

Programming Model
Application SW

SW model in BIP

Source2Source Compiler

Multicore Platform

BIP Engine/Linux

Productivity

Functional
Correctness

Performance

Correctness
Simulation/ Model Checking

Efficiency/
Correctness

Translator

D-Finder DOL
System model in BIP

Distributed
BIP

Code Generator

C++ Code

Deployed SW

O
V
E
R
V
I
E
W

4

  BIP – Global state model

  Distributed centralized implementation

  Decentralized implementations

  Architecture transformations

 Discussion

BIP – Basic Concepts

 B E H A V I O R

Interactions (collaboration) 
Priorities  (conflict resolution) 

Layered component model

Composition operation parameterized by glue IN12, PR12

IN12  
PR12  

PR1  
IN1  

PR2  
IN2   IN1 ⊗ IN2 ⊗ IN12  

PR1 ⊕ PR2 ⊕ PR12  

BIP – Basic Concepts

s

Sender

r1

Receiver1

Interactions: sr1r2r3 
Priorities: ∅ 

Rendezvous

s r1

r2

Receiver2

r2

r3

Receiver3

r3

BIP – Basic Concepts

Interactions: s + sr1 + sr2 + sr3 + sr1r2 + sr2r3 + sr1r3 + sr1r2r3

Priorities: xπxy for x,xy∈Interactions

Broadcast

s

Sender

r1

Receiver1

s r1

r2

Receiver2

r2

r3

Receiver3

r3

BIP – Basic Concepts

Interactions: s + sr1r2r3 
Priorities: xπxy for x,xy∈Interactions

Atomic Broadcast

s

Sender

r1

Receiver1

s r1

r2

Receiver2

r2

r3

Receiver3

r3

BIP – Basic Concepts

Interactions: s + sr1 + sr1r2 + sr1r2r3 
Priorities: xπxy for x,xy∈Interactions

Causal Chain

s

Sender

r1

Receiver1

s r1

r2

Receiver2

r2

r3

Receiver3

r3

BIP – Basic Concepts: Semantics

Interactions a∈γ ∀i∈[1,n] qi - a∩Pi→i q’i
 (q1 ,., qn) - a →γ (q’1 ,., q’n) where q’I =qI if a∩Pi=∅

  a set of atomic components {Bi }i=1..n
where Bi =(Qi, 2Pi, →i)

  a set of interactions γ

  priorities π⊆ γ ×(⊗ Qi)×γ

π γ (B1,., Bn)

Priorities q- a →γ q’ ¬ (∃ q- b→γ ∧ a πq b)
 q- a →π q’

BIP – The execution Engine

busy

filter

stable

ready

execute

choose

init

O
V
E
R
V
I
E
W

12

  BIP – Global state model

  Distributed centralized implementation

  Decentralized implementations

  Architecture transformations

 Discussion

Distributed Implementation

BIP is based on:
 Global state semantics, defined by operational semantics rules,

implemented by the Engine
 Atomic multiparty interactions, e.g. by rendezvous or broadcast

Translate BIP models into distributed models
 Collection of independent components intrinsically concurrent - No

global state
  Separate interaction from internal computation of components
 Point to point communication by asynchronous message passing
  Correctness by construction that is, the initial BIP model is

observationally equivalent to the implementation

Approach: BIP ⇒ Partial state BIP ⇒ Distributed BIP

Centralized Distributed Implementation – The Principle

Interactions: γ 
Priorities: π

B1
 B2

 Bn

Interactions: γ ⊥
Priorities: π ⊥

B1
⊥ B2

⊥ Bn
⊥

B1
⊥ B2

⊥ Bn
⊥

Engine Oracle

Distributed Implementation – Global vs. Partial State Models

Interactions: γ 
Priorities: π

a,fa

a

b,fb

b

c,fc

c

d,fd

d

(a) Global State Model

Broadcast γ = a+ab+ac+ad+abc+abd+acd+abcd, with
maximal progress.

(a): only abcd is possible.

Rendezvous γ = ab+bc+cd and priority abπbc, cdπbc .
(a): only bc is possible

Broadcast γ = a+ab+ac+ad+abc+abd+acd+abcd, with
maximal progress.

(a): only abcd is possible.
(b): arbitrary desynchronization may occur.

