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a. Probabilities

b. Resource use

-worst case vs. average case (e.g. response time, QoS)          
-peak vs. accumulative (e.g. power consumption)

c. Quality measures
-discounting vs. long-run averaging (e.g. reliability)
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Q1  Assigning Values To Behaviors: Safety

a: ok                                                            
b: fail

Discounted value (0 < d < 1):

aaaaaaaaaa... 1
aaaaaaab... 1 - d8

aab... 1 - d3

b... 0

Long-run average value:

aaaaaaaaaa... 1
abaabaaab... 1
aaabaaabaaab... 3/4
babbabbba... 0 
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Q3  Assigning Distances To Systems

x:      behaviors                                               
w:     observations (infinite words)                            
A,B:  systems                                           

A(w)        =  supx { val(x) :  obs(x) = w }                
B(w)        =  expx { val(x) : obs(x) = w }                          

diff(A,B)  =  supw { |A(w) – B(w)| }

Boolean compositionality:   if A · A’ then A||B · A’||B             
Quantitative compositionality:  diff(A||B,A’||B) · f(diff(A,A’))  [AFHMS]



Is there a Quantitative Systems Theory with  

-an appealing mathematical formulation, 
-useful expressive power, and 
-good algorithmic properties?

(Like the boolean theory of ω-regularity.)
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Language: L ⊆ Σω

L = (a+b)+(aω∪cω) ∪ (a+b)ω

abaabaaabccccc... ∈ L
abcabc... ∉ L

L: Σω → B

Boolean Language
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Q states                              
λ: Q → Σ labeling                           
q0 ∈ Q initial state
Γ choices                              
δ:  Q × Γ → Q         transition function                        

Specification = Automaton

Scheduler:  x: Q+ → Γ
S ... set of schedulers

Outcome:      f(x) = q0q1q2 ... 
where  ∀ i : qi+1 = δ(qi, x(q0...qi)) 

Language:    L = { λ(f(x)) : x ∈ S }
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Satisfaction = Language Inclusion

Given two automata A and B, is L(A) ⊆ L(B)?

i.e.  ∀ w ∈ Σω : L(A)(w) · L(B)(w)

For finite/Buechi automata, PSPACE-complete.



Word: element of Σω

Probabilistic Word: probability space on Σω

Probabilistic Language: set of probabilistic words

Probabilistic Language

w:  abΣω → 1/2
aabΣω → 1/4               
aaabΣω → 1/8                 
...
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Markov Decision Process
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Probabilistic scheduler: x: Q+ → D(Γ)  



Q states                              
λ: Q → Σ labeling                           
q0 ∈ Q initial state
Γ choices                              
δ:  Q × Γ → D(Q)         transition function                        

Markov Decision Process

a cb

0: 0.5
0: 0.5   
1: 1

0: 0.5

0,1
A:

0: 0.5   
1: 1

{0: 0.5, 1: 0.5}ω → abccc...   → 9/16
aabccc...  → 9/64           
...
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Probabilistic Language Inclusion

Given two MDPs A and B, is L(A) ⊆ L(B)?

?
Open even if specification B is deterministic (i.e. |Γ| = 1)   
and implementation scheduler required to be pure.
If both sides are deterministic, then it can be solved in polynomial 
time (equivalence of Rabin’s probabilistic automata) [Tzeng, DHR]. 



Language: L: Σω → B

Quantitative Language: L: Σω → R

Quantitative Language

L(abω) = 1/2
L(aabω) = 1/4          
L(aaabω) = 1/8                 
...
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Q states                              
λ: Q → Σ labeling                           
q0 ∈ Q initial state
Γ choices                              
δ:  Q × Γ → R × Q         transition function                        

Weighted Automaton

a cb

0; 4

1; 2

0; 0

0,1; 0
A:

1; 1

0101111...  → aababccc...; 4    
1111111...  → abccc...; 2

Value:
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Different Value Functions

Max value: val(q0v1q1v2q2...) = sup{ vi : i ≥ 1 }                   
(only 0 and 1 costs: finite automaton)

Limsup value:    val = limn→∞ sup{ vi : i ≥ n }      
(only 0 and 1 costs: Buechi automaton)

Limavg value:    val = limn→∞ 1/n · ∑1·i·n vi

Discounted:  val = ∑i≥ 1 di · vi for some  0<d<1



Weighted Automaton

a cb

0; 4

1; 2

0; 0

0,1; 0
A:

1; 1

01010101...  → aabababab...; 2    
11111111...  → abccc...; 0

Limsup value:

01010101...  → aabababab...; 1    
11111111...  → abccc...; 0

Limavg value:

01010101...  → aabababab...; 2.66...    
11111111...  → abccc...; 1.25

Discounted:       
(d = 0.5)
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Quantitative Language Inclusion

Given two weighted automata A and B, is               
∀ w ∈ Σω : L(A)(w) · L(B)(w) ?

