
Generating Models ofGenerating Models of
Black-Box Componentsp

using Abstraction

Bengt Jonssong
Uppsala University

Joint work with
Fides Aarts1, Falk Howar2, Bernhard Steffen2,

Johan Uijen1

1: Radboud University Nijmegen1: Radboud University, Nijmegen
2: TU Dortmund

Modeling in (Component-Based) DesignModeling in (Component-Based) Design
and Verification

Models are cornerstone of system development
• Model Driven Developmentp
• Model Based Testing

– tests generated as (abstract) executions
T l Qt i TGV GOTCHA T X– Tools: Qtronic,TGV, GOTCHA, TorX, …

• Model Checking
– Models of software and of environmentModels of software, and of environment

Modeling Gap

• Typically, models are not available

• ”Modeling SUT [system under test] is among
biggest obstacles in Model Based Testing”
[Hartmanis][Hartmanis]

Wh t t d if th is d l?What to do if there is no model?
(the norm in practice)

How to support generation of models?

• Model Behavior of existing implementation
– By observations gained during extensive testing

(d l i i f ibl)(Source code analysis: sometimes not feasible)
• Potential Applications:

R ssi n t stin– Regression testing
– Migrating from manual to model-based testing
– Modeling environment of SUT, librariesModeling environment of SUT, libraries
– Verifying properties (Black Box Checking [Peled, Yannakakis])

• Other use of such techniquesq
– For requirements capture
– “Programming by Scenarios” (PlayIn-PlayOut) [Harel etal]

Model Generation by Inference

General Scheme:
• Given a set of instances:

– Traces, Message charts, System states
• Produce a “simplest” specification which is consistent with these

instances.
Applications:
• Behavioral Models from Behaviors
• Requirement Specifications from Scenarios
• Invariants from Sets of reachable/unreachable states• Invariants from Sets of reachable/unreachable states

Outline
Principl s f R ul r inf r nc (ut m t l rnin)• Principles of Regular inference (automata learning)

• Extension to include data manipulation in protocols• Extension to include data manipulation in protocols

• Abstraction techniquesAbstraction techniques

• Experiments on communication protocolsExper ments on commun cat on protocols

• Further thoughts and future workg

Regular Inference (Automata Learning)

• Construct Regular Language (as a DFA) from sample of
accepted and rejected words.

• Developed since 1970’s, . Applications in, e.g.,p , pp , g ,
– Natural Language Processing,
– Testing/Verification (more recently),

Regular Inference (Automata Learning)

• Construct Regular Language (as a DFA) from sample of
accepted and rejected words.

• Developed since 1970’s. Applications in, e.g.,p pp , g ,
– Natural Language Processing,
– Testing/Verification (more recently),

• off-line inference:off line inference:
– sample of words fixed a priori.
– Problem is to construct “good enough” DFA.

Constructing minimal DFA is NP complete [G ld 78]– Constructing minimal DFA is NP-complete [Gold 78]

• on-line inference:
– words chosen dynamically, on the basis of previous information.
– Easier to construct “good enough”/minimal DFA by extending

sample with “interesting” words
– Most well known algorithm: L* [Angluin 87]

Setup for inferring A

Teacher

Membership query:
is w accepted or rejected?

Teacher

is cc pt d/ j ct d
Learner

w is accepted/rejected

Yes/counterexample v

Oracle

E i lEquivalence query:
is H equivalent to A ?

Mealy Machines

input

•Finite State Machines w. input & output

I input symbols

s0

a/1

output O output symbols

S states

δ S I S t iti f ti b/1

b/0 b/0

a/0
δ: S х I → S transition function

λ: S х I → O output function

•Often used for protocol modeling, for

s2
s1

b/0

a/0

b/0f f p m g, f
protocol testing techniques,

Assumptions:

