Correct-by-construction

Distributed Implementations for
BIP

WECD 09
Grenoble, October 11, 2009

Joseph Sifakis
VERIMAG Laboratory

in collaboration with
A. Basu, S. Bensalem, B. Bonakdarpour, M. Bozga, M. Jaber

o System Design Flow

Programming Model
Application SW

‘_I

SW model in BIP

—

— Translator

} Productivity

!

CFunC’Jt[ionéﬂ { D-Finder DOL }Performance
orrectness
t . System model in BIP —
| |
Efficiency/ ' '
Correctness { SourcefSource Corripner
Distributed
BIP C++ Code
} BIP Engine/Linux
Correctness { Code Generator o _ B
! Simulation/ Model Checking
Deployed SW

Multicore Platform

a

d

System Design Flow — Methodology

Use BIP as a unifying semantic model for the various programming
models e.g. synchronous, data flow, event driven

Constructivity results - rules for inferring global properties from
properties of constituent components

Generate from a model of the application software and a model of the
target platform, an implementation by using a set of correct-by-
construction model transformations

= preserving functional properties

» taking into account extra-functional requirements

Types of transformations studied:
= From BIP to distributed BIP (BIP using asynchronous message
passing only)
= Architecture transformations
= From BIP (message passing) models to shared memory models
e.g. shared/private memory transformations
» Integrating architecture constraints, e.g. HW/SW partitioning and

mapping

-
[BIP — Global state model
A Distributed centralized implementation
[Decentralized implementations

O Architecture transformations

Discussion

SsSsm—<am<O

@ BIP — Basic Concepts

Layered component model

Priorities (conflict resolution)

Interactions (collaboration)

B E H A V 1 O R
Composition operation parameterized by glue IN12, PR12

PR12

IN12

.:>

gh . BIP — Basic Concepts

Priorities: &

Interactions: sr1r2r3

Sender Receiver1 Receiver2 Receiver3

Rendezvous

gh . BIP — Basic Concepts

Priorities: xnxy for x,xyElnteractions

Interactions: s + sr1 + sr2 + sr3 + sr1r2 + sr2r3 + sr1r3 + sr1r2r3

Sender Receiver1 Receiver2 Receiver3

Broadcast

gh . BIP — Basic Concepts

Priorities: xmxy for x,xy&Elnteractions

Interactions: s + sr1r2r3

Sender Receiver1 Receiver2 Receiver3

Atomic Broadcast

gh . BIP — Basic Concepts

Priorities: xmxy for x,xy&Elnteractions

Interactions: s + sr1 + sr1r2 + sr1r2r3

Sender Receiver1 Receiver2 Receiver3

Causal Chain

BIP — Basic Concepts: Semantics

= a set of atomic components {B,}._, |,
where B, =(Q, 2, —)

* a set of interactions y

>y (B,,., B)

= priorities 7C y X(® Q;) Xy

Interactions acy Vig[1,n] q;-anNP,—;q’;
(9,.,q9,)-a ey(qy ,»q’,) where q’,=q,if aNP=0

Priorities q-a—, qg° - (dqg- bey A a g b)
g-a—,q

BIP — The execution Engine

Execution of atomic components

notly Mgﬂt

Iau ch

stable
execute ¢

choose

Execution of the Engine

-
[BIP — Global state model
A Distributed centralized implementation
[Decentralized implementations

O Architecture transformations

Discussion

SsSsm—<am<O

12

g Distributed Implementation

BIP is based on:

0 Global state semantics, defined by operational semantics rules,
iImplemented by the Engine

1 Atomic multiparty interactions, e.g. by rendezvous or broadcast

Translate BIP models into distributed models

[Collection of independent components intrinsically concurrent - No
global state

O Separate interaction from internal computation of components

1 Point to point communication by asynchronous message passing

O Correctness by construction that is, the initial BIP model is
observationally equivalent to the implementation

Approach: BIP = Partial state BIP = Distributed BIP

Centralized Distributed Implementation — The Principle

Priorities: 7
Interactions:
B1 BZ Bn
T >
% Priorities: 7t +
9 Interactions:
Global State B,f | Byt B!
T x>
Engine+QOracle
? Partial State

l

Distributed

TR

1 2 Bn

Distributed Implementation — Global vs. Partial State Models

Interactions: Interactions: y +
a b c d a b c d
SRl SAISR{SH {00100 You:1 109
a,f, b,f,, c,f, d,fy a fa b fh ¢ fe fq
(a) Global State Model (b) Partial State Model

Broadcast y = a+ab+ac+ad+abc+abd+acd+abcd, with

maximal progress.
(a): only abcd is possible.
(b): arbitrary desynchronization may occur.

