
-perhaps a proof                                 
-perhaps some counterexamples        
-perhaps even a proposed fix

Analysis

Every request is 
followed by a grant 
within probability 1/2.

Markov 
process.



Boolean Systems Theories

Quantitative 
Program/ 
System

Quantitative 
Property/ 

Specification

B
-perhaps a proof                                 
-perhaps some counterexamples        
-perhaps even a proposed fix

Analysis

Every request is 
followed by a grant 
within probability 1/2.

Markov 
process.



A Quantitative Systems Theory

Quantitative 
Program/ 
System

Quantitative 
Property/ 

Specification

R
-measure of “fit” between system and spec    
-could be cost, quality, etc.

Analysis



A Quantitative Systems Theory

Quantitative 
Program/ 
System

Quantitative 
Property/ 

Specification

R
-measure of “fit” between system and spec    
-could be cost, quality, etc.

Analysis

Every request is 
followed by a grant.

The less time between 
requests and grants, 
the better.



A Quantitative Systems Theory

Quantitative 
Program/ 
System

Quantitative 
Property/ 

Specification

R
-measure of “fit” between system and spec    
-could be cost, quality, etc.

Analysis

Every request is 
followed by a grant.

The fewer unnecessary 
grants, the better.



A Quantitative Systems Theory

Q1 Assigning values to behaviors

Boolean case:  correct vs. incorrect behaviors

Q2 Assigning values to systems/properties

Boolean case:  sets of behaviors (nondeterminism)

Q3 Assigning values to pairs of systems/properties

Boolean case:  preorders (refinement)



A Quantitative Systems Theory

Q1 Assigning values to behaviors

Boolean case:  correct vs. incorrect behaviors    

Q2 Assigning values to systems/properties

Boolean case:  sets of behaviors (nondeterminism)

Q3 Assigning values to pairs of systems/properties

Boolean case:  preorders (refinement)



Boolean Systems Theories

S1 S’1 S2 S’’2S’2

P1 P2 P3



Boolean Systems Theories

S1 S’1 S2 S’’2S’2

P1 P2 P3



Boolean Systems Theories

S1 S’1 S2 S’’2S’2

P1 P2 P3



A Quantitative Systems Theory

S1 S’1 S2 S’’2S’2

P1 P2 P3

0.9 0.8



A Quantitative Systems Theory

S1 S’1 S2 S’’2S’2

P1 P2 P3

0.9 0.80.5
0.7



A Quantitative Systems Theory

S1 S’1 S2 S’’2S’2

P1 P2 P3

0.9 0.80.5
0.7

0.2



Q1  Assigning Values To Behaviors

a. Probabilities



Q1  Assigning Values To Behaviors

a. Probabilities

b. Resource use

-worst case vs. average case (e.g. response time, QoS)          
-peak vs. accumulative (e.g. power consumption)



Q1  Assigning Values To Behaviors

a. Probabilities

b. Resource use

-worst case vs. average case (e.g. response time, QoS)          
-peak vs. accumulative (e.g. power consumption)

c. Quality measures
-discounting vs. long-run averaging (e.g. reliability)



Q1  Assigning Values To Behaviors: Safety

a: ok                                                            
b: fail

Discounted value (0 < d < 1):

aaaaaaaaaa... 1
aaaaaaab... 1 - d8

aab... 1 - d3

b... 0



Q1  Assigning Values To Behaviors: Safety

a: ok                                                            
b: fail

Discounted value (0 < d < 1):

aaaaaaaaaa... 1
aaaaaaab... 1 - d8

aab... 1 - d3

b... 0

Long-run average value:

aaaaaaaaaa... 1
abaabaaab... 1
aaabaaabaaab... 3/4
babbabbba... 0 



Q2, Q3 Assigning Values To Systems

x:      behaviors                                               
w:     observations (infinite words)                            
A,B:  systems                                           

A(w)        =  supx { val(x) :  obs(x) = w }



Q2, Q3 Assigning Values To Systems

x:      behaviors                                               
w:     observations (infinite words)                            
A,B:  systems                                           

A(w)        =  supx { val(x) :  obs(x) = w }                
B(w)        =  expx { val(x) : obs(x) = w }                          