Rendezvous γ = ab+bc+cd and priority abπbc, cdπbc .
(a): only (bc)ω is possible
(b): it is possible to reach a state from which bc never occurs e.g.
ab(fa cd fb fd ab fc)ω.

Interactions: γ ⊥
Priorities: π ⊥

a b c d

a

β

b fb c fc d fd

(b) Partial State Model

fa

β
 β
 β

Distributed Implementation – Partial state semantics

q1   States are global or partial
  β-transitions interleave
  From any state q a unique global state is
reached by application of β-transitions

q2

p, f

q1

⊥

p

q2

β,f

Objective: Safe and efficient execution from partial states

a∈γ ∀i∈[1,n] qi - a∩Pi→i q’i O(q1 ,., qn ;a)
(q1 ,., qn) - a →γ (q’1 ,., q’n) where q’I =qI if a∩Pi=∅

qA qB qC qD ⊥ ⊥ ⊥ ⊥ qA ⊥ ⊥ ⊥ qA qB ⊥ ⊥ qA qB ⊥ qD
abcd β
 β
 β

β

a? ab? abd?

Distributed Implementation – Oracles

a

O(⊥ y1;a)

x2y1

b ¬ (a π b)

x2y1 x1y1

b ¬ (a π b)

more precise global state Dynamic Oracle

Ideal Oracle

P
ar

al
le

lis
m

 O
verhead

 Static Oracle x2y1 x1y1

b ¬ (a π b)

x2y2 x1y2

Lazy Oracle O(⊥ y1;a) = false

Knowledge-
based Oracle

Distributed Implementation – Asynchronous MP Model

 Before reaching a ready state, the set of the enabled ports is sent to the Engine
 From a ready state, await notification from the Engine indicating the selected port

a

a b

Partial State Model

β, fa

b

β, fb

?a

?a

?b

!{a,b} !{a,b}

?b !{a,b}

Message Passing Model

β, fa β, fb

Distributed Implementation – Example (Forte 08)

O
V
E
R
V
I
E
W

20

  BIP – Global state model

  Distributed centralized implementation

  Decentralized implementations

  Architecture transformations

 Discussion

Decentralized Distributed Implementation – The principle

a c

b

A

B

C

!a

Engine ?a

!b ?b

!c

?c A⊥

B⊥

C⊥

Distributed Implementation – Implementing Connectors

!a

Engine ?a

!b ?b

!c

?c

!a

?a

!b ?b

!c

?c

!a

?a

!b ?b

!c

?c

Centralized solution – Conflict Resolution

I4 I5 I6

I1 I2 I3

A⊥ B⊥ C⊥ D⊥

I1 I2 I3

I4 I6 I5
A B C D

Centralized solution – Conflict Resolution

I1 I2 I3

I4 I6 I5
A B C D

I2 I6

A⊥ B⊥ C⊥ D⊥

Centralized solution – Conflict Resolution

I1 I2 I3

I4 I6 I5
A B C D

I1 alpha
core I2 alpha

core I3

I4 I5 I6

alpha
core

alpha
core

alpha
core

alpha
core

A⊥ B⊥ C⊥ D⊥ alpha
core

alpha
core

alpha
core

alpha
core

Centralized solution – Conflict Resolution

I1 I2 I3

I4 I6 I5
A B C D

I1 I2 I3

I4 I5 I6

A⊥ B⊥ C⊥ D⊥

Distributed Independent Set of Conflicting Interactions

Distributed Independent Set of Conflicting Interactions

Distributed Clique of non Conflicting Interactions

Distributed Clique of non Conflicting Interactions

Centralized solution – Conflict Resolution

I1 I2 I3

I4 I6 I5
A B C D

I1 I2 I3

I4 I5 I6

A⊥ B⊥ C⊥ D⊥

Distributed Graph Matching (edges not sharing a common vertex)

Decentralized Solution

I1 I2 I3

I4 I6 I5
A B C D

A⊥ B⊥ C⊥ D⊥

P
ro

to
co

l

P
ro

to
co

l

P
ro

to
co

l

P
ro

to
co

l

O
V
E
R
V
I
E
W

29

  BIP – Global state model

  Distributed centralized implementation

  Decentralized implementations

  Architecture transformations

 Discussion

Architecture Transformations

Partitioning

Monolithic
Code Generation

Architecture Transformations – Composite to Monolithic

Connector
Flattening

Component
Flattening

Architecture Transformations – Composite to Monolithic

g1 
f1 
p1  g2 

f2 
p2 

p1  p2 

G,  F 

g1 
f1 
p1  g2 

f2 
p2 

p1  p2  p1p2 

p1 p2 
g 
f 

g= g1∧ g2 ∧G 
f = F;(f1||f2) 