Rendezvous 'y = ab+bc+cd and priority abstbc, cdmbc .

(a): only Hucis degsikskible
(b): it is possible to reach a state from which bc never occurs e.qg.
ab(f, cd fi, fy ab f;)”.

u Distributed Implementation — Partial state semantics

@
@] States are global or partial

| P QA p-transitions interleave
.t > CJD [From any state q a unique global state is
| reached by application of -transitions

v Bf

a? ab? abd?
abcd
Ja Qs 9c dp @ & @ P Jads L L P dads L dp
p

Objective: Safe and efficient execution from partial states

acy Vig[1,n] q;-anNP,—q; 0(q4,..9,;3a)
(9,.,q9,)-a — (q’;,.,q’,) where q’,=q,if aNP=O

u Distributed Implementation — Oracles

" ldeal Oracle
<§ b| - (axb
& @b _ Knowledge-
o " hased Oradle
% [
R . morepreCIse gIObaI State
... Dynamlc OraC|e |
= @
=25
... © D
E Q
@ @@ @ Static Oracle o<
... N
l - (@amh)

" O(L y,;a)=false Lazy Oracle

Distributed Implementation — Asynchronous MP Model

a b ?a I{a,b} ?b

N o N o
Ny o5 e
&N =) T N

b N b Nt

Partial State Model Message Passing Model

O Before reaching a ready state, the set of the enabled ports is sent to the Engine
U From a ready state, await notification from the Engine indicating the selected port

Distributed Implementation — Example (Forte 08)

16 T T T T T

No Oracle L—
o : Dynamic Oracle =~ ——
h ; Lazy Oracle —
4 oan I l : i
i :";*'éiagsaa g L’* i i
12 fp 15 EEA ,{: ‘ ; g:".'l ,’“ waooaon noomy o g B Pk o
o f S ERAApA B e e Al Bl oie SR B iy Sl
i FHE EEi:IE; HOLEEE E;;s i E%::::
10 _.".: '!I:.' H i 'nlizl':u --'_E.:Ja l.;i nt _'.'-=: N u"..: :J OLE
! i i =5|,i I L
[
g |

Degree of parallelism

2 " ;I) |'! -
ono . ' i
0 | 1 | | 1 | |

0 0.2 04 0.6) 08 1 12 14
Execution time (seconds)

O No oracle: average parallelism 10, but incorrect functional behavior.
O Lazy oracle: maximal parallelism 2.
O Dynamic oracle: average parallelism 7.

-
 BIP — Global state model
A Distributed centralized implementation
[Decentralized implementations

O Architecture transformations

Discussion

SsSsm—<am<O

20

Decentralized Distributed Implementation — The principle

B
& Initial BIP model
A c C
BJ_
b ?b
la Ic Distributed BIP model

AL

e Engine

1
?cC

Distributed Implementation — Implementing Connectors

b ?b

PROTOCOL

PROTOCOL
PROTOCOL

Decentralized solution

'b ?b

Distributed BIP model

b ?b

Centralized solution

Centralized solution — Conflict Resolution

- Centralized solution — Conflict Resolution

| m | 12 EE |

Centralized solution — Conflict Resolution

Centralized solution — Conflict Resolution

Distributed Independent Set of Conflicting Interactions

11 12 13

14 15 16
Distributed Independent Set of Conflicting Interactions

Centralized solution — Conflict Resolution

Distributed Clique of non Conflicting Interactions

11 12 13

14 15 16

Distributed Cligue of non Conflicting Interactions

Decentralized Solution

11 12 13

Distributed Graph Matching (edges not sharing a common vertex)

3 3 3 3
oS BL | o o) o)

-— -— -—
O O O O
| - | - | - | -
al al ol ol

-
 BIP — Global state model
A Distributed centralized implementation
[Decentralized implementations