Q2, Q3 Assigning Values To Systems

x:      behaviors                                               
w:     observations (infinite words)                            
A,B:  systems                                           

A(w)        =  supx { val(x) :  obs(x) = w }                
B(w)        =  expx { val(x) : obs(x) = w }                          

relative to input distribution



Q3  Assigning Distances To Systems

x:      behaviors                                               
w:     observations (infinite words)                            
A,B:  systems                                           

A(w)        =  supx { val(x) :  obs(x) = w }                
B(w)        =  expx { val(x) : obs(x) = w }                          

diff(A,B)  =  supw { |A(w) – B(w)| }            



Q3  Assigning Distances To Systems

x:      behaviors                                               
w:     observations (infinite words)                            
A,B:  systems                                           

A(w)        =  supx { val(x) :  obs(x) = w }                
B(w)        =  expx { val(x) : obs(x) = w }                          

diff(A,B)  =  supw { |A(w) – B(w)| }

Boolean compositionality:   if A · A’ then A||B · A’||B             
Quantitative compositionality:  diff(A||B,A’||B) · f(diff(A,A’))  [AFHMS]



Is there a Quantitative Systems Theory with  

-an appealing mathematical formulation, 
-useful expressive power, and 
-good algorithmic properties?

(Like the boolean theory of ω-regularity.)



Outline

1 A Quantitative Systems Theory

2 Some Basic Open Problems:                   
-Language inclusion for MDPs
-Language inclusion for weighted automata

3 Some Promising Directions



Alphabet:   Σ
Σ = {a,b,c}

Language: L ⊆ Σω

L = (a+b)+(aω∪cω) ∪ (a+b)ω

abaabaaabccccc... ∈ L
abcabc... ∉ L

Property = Language



Alphabet:   Σ
Σ = {a,b,c}

Language: L ⊆ Σω

L = (a+b)+(aω∪cω) ∪ (a+b)ω

abaabaaabccccc... ∈ L
abcabc... ∉ L

L: Σω → B

Boolean Language



Q states                              
λ: Q → Σ labeling                           
q0 ∈ Q initial state
Γ choices                              
δ:  Q × Γ → Q         transition function                        

Specification = Automaton

a cb

0

1

0

1

0,1

Γ = {0,1}                                       
L(A) = (a+b)+(aω∪cω) ∪ (a+b)ω

A:



Q states                              
λ: Q → Σ labeling                           
q0 ∈ Q initial state
Γ choices                              
δ:  Q × Γ → Q         transition function                        

Specification = Automaton

a cb

0

1

0

1

0,1

0101111...  → aababccc...

A:

“scheduler” “outcome”



Q states                              
λ: Q → Σ labeling                           
q0 ∈ Q initial state
Γ choices                              
δ:  Q × Γ → Q         transition function                        

Specification = Automaton

Scheduler:  x: Q+ → Γ
S ... set of schedulers

Outcome:      f(x) = q0q1q2 ... 
where  ∀ i : qi+1 = δ(qi, x(q0...qi)) 

Language:    L = { λ(f(x)) : x ∈ S }



Satisfaction = Language Inclusion

Given two automata A and B, is L(A) ⊆ L(B)?



Satisfaction = Language Inclusion

Given two automata A and B, is L(A) ⊆ L(B)?

i.e. ∀ w ∈ Σω : L(A)(w) · L(B)(w)



Satisfaction = Language Inclusion

Given two automata A and B, is L(A) ⊆ L(B)?

i.e.  ∀ w ∈ Σω : L(A)(w) · L(B)(w)

For finite/Buechi automata, PSPACE-complete.



Word: element of Σω

Probabilistic Word: probability space on Σω

Probabilistic Language: set of probabilistic words

Probabilistic Language

w:  abΣω → 1/2
aabΣω → 1/4               
aaabΣω → 1/8                 
...



