Generating Models of
Black-Box Components
using Abstraction

Bengt Jonsson
Uppsala University
Joint work with

Fides Aarts!, Falk Howar?, Bernhard Steffen?,
Johan Uijen!

1: Radboud University, Nijmegen
2: TU Dortmund

Modeling in (Component-Based) Design
and Verification

Models are cornerstone of system development
* Model Driven Development
* Model Based Testing

- tests generated as (abstract) executions
- Tools: Qtronic, TGV, GOTCHA, TorX, ...

* Model Checking

- Models of software, and of environment

Modeling Gap

Typically, models are not available

“Modeling SUT [system under test] is among
biggest obstacles in Model Based Testing”
[Hartmanis]

What to do if there is no model?
(the norm in practice)

How to support generation of models?

Model Behavior of existing implementation
- By observations gained during extensive testing
(Source code analysis: sometimes not feasible)

Potential Applications:

- Regression testing

- Migrating from manual to model-based testing

- Modeling environment of SUT, libraries

- Verifying properties (Black Box Checking [Peled, Yannakakis])

Other use of such techniques
- For requirements capture
- "Programming by Scenarios” (PlayIn-PlayOut) [Harel etal]

Model Generation by Inference

General Scheme:

Given a set of instances:
- Traces, Message charts, System states

Produce a "simplest” specification which is consistent with these
Instances.

Applications:
Behavioral Models from Behaviors
Requirement Specifications from Scenarios
Invariants from Sets of reachable/unreachable states

Outline

* Principles of Regular inference (automata learning)
Extension to include data manipulation in protocols
Abstraction techniques

Experiments on communication protocols

Further thoughts and future work

Regular Inference (Automata Learning)

Construct Regular Language (as a DFA) from sample of
accepted and rejected words.

Developed since 1970's, . Applications in, e.qg.,
- Natural Language Processing,
- Testing/Verification (more recently),

Regular Inference (Automata Learning)

Construct Regular Language (as a DFA) from sample of
accepted and rejected words.

Developed since 1970's. Applications in, e.g.,

- Natural Language Processing,

- Testing/Verification (more recently),
off-line inference:

- sample of words fixed a priori.

- Problem is to construct "good enough” DFA.

- Constructing minimal DFA is NP-complete [6oid 78]
on-line inference:

- words chosen dynamically, on the basis of previous information.

- Easier to construct "good enough”/minimal DFA by extending
sample with “interesting” words

- Most well known algorithm: L* [Angluin 87]

Setup for inferring A

Membership query:
is w accepted or rejected?

Teacher

is accepted/rejected
Learner

Yes/counterexample v

Oracle

Equivalence query:
is H equivalent o A ?

Mealy Machines

‘Finite State Machines w. input & output
I input symbols input

O output symbols @ outpbut
S states /FJ

0:Sx I —>S transition function

L Sx I — O output function

*Often used for protocol modeling, for
protocol testing techniques,

Assumptions:
-Deterministic

‘Completely specified

Regular inference

-System viewed as Black box

‘Membership query:
-Supply input, observe output
‘Record and Collect traces

-Construct protocol model

inpuT

a/O

a/0a/1b/1b/0a/0
a/0 b/0 a/0 b/0
b/1a/0 b/0 b/0 a/0
b/1b/0a/0 b/0

ouT ut

b/O

Contructing Model from Traces

a/0 a/1b/1 -Organize traces into tree
a/0 b/0 a/0 o)
b/1a/0 b/0 -Identify “equivalent” nodes
b/1b/0 a/0
a/ y
/\ N\

Contructing Model from Traces

a/0a/1b/1
a/0 b/0 a/0
b/1a/0b/0
b/1b/0 a/0

‘Organize traces into tree
-Identify “equivalent” nodes

‘Merge nodes
‘Form automaton i

S
L TARY

Which model?

*Many ways to identify nodes

‘Finding “smallest" model is
NP—compleTe [6old78]

*Allow to ask for more
information to get more traces

Which model?

*Many ways to identify nodes

‘Finding “smallest" model is
NP-complete cold74]

*Allow to ask for more
information to get more traces

a/0

Which model?