Transform the monolithic sequential program (12000 lines of C
code) into a componentized one:

++ reusability, schedulability analysis, reconfigurability
– – overhead in memory and execution time

f_in  f_out 

grabFrame() 

f_in  f_out 

outputFrame() 

GrabFrame  OutputFrame 

f_out  f_out  f_out f_in  f_in f_in 

Encode 

Decomposition:
  GrabFrame: gets a frame and produces macroblocks
  OutputFrame: produces an encoded frame
  Encode: encodes macroblocks

Example – MPEG4 Video Encoder

Reconstruction 

Intraprediction 

IQuant 

IDCT 

MotionEstimation 

DCT 

Quant 

Coding 

GrabMacroBlock 

out 
in 

out 
in 

out 
in 

out 
in 

out 
in 

out 

f_in 

out 
in 

out 
in 

in1  in2 

f_in 

f_out 

f_out 

             : buffered 
           connections 

GrabMacroBlock:   
splits a frame in   
(W*H)/256 macro 
blocks, outputs one 
at a time  

Reconstruction: 
regenerates the 
encoded frame from 
the encoded macro 
blocks. 

Example – MPEG4 Video Encoder

in  out 

      fn() 

in  c<MAX  c:=c+1  

 f_out 
 c=MAX 
 c:=0 

Reconstruction 

Generic Functional component 

f_in 

out 

GrabMacroBlock 

       c<MAX 
grabMacroBlock(), c:=c+1  

in  f_out out 

out 

f_in 

in 

reconstruction() 

         exit 
c=MAX c:=0 

MAX=(W*H)/256
W=width of frame
H=height of frame

Example – MPEG4 Video Encoder

  ~ 500 lines of BIP code
  Consists of 20 atomic components and 34 connectors
  Components call routines from the encoder library

  The generated C++ code from BIP is ~ 2,000 lines
  BIP binary is 288 KB compared to 172 KB of monolithic binary

100% overhead in execution time wrt monolithic code
  ~66% due to computation of interactions (can be reduced by

composing components)
  ~34% due to evaluation of priorities (can be reduced by applying

priorities to atomic components)

Axample – MPEG4 Video Encoder: Results

Source-to-Source – MPEG4 Video Encoder: Results

O
V
E
R
V
I
E
W

38

  BIP – Global state model

  Distributed centralized implementation

  Decentralized implementations

  Architecture transformations

 Discussion

Results

Papers
  A. Basu, Ph. Bidinger, M. Bozga and J. Sifakis. Distributed Semantics and

Implementation for Systems with Interaction and Priority FORTE, 2008, pp. 116-133.
  Marius Bozga, Mohamad Jaber, Joseph Sifakis: Source-to-source architecture

transformation for performance optimization in BIP. IEEE Fourth International Symposium
on Industrial Embedded Systems 2009, pp 152-160

  Ananda Basu, Saddek Bensalem, Doron Peled, Joseph Sifakis: Priority Scheduling of
Distributed Systems Based on Model Checking. CAV 2009: 79-93

  Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Joseph Sifakis. Incremental
Component-based Modeling, Verification, and Performnce Evaluation of Distributed
Reset, DISC 09.

Distributed Implementations

  Centralized BIP Engine (FORTE08)

  Weakly decentralized (one Engine per set of conflicting interactions) over Linux using
TCP sockets

  Weakly decentralized (one Engine per interaction + Conflict resolution with alpha-
core) over Linux using TCP sockets

Discussion

  Study different distributed implementations from fully decentralized to
fully centralized ones

  Use existing distributed algorithms for multiparty interaction and conflict
resolution e.g. maximal matching algorithm

  Prove correctness by using composability techniques - non
interference of features of the composed algorithms

  Performance evaluation – tradeoffs wrt two criteria:
  degree of parallelism
  overhead for coordination

  Implementation tools and case studies.