Q states                              
λ: Q → Σ labeling                           
q0 ∈ Q initial state
Γ choices                              
δ:  Q × Γ → D(Q)         transition function                        

Markov Decision Process

a cb

0: 0.5
0: 0.5   
1: 1

0: 0.5

0,1
A:

0: 0.5   
1: 1



Q states                              
λ: Q → Σ labeling                           
q0 ∈ Q initial state
Γ choices                              
δ:  Q × Γ → D(Q)         transition function                        

Markov Decision Process

a cb

0: 0.5
0: 0.5   
1: 1

0: 0.5

0,1
A:

0: 0.5   
1: 1

0101111...  → abccc...   → 1/2
aabccc...  → 1/4           
...



Q states                              
λ: Q → Σ labeling                           
q0 ∈ Q initial state
Γ choices                              
δ:  Q × Γ → D(Q)         transition function                        

Markov Decision Process

Pure scheduler: x: Q+ → Γ
Probabilistic scheduler: x: Q+ → D(Γ)  



Q states                              
λ: Q → Σ labeling                           
q0 ∈ Q initial state
Γ choices                              
δ:  Q × Γ → D(Q)         transition function                        

Markov Decision Process

a cb

0: 0.5
0: 0.5   
1: 1

0: 0.5

0,1
A:

0: 0.5   
1: 1

{0: 0.5, 1: 0.5}ω → abccc...   → 9/16
aabccc...  → 9/64           
...



Probabilistic Language Inclusion

Given two MDPs A and B, is L(A) ⊆ L(B)?



Probabilistic Language Inclusion

Given two MDPs A and B, is L(A) ⊆ L(B)?

?



Probabilistic Language Inclusion

Given two MDPs A and B, is L(A) ⊆ L(B)?

?
Open even if specification B is deterministic (i.e. |Γ| = 1)   
and implementation scheduler required to be pure.
If both sides are deterministic, then it can be solved in polynomial 
time (equivalence of Rabin’s probabilistic automata) [Tzeng, DHR]. 



Language: L: Σω → B

Quantitative Language: L: Σω → R

Quantitative Language

L(abω) = 1/2
L(aabω) = 1/4          
L(aaabω) = 1/8                 
...



Q states                              
λ: Q → Σ labeling                           
q0 ∈ Q initial state
Γ choices                              
δ:  Q × Γ → R × Q         transition function                        

Weighted Automaton

a cb

0; 4

1; 2

0; 0

0,1; 0
A:

1; 1



Q states                              
λ: Q → Σ labeling                           
q0 ∈ Q initial state
Γ choices                              
δ:  Q × Γ → R × Q         transition function                        

Weighted Automaton

a cb

0; 4

1; 2

0; 0

0,1; 0
A:

1; 1

0101111...  → aababccc...; 4    
1111111...  → abccc...; 2

Value:



Different Value Functions

Max value: val(q0v1q1v2q2...) = sup{ vi : i ≥ 1 }                   
(only 0 and 1 costs: finite automaton)

Limsup value:    val = limn→∞ sup{ vi : i ≥ n }      
(only 0 and 1 costs: Buechi automaton)



Different Value Functions

Max value: val(q0v1q1v2q2...) = sup{ vi : i ≥ 1 }                   
(only 0 and 1 costs: finite automaton)

Limsup value:    val = limn→∞ sup{ vi : i ≥ n }      
(only 0 and 1 costs: Buechi automaton)



Different Value Functions

Max value:    val(q0v1q1v2q2...) = sup{ vi : i ≥ 1 }                   
(only 0 and 1 costs: finite automaton)

Limsup value:    val = limn→∞ sup{ vi : i ≥ n }      
(only 0 and 1 costs: Buechi automaton)

Limavg value:    val = limn→∞ 1/n · ∑1·i·n vi  



Different Value Functions

Max value: val(q0v1q1v2q2...) = sup{ vi : i ≥ 1 }                   
(only 0 and 1 costs: finite automaton)

Limsup value:    val = limn→∞ sup{ vi : i ≥ n }      
(only 0 and 1 costs: Buechi automaton)

Limavg value:    val = limn→∞ 1/n · ∑1·i·n vi

Discounted:  val = ∑i≥ 1 di · vi for some  0<d<1



Weighted Automaton

a cb

0; 4

1; 2

0; 0

0,1; 0
A:

1; 1

01010101...  → aabababab...; 2    
11111111...  → abccc...; 0

Limsup value:

01010101...  → aabababab...; 1    
11111111...  → abccc...; 0

Limavg value:

01010101...  → aabababab...; 2.66...    
11111111...  → abccc...; 1.25

Discounted:       
(d = 0.5)



Quantitative Language Inclusion

Given two weighted automata A and B, is               
∀ w ∈ Σω : L(A)(w) · L(B)(w) ?