O Architecture transformations

Discussion

SsSsm—<am<O

29

Architecture Transformations

Partitioning

Monolithic

Code Generation C COde
N =

Architecture Transformations — Composite to Monolithic

Component
Flattening

Connector
Flattening

Architecture Transformations — Composite to Monolithic

G, F

w g= g4A 9o AG
f= F;(f1||f2)

u Example — MPEG4 Video Encoder

Transform the monolithic sequential program (12000 lines of C
code) into a componentized one:

++ reusability, schedulability analysis, reconfigurability
— —overhead in memory and execution time

Decomposition:

» GrabFrame: gets a frame and produces macroblocks
» QutputFrame: produces an encoded frame
= Encode: encodes macroblocks

GrabFrame Encode OutputFrame

f in f in f out f out f.in f out f.in

grabFrame() OUtpUtFl’ame()

u Example — MPEG4 Video Encoder

fin
GrabMacroBlock GrabMacroBlock:
out splits a frame in
in (W*H)/256 macro
MotionEstimation bIOCk_S, outputs one
out at a time
in Reconstruction:
DCT regenerates the
out| encoded frame from
In in, In, the encoded macro
Quant IQuant blocks.
out
in out -
Intraprediction IDCT - buffered
out| out connections
N in
Coding Reconstruction

out f out

Example — MPEG4 Video Encoder

exit f_in

c=MAX c:=0

out

c<MAX
grabMacroBlock(), c:=c+1

out

fn()

in c<MAX c:=c+1

reconstruction()

MAX=(W*H)/256
W=width of frame
H=height of frame

- Axample — MPEG4 Video Encoder: Results

m ~ 500 lines of BIP code
Consists of 20 atomic components and 34 connectors
Components call routines from the encoder library

m The generated C++ code from BIP is ~ 2,000 lines

m BIP binary is 288 KB compared to 172 KB of monolithic binary

100% overhead in execution time wrt monolithic code

m ~66% due to computation of interactions (can be reduced by
composing components)

m ~34% due to evaluation of priorities (can be reduced by applying
priorities to atomic components)

Source-to-Source — MPEG4 Video Encoder: Results

12 I] 1 | ! | I !
Automatically generated monolithic C code Gt
11 F Handwritten monolothic Code ------- .
BIP --—-+---
.‘+
10 -
#

9 F + -
gz 8}t . |
= e
S *

(5] 7 F n
@, ,+"

- ,

E 6 : 7
= ¥ -

5 , e

5 °r T .
@

()

=

o | 1 1 | 1 1 | 1
0 50 100 150 200 250 300 350 400 450

Number of frames

-
 BIP — Global state model
A Distributed centralized implementation
[Decentralized implementations

O Architecture transformations

Discussion

SsSsm—<am<O

38

gyt

Papers
O A. Basu, Ph. Bidinger, M. Bozga and J. Sifakis. Distributed Semantics and

Implementation for Systems with Interaction and Priority FORTE, 2008, pp. 116-133.

Q Marius Bozga, Mohamad Jaber, Joseph Sifakis: Source-to-source architecture
transformation for performance optimization in BIP. IEEE Fourth International Symposium
on Industrial Embedded Systems 2009, pp 152-160

0 Ananda Basu, Saddek Bensalem, Doron Peled, Joseph Sifakis: Priority Scheduling of
Distributed Systems Based on Model Checking. CAV 2009: 79-93

O Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Joseph Sifakis. Incremental
Component-based Modeling, Verification, and Performnce Evaluation of Distributed
Reset, DISC 09.

Distributed Implementations

O Centralized BIP Engine (FORTEOQS8)

O Weakly decentralized (one Engine per set of conflicting interactions) over Linux using
TCP sockets

O Weakly decentralized (one Engine per interaction + Conflict resolution with alpha-
core) over Linux using TCP sockets

" Discussion

O Study different distributed implementations from fully decentralized to
fully centralized ones

O Use existing distributed algorithms for multiparty interaction and conflict
resolution e.g. maximal matching algorithm

O Prove correctness by using composability techniques - non
interference of features of the composed algorithms

1 Performance evaluation — tradeoffs wrt two criteria:
= degree of parallelism

= overhead for coordination

d Implementation tools and case studies.

Thank You