*Many ways to identify nodes

‘Finding “smallest" model is
NP-complete cold74]

-Allow to ask for more

information to get more traces

‘Resolves ambiguities

-Constructing “smallest” model

becomes simple [anglin 871

a/0 b/1

Algorithms for On-Line Inference

Exist several variations, most well-known: L*anguins7;
Traces divided into prefix-suffix,
Organized into Observation Table

o %
: Y
T AN PR

ba
bb 0|0

0
a 1
0

Prefixes

output

What about Protocols w. Data?

SIP Protocol (part of Server)

Variables: From, Curld, CurSegq
Constants: Me
INVITE(from,to,cid,cseq) [to == Me}/

From = from . Curld = cid; CurSegq = cseq,
100(From,to,CurId,CurSeq)

PRACK(from, to, cid, cseq) [from == From
/\ to == Me /\ cid == Curld
/\ cseq == CurSeg+1] / 200

om,to,Curld CurSeg+l)

ACK(from,to,cid,cseq) [from == From
/\ to == Me /\ cid == Curld
/\ cseqg == CurSeq] / €

Adapting to Automata Learning

Learner

INVITE(new, new)

Transduce

&

~
rd

auxiliary
variables:
curld = ..

100(current, next)

curSeq = ..

|, INVITE(SS5S, 1)

N

~

100(558, 1)

SIP
(SUT)

Mapping parameters of input messages

new current other
cid CurId == “undef” = CurId I= CurId

new current next other
cseq CurSeq == "undef” == CurSeq == CurSeq+1 <other>

Maintaining auxiliary variables

new current other
Curld = cid <unchanged> <unchanged>
new current next other

CurSeq = cseq <unchanged> <unchanged> <unchanged>

Inference by Abstraction

Learner

INVITE(new, new)

Transduce

&

~
rd

auxiliary
variables:

100(current, next)

Curld = 558
CurSeg = 1

|, INVITE(SS5S, 1)

N

~

100(558, 1)

SIP
(SUT)

Learner

Abstraction Mappings

Input-abstr

4

N

curid = und{f\

100(current, nexf»\

CurSeq = unde
\/ﬁ* 100(558, 1)

SIP
(SUT)

Learner

INVITE(new, new)

Abstraction Mappings

A 4

auxiliary

- 1

curld = 5

-C'urSeq =

Transduce

58
1

| INVITE(558, 1)

N

100(558, 1)

Output-abstr

SIP
(SUT)

Model inferred by Learner (part)

INVITE(nmew new)/200(current,current)

PRACK(current,next)/200(current,next)

ACK(current,current)/ &

What the SUT must have done:

Variables: Curld, CurSeg

INVITE(cid,cseqg) [Curld == CurSeq == undef]/
curld = cid; CurSeg = csegq,
100(CurId CurSeq)

PRACK(cid,cseqg) [cid == CurId
/\ cseg == CurSeg+1] / 200(Curld CurSegs-

ACK(cid,cseq) [cid == CurId
/\ cseq == CurSeq] / €

Healthiness condition:

Sufficiently Distinguishing input abstraction

Learner

N

Transduce

auxiliary
variables:
curld = undqf

ra—

CurSeg = undef

SIP
(SUT)

Learner

INVITE(new, new)

Healthiness condition:

Sufficiently Distinguishing input abstraction

Transduce

| INVITE(558,1)

variables:
curid = xxx

Curdeq = 1

N

INVITE(413,1)

SIP
(SUT)

Healthiness condition:

Learner INVITE(new, new) Transducet INVITE(SS8, 1) SIP

INVITE(413 1) (SUT)
"
/ variables:

T~ |CurId = xxx
CurSeq = 1

N

This does NOT guarantee that Learner will infer Finite Machine

Experiments

* Learner: the LearnLib tool (developed at TU Dortmund)

- Efficient implementation of L*
- Several equivalence oracles, e.g., controllable-size random test suite.

+ SUT: ns-2 protocol simulator
- Provides implementations of many standard protocols
- Rather convenient C++ interface (no packet analyzer necessary)

- Transducer
- Bridges asynchronous interface of LearnLib w. synchronous
interface of ns-2
- Implements instantiation of input symbols, and abstraction of
output symbols

Session Initiation Protocol (SIP)

- Creating and Managing Multimedia protocol sessions
+ SUT is ns-2 implementation of SIP Server

» Input messages have 7 parameters

- Each parameter abstracted to 2 or 3 values

* Inference: about 2 million membership queries

- Model w. 7 states and 41 transitions

SIP

Model of behavior of SIP in ns-2

SIP in ns-2 seems hot to distinguish connected and
unconnected state

Transport Control Protocol (TCP)

* Only connection establishment and termination
+ SUT is ns-2 implementation of TCP

- Consider 2 sequence humber parameters

- Each parameter abstracted to 2 or 3 values

- Model w. 33 states and 203 transitions

TCP

- Model of behavior of TCP in ns-2

* Only transitions with "accepted” values of input
parameters are shown.