Quantitative Language Inclusion

Given two weighted automata A and B, is               
∀ w ∈ Σω : L(A)(w) · L(B)(w) ?

For max and limsup values: PSPACE.
For limavg and discounted values: Open.



Quantitative Language Inclusion

Given two weighted automata A and B, is               
∀ w ∈ Σω : L(A)(w) · L(B)(w) ?

For max and limsup values: PSPACE.
For limavg and discounted values: Open.
If specification B is deterministic,                       
then it can be solved in polynomial time [CDH].



Quantitative Simulation

a

1

b
1

1

1

b

2

a
2

0

0

b

0

a
0

2

2

a

2

0

·

A: B:



Quantitative Simulation

a

1

b
1

1

1

b

2

a
2

0

0

b

0

a
0

2

2

a

2

0

·

A not simulated by B. 

A: B:



Quantitative Simulation

a

1

b
1

1

1

b

2

a
2

0

0

b

0

a
0

2

2

a

2

0

·

A not simulated by B. 

Simulation game solvable in P for max values;                  
in NP ∩ coNP for limsup, limavg, discounted values [CDH].

A: B:



Quantitative Expressiveness

ba,b

0 1

E.g. limavg automata not determinizable [CDH]:

Σ*bω expressible by a nondeterministic limavg automaton.



Quantitative Expressiveness

ba,b

0 1

E.g. limavg automata not determinizable [CDH]:

Σ*bω expressible by a nondeterministic limavg automaton.

Σ*bω not expressible by a deterministic limavg automaton.

Every b-cycle would need weight 1.
Consider wn = (abn)ω.
Then val(wn) = 1 for sufficiently large n, but wn ∉ Σ*bω.



Quantitative Closure Properties

a

0

b
0

1

1
a

1

b
1

0

0

E.g. limavg automata not closed under min [CDH]:

L1: L2:



Quantitative Closure Properties

a

0

b
0

1

1
a

1

b
1

0

0

E.g. limavg automata not closed under min [CDH]:

min(L1,L2) not expressible by a limavg automaton.

Consider wn = (anbn)ω for large n.
Some a-cycle or b-cycle would need average positive weight.
Then some word uaω or ubω would have a positive value.

L1: L2:



Outline

1 The Quantitative Verification Agenda

2 Some Basic Open Problems:                   
-Language inclusion for MDPs
-Language inclusion for weighted automata

3 Some Promising Directions



Outline

1 The Quantitative Verification Agenda

2 Some Basic Open Problems

3 Some Promising Directions:                

-Quantitative Synthesis                                
-Robust Systems



Boolean Systems Theories

Specification

Yes/No

Analysis

System



Boolean Systems Theories

Specification

Correct System

Synthesis



Boolean Systems Theories

ω−Regular 
Automaton

Correct System = 
Winning Strategy

Graph Game with 
ω−Regular Objective



Quantitative Synthesis

Optimal System

Synthesis

Quantitative 
Specification



Quantitative Synthesis

Optimal System = 
Optimal Strategy

Weighted 
Automaton

Graph Game with 
Quantitative Objective



Synthesis: From Automata to Games

Automaton states are partitioned into min and max states. 

Game: minimizer against maximizer

-in min states, minimizer chooses successor
-in max states, maximizer chooses successor

-minimizer tries to minimize value of a word
-maximizer tries to maximize value of a word

Scheduler is replaced by two strategies, one for the minimizer
and one for the maximizer:

L(w) = sup inf ...



Games for Quantitative Synthesis

1 Constrained Resources
-every weight is a resource cost (e.g. power consumption)   
-optimize peak resource use: max objective
-optimize accumulative resource use: sum objective
[Chakrabarti et al.]