For max and limsup values: PSPACE.
For limavg and discounted values: Open.
If specification B is deterministic,                       
then it can be solved in polynomial time [CDH].
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A not simulated by B. 

Simulation game solvable in P for max values;                  
in NP ∩ coNP for limsup, limavg, discounted values [CDH].

A: B:
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Quantitative Expressiveness

ba,b

0 1

E.g. limavg automata not determinizable [CDH]:

Σ*bω expressible by a nondeterministic limavg automaton.

Σ*bω not expressible by a deterministic limavg automaton.

Every b-cycle would need weight 1.
Consider wn = (abn)ω.
Then val(wn) = 1 for sufficiently large n, but wn ∉ Σ*bω.
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Quantitative Closure Properties

a

0

b
0

1

1
a

1

b
1

0

0

E.g. limavg automata not closed under min [CDH]:

min(L1,L2) not expressible by a limavg automaton.

Consider wn = (anbn)ω for large n.
Some a-cycle or b-cycle would need average positive weight.
Then some word uaω or ubω would have a positive value.

L1: L2:
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-Robust Systems
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Boolean Systems Theories

ω−Regular 
Automaton

Correct System = 
Winning Strategy

Graph Game with 
ω−Regular Objective
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Quantitative Synthesis

Optimal System = 
Optimal Strategy

Weighted 
Automaton

Graph Game with 
Quantitative Objective



Synthesis: From Automata to Games

Automaton states are partitioned into min and max states. 

Game: minimizer against maximizer

-in min states, minimizer chooses successor
-in max states, maximizer chooses successor

-minimizer tries to minimize value of a word
-maximizer tries to maximize value of a word

Scheduler is replaced by two strategies, one for the minimizer
and one for the maximizer:

L(w) = sup inf ...



Games for Quantitative Synthesis

1 Constrained Resources
-every weight is a resource cost (e.g. power consumption)   
-optimize peak resource use: max objective
-optimize accumulative resource use: sum objective
[Chakrabarti et al.]



2

99

5

9 5

15 19

59

A

B

C

D

E F

G H

minimizer
maximizer

Max Game



2

99

5

9 5

15 19

59

A

B

C

D

E F

G H

value = 15
minimizer
maximizer

Max Game



A
-10

99

5

9 -9

15 19

59

B

C

D

E F

G H

minimizer
maximizer

Sum Game



-10

99

5

9 -9

15 19

59

A

B

C

D

E F

G H

value = 9

Sum Game

minimizer
maximizer



-10

99

5

9 -9

15 19

59

B

C

D

E F

G H

-10

99

59

5 15

9

-9

19

A

Sum Game

minimizer
maximizer



-10

99

5

9 -9

15 19

59

B

C

D

E F

G H

99

59

5 15

9

-9

19

A
-10

Sum Game

minimizer
maximizer

C:  5 + max(0,min(59,99)) = 64



-10

99

5

9 -9

15 19

59

B

C

D

E F

G H

99

59

64 15

9

-9

19

A
-10

Sum Game

minimizer
maximizer

E:  15 + max(0,max(9,-9)) = 24
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Games for Quantitative Synthesis

1 Constrained Resources

2 Preference between Different Implementations

-boolean spec, but certain implementations preferred
-formalized using lexicographic objectives     
[Jobstmann et al.]

h f, g1, ... gn i

boolean objective quantitative objectives
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Robust Systems

1  Robustness as Mathematical Continuity:
-small input changes should cause small output changes         
-only possible in a quantitative framework

∀ ε>0. ∃ δ>0. input-change · δ ⇒ output-change · ε
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In general programs are not continuous.                         
But they can less continuous:

read sensor value x;                                        
if x · c then y = f1(x)

else y = f2(x);

Or more continuous:
if x · c - ε then y = f1(x);
if x ≥ c + ε then y = f2(x)

else y = (f2(c+ε)-f1(c-ε))(x-c+ε)/2ε + f1(c-ε);

[Majumdar et at., Gulwani et al.]

f1

f2

c



Robust Systems

1  Robustness as Mathematical Continuity:
-small input changes should cause small output changes           
-only possible in a quantitative framework

∀ ε>0. ∃ δ>0. input-change · δ ⇒ output-change · ε

Example of a Robustness Theorem [AHM]:
If discountedBisimilarity(A,B) > 1 - ε,                                    
then ∀w : |A(w) – B(w)| < f(ε).



Robust Systems

1  Robustness as Mathematical Continuity:
-small input changes should cause small output changes
-only possible in a quantitative framework

2 Robustness w.r.t. Faulty Assumptions:                  
-environment may violate assumptions            
-few environment mistakes should cause few system mistakes   
-ratio of system to environment mistakes as quantitative 

quality measure 
[Greimel et al.]



Conclusions

-“Quantitative” is more than “timed” and “probabilistic.”

-Weighted automata offer a natural quantitative 
specification language.

-We need to move from boolean correctness criteria to 
quantitative system preference metrics.

-We have interesting point solutions, but no convincing 
overall framework.