* Values of parameters not displayed

N + AC EYN +ACK e T s I = |
’ e i ACKEN S¥YN + ACK Jc
4 - i —_—
ACK fc i e FI N + ACK fAC e \ = o~ .
. [—— Py e P —— cf/FIN + AC g i 1
SYN/SYN +ACK /oS, — —e voraLe o /
M FIN + ACK/ACK e - A L A e L T— -.(@\
fACK SY N + 4 - —

3w
\CK = L

Conditions for Success:

INVITE(SSS, 1)

SUT

~

predicates, .
cseq == Curs
49 AN /EEN 4172
100(256, 1

Finite

Auxiliary
Variables:

Curld, CurSegq

5, e.g.,

Conditions for Success:

'\(\Qo.
edicates, &.q.
cseq == Curs

. Auxiliary

<« ’ Variables:
Curld, CurSegq

Conditions for Success:

INVITE(cid cseg)

Tr

ansducer

[Curld == CurSeq == undlef],

predicates, ¢
cseq == X

— |

100(CurIid curSeq)

\
?.9.,</::§‘/0ﬂ.)

INVITE(558,1)

N

L—]

Auxiliary
Variables:
X y.z

SUT

Finite
control

: e.g. predicates, €., jons, e.q.,
cseqg == Curleq Curgeg 4 1
Auxiliary
100(558, 1
(528, 1) Variables:

Curld, CurSegq

If auxiliary variables in Transducer are more expressive than in SUT
i.e., all predicates and functions can be imitated,
Then finite control of Transducer can be a finite Mealy machine

How find appropriate auxiliary variables, predicates, and functions?

Towards Automated Algorithm

* Infer input alphabet by successive refinement
+ Library of commonly occurring alphabets,

* Adapt regular inference algorithm to
dynamically changing alphabet

Timed Automata

Based on standard automata
Clocks give upper and lower

bounds on distance in time 9

between occurrences of

symbols.

Temporal properties of Timed put ; get ;
Automata (reachability, LTL, ..) x<2/ %310/
can be model-checked x:=0 x = 0

Implemented in tools
(UPPAAL, IF/Kronos)

Inference of Event-Recording
Automata [w. Olga Grinchtein]

Timed Automata can not be
determinized in general

Event-Recording Automata (ERA): Q
Each clock associated with
particular symbol.

ERA can be determinized put ; get ;
Assumption: Xget < 2 Xour 2 10

Inference algorithm can precisely
control and record timing of
symbols.

Inference of ERAs

Problems:
Determine guards

Can be seen as inferring the input 6
alphabet

Done by refinement from

observations of hondeterminism put: get ;

Xget < 2 X .>10

put

Refinement of guards

Start from untimed alphabet

Guards refined from nondeterminism
get @0 put @2 accepted
get @3 put @7 rejected

Determine the reason for difference by
investigating other traces put ;

(binary) search procedure
Finds “explaining pair”, e.qg.,
- get @2 put @4 accepted
- get @2 put @45 rejected

get ;

Refinement of guards

Start from untimed alphabet

Guards refined from nondeterminism
get @0 put @2 accepted @
get @3 put @7 rejected

Determine the reason for difference by
investigating other traces put . get :

Xoet < 2 N
(binary) search procedure ! Xpur 2 10
Finds “explaining pair”, e.qg.,

- get @2 put @4 accepted

- get @2 put @45 rejected
Suggests guard x.; < 2 on put transition

Conclusions

State machine models of communication

protocols can be inferred

- Using a priori knowledge about primitives for data
manipulation

The primitives can be inferred, given constraints

oh their form

Future work

» Library of common data structures
Automatic generation of transducers

Automated inference of input and output
symbols

Adapted Learning algorithm and implementation
* Incorporating hondeterminism

Systematic coverage of possible concretizations

of abstract symbols (= test input selection)