D t mi i ti a/0•Deterministic

•Completely specified

Regular inference
i t

s0

a/1

input

output •System viewed as Black box

•Membership query:
b/1

b/0 b/0

a/0

a/1p q y
•Supply input, observe output

•Record and Collect traces

s2
s1

b/0

a/0

b/0•Construct protocol model

a 1 a/0 a/1 b/1 b/0 a/0
a/0 b/0 a/0 b/0
b/1 a/0 b/0 b/0 a/0
b/1 b/0 a/0 b/0

Contructing Model from Traces

a/0 a/1 b/1
a/0 b/0 a/0
b/1 a/0 b/0

•Organize traces into tree

•Identify ”equivalent” nodes

b/1 b/0 a/0

a/0 b/1

a/1 b/0 a/0 b/0a/1

b/1 a/0

b/0 a/0 b/0

a/0b/0

Contructing Model from Traces

•Organize traces into tree

•Identify ”equivalent” nodes

a/0 a/1 b/1
a/0 b/0 a/0
b/1 a/0 b/0

•Merge nodes

•Form automaton

b/1 b/0 a/0

a/0 b/1

a/1 b/0 a/0 b/0

b/1
a/0

a/1
a/1

b/1 a/0

b/0 a/0 b/0

a/0b/0

b/0

/

b/0

a/0

Which model?
•Many ways to identify nodesMany ways to identify nodes

•Finding ”smallest” model is
NP-complete [Gold78]

•Allow to ask for more
information to get more traces

a/0 b/1

a/1 b/0 a/0 b/0
?

a/1

b/1 a/0

b/0 a/0 b/0

a/0b/0
b/0

Which model?
•Many ways to identify nodesMany ways to identify nodes

•Finding ”smallest” model is
NP-complete [Gold74]

•Allow to ask for more
information to get more traces

a/0 b/1

a/1 b/0 a/0 b/0a/1

b/1 a/0

b/0 a/0 b/0

a/0b/0
b/0

Which model?
•Many ways to identify nodesMany ways to identify nodes

•Finding ”smallest” model is
NP-complete [Gold74]

•Allow to ask for more
information to get more traces

•Resolves ambiguities a/0 b/1

a/1 b/0 a/0 b/0

•Resolves ambiguities

•Constructing ”smallest” model
becomes simple [Angluin 87]

a/1

b/1 a/0

b/0 a/0 b/0

a/0b/0
b/0

Algorithms for On-Line Inference

• Exist several variations, most well-known: L*[Angluin 87]

• Traces divided into prefix-suffix,
O i d i t Ob ti T bl• Organized into Observation Table

Suffixes
a/0 b/1

a/1 b/0 a/0 b/0

a b
ε 0 1

1 0 a/1

b/1 a/0

b/0 a/0 b/0

a/0b/0

a 1 0
b 0 0
aa 1fi

xe
s

b/0
aa 1
ab 0
ba 0

Pr
ef

output
bb 0 0

output

What about Protocols w Data?What about Protocols w. Data?

SIP Protocol (part of Server)
Variables: From, CurId, CurSeq
C t t M

s0

INVITE(from,to,cid,cseq) [to == Me]/
From = from ; CurId = cid ; CurSeq = cseq;

100(From,to,CurId,CurSeq)

Constants: Me

0

s1

100(From,to,CurId,CurSeq)

PRACK(from to cid cseq) [from == FromPRACK(from,to,cid,cseq) [from == From
/\ to == Me /\ cid == CurId
/\ cseq == CurSeq+1] / 200(From,to,CurId,CurSeq+1)

s2

ACK(from to cid cseq) [from == From

s3

ACK(from,to,cid,cseq) [from From
/\ to == Me /\ cid == CurId
/\ cseq == CurSeq] / ε

Adapting to Automata Learning

Learner Transducer SIP
(SUT)

INVITE(new,new) INVITE(558,1)

auxiliary
variables:
C Id

(SUT)

CurId = …
CurSeq = … 100(558,1)100(current,next)

M i t f i tMapping parameters of input messages

new current other
cid CurId == “undef” = CurId != CurId

new current next other
cseq CurSeq == “undef” == CurSeq == CurSeq+1 <other>cseq urSeq undef urSeq urSeq other

Maintaining auxiliary variablesg y
new current other

CurId = cid <unchanged> <unchanged>CurId = cid <unchanged> <unchanged>

new current next other
CurSeq = cseq <unchanged> <unchanged> <unchanged>

Inference by Abstraction

Learner Transducer SIP
(SUT)