2

99

5

9 5

15 19

59

A

B

C

D

E F

G H

minimizer
maximizer

Max Game



2

99

5

9 5

15 19

59

A

B

C

D

E F

G H

value = 15
minimizer
maximizer

Max Game



A
-10

99

5

9 -9

15 19

59

B

C

D

E F

G H

minimizer
maximizer

Sum Game



-10

99

5

9 -9

15 19

59

A

B

C

D

E F

G H

value = 9

Sum Game

minimizer
maximizer



-10

99

5

9 -9

15 19

59

B

C

D

E F

G H

-10

99

59

5 15

9

-9

19

A

Sum Game

minimizer
maximizer



-10

99

5

9 -9

15 19

59

B

C

D

E F

G H

99

59

5 15

9

-9

19

A
-10

Sum Game

minimizer
maximizer

C:  5 + max(0,min(59,99)) = 64



-10

99

5

9 -9

15 19

59

B

C

D

E F

G H

99

59

64 15

9

-9

19

A
-10

Sum Game

minimizer
maximizer

E:  15 + max(0,max(9,-9)) = 24



A
-10

99

5

9 -9

15 19

59

B

C

D

E F

G H

99

158

64 24

9

-9

19

-5

Sum Game

minimizer
maximizer

Iteration 1.



-10

99

5

9 -9

15 19

59

B

C

D

E F

G H

99

257

163 33

9

-9

19

9
A

Sum Game

minimizer
maximizer

Iteration 2.



-10

99

5

9 -9

15 19

59

B

C

D

E F

G H

108

356

262 42

9

0

19

9
A

Sum Game

minimizer
maximizer

Iteration 3.



-10

99

5

9 -9

15 19

59

B

C

D

E F

G H

117

464

370 51

9

0

19

9
A

Sum Game

minimizer
maximizer

Iteration 4 = fixpoint.



Games for Quantitative Synthesis

1 Constrained Resources

2 Preference between Different Implementations

-boolean spec, but certain implementations preferred
-formalized using lexicographic objectives     
[Jobstmann et al.]

h f, g1, ... gn i

boolean objective quantitative objectives



Request-Grant Limavg Automaton 1

r g

1

1

11

Following a request, all steps until the next grant are penalized.



Request-Grant Limavg Automaton 2

r g

1

1

Following a request, all repeated grants are penalized.



Outline

1 The Quantitative Verification Agenda

2 Some Basic Open Problems

3 Some Promising Directions:                

-Quantitative Synthesis
-Robust Systems



Robust Systems

1  Robustness as Mathematical Continuity:
-small input changes should cause small output changes         
-only possible in a quantitative framework

∀ ε>0. ∃ δ>0. input-change · δ ⇒ output-change · ε



In general programs are not continuous.                         
But they can less continuous:

read sensor value x;                                        
if x · c then y = f1(x)

else y = f2(x);

f1

f2

c



In general programs are not continuous.                         
But they can less continuous:

read sensor value x;                                        
if x · c then y = f1(x)

else y = f2(x);

Or more continuous:
if x · c - ε then y = f1(x);
if x ≥ c + ε then y = f2(x)

else y = (f2(c+ε)-f1(c-ε))(x-c+ε)/2ε + f1(c-ε);

[Majumdar et at., Gulwani et al.]

f1

f2

c



Robust Systems

1  Robustness as Mathematical Continuity:
-small input changes should cause small output changes           
-only possible in a quantitative framework

∀ ε>0. ∃ δ>0. input-change · δ ⇒ output-change · ε

Example of a Robustness Theorem [AHM]:
If discountedBisimilarity(A,B) > 1 - ε,                                    
then ∀w : |A(w) – B(w)| < f(ε).



Robust Systems

1  Robustness as Mathematical Continuity:
-small input changes should cause small output changes
-only possible in a quantitative framework

2 Robustness w.r.t. Faulty Assumptions:                  
-environment may violate assumptions            
-few environment mistakes should cause few system mistakes   
-ratio of system to environment mistakes as quantitative 

quality measure 
[Greimel et al.]



Conclusions

-“Quantitative” is more than “timed” and “probabilistic.”

-Weighted automata offer a natural quantitative 
specification language.

-We need to move from boolean correctness criteria to 
quantitative system preference metrics.

-We have interesting point solutions, but no convincing 
overall framework.