INVITE(new,new) INVITE(558,1)

auxiliary
variables:
C Id 558

(SUT)

CurId = 558
CurSeq = 1 100(558,1)100(current,next)

Abstraction Mappings

Input-abstr

Learner Transducer SIP
(SUT)

INVITE(new,new) INVITE(558,1)

auxiliary
variables:
C Id d f

(SUT)

CurId = undef
CurSeq = undef 100(558,1)100(current,next)

Abstraction Mappings

Learner Transducer SIP
(SUT)

INVITE(new,new) INVITE(558,1)

auxiliary
variables:
C Id 558

(SUT)

CurId = 558
CurSeq = 1 100(558,1)100(current,next)

Output-abstrp

Model inferred by Learner (part)

s0 INVITE(new new)/200(current current)0

s1

INVITE(new,new)/200(current,current)

PRACK(current,next)/200(current,next)

s2

ACK(current current)/ ε

s3

ACK(current,current)/ ε

What the SUT must have done:
Variables: CurId, CurSeq

s0

INVITE(cid,cseq) [CurId == CurSeq == undef]/
CurId = cid ; CurSeq = cseq;

100(CurId,CurSeq)0

s1

100(CurId,CurSeq)

PRACK(cid cseq) [cid == CurIdPRACK(cid,cseq) [cid CurId
/\ cseq == CurSeq+1] / 200(CurId,CurSeq+1)

s2

ACK(cid cseq) [cid == CurId

s3

ACK(cid,cseq) [cid CurId
/\ cseq == CurSeq] / ε

H lthi ditiHealthiness condition:
Sufficiently Distinguishing input abstraction

Learner Transducer SIP
(SUT)

INVITE(new,new) INVITE(558,1)

INVITE(413,1)

auxiliary
variables:
C Id d f

(SUT)

CurId = undef
CurSeq = undef

H lthi ditiHealthiness condition:
Sufficiently Distinguishing input abstraction

Learner Transducer SIP
(SUT)

INVITE(new,new) INVITE(558,1)

INVITE(413,1)

auxiliary
variables:
C Id

(SUT)

100(558 1)CurId = xxx
CurSeq = 1

100(558,1)
100(current,next) 100(413,1)

H lthi ditiHealthiness condition:

Learner Transducer SIP
(SUT)

INVITE(new,new) INVITE(558,1)

INVITE(413,1)

auxiliary
variables:
C Id

(SUT)

100(558 1)CurId = xxx
CurSeq = 1

100(558,1)
100(current,next) 100(413,1)

Thi d NOT t th t L ill i f Fi it M hiThis does NOT guarantee that Learner will infer Finite Machine

Experiments

• Learner: the LearnLib tool (developed at TU Dortmund)
– Efficient implementation of L*

S v r l quiv l nc r cl s c ntr ll bl siz r nd m t st suit– Several equivalence oracles, e.g., controllable-size random test suite.

• SUT: ns-2 protocol simulator
– Provides implementations of many standard protocolsProvides implementations of many standard protocols
– Rather convenient C++ interface (no packet analyzer necessary)

• Transducerrans uc r
– Bridges asynchronous interface of LearnLib w. synchronous

interface of ns-2
I l i i i f i b l d b i f– Implements instantiation of input symbols, and abstraction of
output symbols

Session Initiation Protocol (SIP)

• Creating and Managing Multimedia protocol sessions
• SUT is ns-2 implementation of SIP Server
• Input messages have 7 parameters
• Each parameter abstracted to 2 or 3 values
• Inference: about 2 million membership queries
• Model w. 7 states and 41 transitions

SIP

• Model of behavior of SIP in ns-2
• SIP in ns-2 seems not to distinguish connected and

unconnected stateunconnected state

Transport Control Protocol (TCP)

• Only connection establishment and termination
• SUT is ns-2 implementation of TCP
• Consider 2 sequence number parameters
• Each parameter abstracted to 2 or 3 values
• Model w. 33 states and 203 transitions

TCP

• Model of behavior of TCP in ns-2
• Only transitions with “accepted” values of input

parameters are shownparameters are shown.
• Values of parameters not displayed

C diti f SConditions for Success:

SUT
INVITE(558 1)INVITE(558,1)

Finite
control

predicates e g

100(558 1) Auxiliary

predicates, e.g.,
cseq == CurSeq

functions, e.g.,
CurSeq + 1

100(558,1) y
Variables:
CurId, CurSeq

C diti f SConditions for Success:

SUT
INVITE(558 1)INVITE(558,1)

Mealy
machine

predicates e g

100(558 1) Auxiliary

predicates, e.g.,
cseq == CurSeq

functions, e.g.,
CurSeq + 1

100(558,1) y
Variables:
CurId, CurSeq

C diti f SConditions for Success:
SUTTransducer SUT

INVITE(558,1)
Finite
control

Transducer
INVITE(cid,cseq)
[CurId == CurSeq == undef] ????

control
predicates, e.g.,
cseq == CurSeq

functions, e.g.,
CurSeq + 1

predicates, e.g.,
cseq == x

functions, e.g.,
x + 2

100(558,1) Auxiliary
Variables:
CurId, CurSeq100(CurId,CurSeq)

Auxiliary
Variables:
x,y,z

If auxiliary variables in Transducer are more expressive than in SUT
i.e., all predicates and functions can be imitated,

Then finite control of Transducer can be a finite Mealy machine

How find appropriate auxiliary variables, predicates, and functions?

Towards Automated Algorithm

• Infer input alphabet by successive refinement
• Library of commonly occurring alphabets,
• Adapt regular inference algorithm to

dynamically changing alphabet

Timed Automata
• Based on standard automata
• Clocks give upper and lower

bounds on distance in time sbounds on distance in time
between occurrences of
symbols.
T mp l p p ti s f Tim d

s0

t• Temporal properties of Timed
Automata (reachability, LTL, …)
can be model-checked

get ;
x ≥ 10 /
x := 0

put ;
x ≤ 2 /
x := 0

• Implemented in tools
(UPPAAL, IF/Kronos) s1

Inference of Event-RecordingInference of Event-Recording
Automata [w. Olga Grinchtein]

• Timed Automata can not be
determinized in general

• Event-Recording Automata (ERA): sEvent Recording Automata (ERA)
Each clock associated with
particular symbol.
ERA n b d t mini d

s0

t• ERA can be determinized
Assumption:

Inference algorithm can precisely

get ;
xput ≥ 10

put ;
xget ≤ 2

g p y
control and record timing of
symbols. s1

Inference of ERAs
Problems:
• Determine guards
• Can be seen as inferring the input s• Can be seen as inferring the input

alphabet
• Done by refinement from

b f d

s0

put ;observations of nondeterminism get ;
xput ≥ 10

put ;
xget ≤ 2

s1

Refinement of guards
Start from untimed alphabet
Guards refined from nondeterminism
• get @0 put @2 accepted• get @0 put @2 accepted
• get @3 put @7 rejected
Determine the reason for difference by

s0

y
investigating other traces

• (binary) search procedure
Finds ”explainin pair” e

get ;put ;

• Finds ”explaining pair”, e.g.,
– get @2 put @4 accepted
– get @2 put @4.5 rejected

s1

Refinement of guards
Start from untimed alphabet
Guards refined from nondeterminism
• get @0 put @2 accepted• get @0 put @2 accepted
• get @3 put @7 rejected
Determine the reason for difference by

s0

y
investigating other traces

• (binary) search procedure
Finds ”explainin pair” e

get ;
xput ≥ 10

put ;
xget ≤ 2

• Finds ”explaining pair”, e.g.,
– get @2 put @4 accepted
– get @2 put @4.5 rejected

s1
p j

• Suggests guard xget ≤ 2 on put transition

Conclusions
• State machine models of communicationState machine models of communication

protocols can be inferred
– Using a priori knowledge about primitives for data g p g p

manipulation
• The primitives can be inferred, given constraints

th i fon their form

Future work
• Library of common data structuresLibrary of common data structures
• Automatic generation of transducers
• Automated inference of input and outputAutomated inference of input and output

symbols
• Adapted Learning algorithm and implementationAdapted Learning algorithm and implementation
• Incorporating nondeterminism
• Systematic coverage of possible concretizationsSystematic coverage of possible concretizations

of abstract symbols (= test input selection)

