

Programming Model
Application SW

SW model in BIP

Source2Source Compiler

Multicore Platform

BIP Engine/Linux

Productivity

Functional
Correctness

Performance

Correctness
Simulation/ Model Checking

Efficiency/
Correctness

Translator

D-Finder DOL
System model in BIP

Distributed
BIP

Code Generator

C++ Code

Deployed SW

O
V
E
R
V
I
E
W

4

  BIP – Global state model

  Distributed centralized implementation

  Decentralized implementations

  Architecture transformations

 Discussion

BIP – Basic Concepts

 B E H A V I O R

Interactions (collaboration) 
Priorities  (conflict resolution) 

Layered component model

Composition operation parameterized by glue IN12, PR12

IN12  
PR12  

PR1  
IN1  

PR2  
IN2   IN1 ⊗ IN2 ⊗ IN12  

PR1 ⊕ PR2 ⊕ PR12  

BIP – Basic Concepts

s

Sender

r1

Receiver1

Interactions: sr1r2r3 
Priorities: ∅ 

Rendezvous

s r1

r2

Receiver2

r2

r3

Receiver3

r3

BIP – Basic Concepts

Interactions: s + sr1 + sr2 + sr3 + sr1r2 + sr2r3 + sr1r3 + sr1r2r3

Priorities: xπxy for x,xy∈Interactions

Broadcast

s

Sender

r1

Receiver1

s r1

r2

Receiver2

r2

r3

Receiver3

r3

BIP – Basic Concepts

Interactions: s + sr1r2r3 
Priorities: xπxy for x,xy∈Interactions

Atomic Broadcast

s

Sender

r1

Receiver1

s r1

r2

Receiver2

r2

r3

Receiver3

r3

BIP – Basic Concepts

Interactions: s + sr1 + sr1r2 + sr1r2r3 
Priorities: xπxy for x,xy∈Interactions

Causal Chain

s

Sender

r1

Receiver1

s r1

r2

Receiver2

r2

r3

Receiver3

r3

BIP – Basic Concepts: Semantics

Interactions a∈γ ∀i∈[1,n] qi - a∩Pi→i q’i
 (q1 ,., qn) - a →γ (q’1 ,., q’n) where q’I =qI if a∩Pi=∅

  a set of atomic components {Bi }i=1..n
where Bi =(Qi, 2Pi, →i)

  a set of interactions γ

  priorities π⊆ γ ×(⊗ Qi)×γ

π γ (B1,., Bn)

Priorities q- a →γ q’ ¬ (∃ q- b→γ ∧ a πq b)
 q- a →π q’

BIP – The execution Engine

busy

filter

stable

ready

execute

choose

init

O
V
E
R
V
I
E
W

12

  BIP – Global state model

  Distributed centralized implementation

  Decentralized implementations

  Architecture transformations

 Discussion

Distributed Implementation

BIP is based on:
 Global state semantics, defined by operational semantics rules,

implemented by the Engine
 Atomic multiparty interactions, e.g. by rendezvous or broadcast

Translate BIP models into distributed models
 Collection of independent components intrinsically concurrent - No

global state
  Separate interaction from internal computation of components
 Point to point communication by asynchronous message passing
  Correctness by construction that is, the initial BIP model is

observationally equivalent to the implementation

Approach: BIP ⇒ Partial state BIP ⇒ Distributed BIP

Centralized Distributed Implementation – The Principle

Interactions: γ 
Priorities: π

B1
 B2

 Bn

Interactions: γ ⊥
Priorities: π ⊥

B1
⊥ B2

⊥ Bn
⊥

B1
⊥ B2

⊥ Bn
⊥

Engine Oracle

Distributed Implementation – Global vs. Partial State Models

Interactions: γ 
Priorities: π

a,fa

a

b,fb

b

c,fc

c

d,fd

d

(a) Global State Model

Broadcast γ = a+ab+ac+ad+abc+abd+acd+abcd, with
maximal progress.

(a): only abcd is possible.

Rendezvous γ = ab+bc+cd and priority abπbc, cdπbc .
(a): only bc is possible

Broadcast γ = a+ab+ac+ad+abc+abd+acd+abcd, with
maximal progress.

(a): only abcd is possible.
(b): arbitrary desynchronization may occur.

Rendezvous γ = ab+bc+cd and priority abπbc, cdπbc .
(a): only (bc)ω is possible
(b): it is possible to reach a state from which bc never occurs e.g.
ab(fa cd fb fd ab fc)ω.

Interactions: γ ⊥
Priorities: π ⊥

a b c d

a

β

b fb c fc d fd

(b) Partial State Model

fa

β β β

Distributed Implementation – Partial state semantics

q1   States are global or partial
  β-transitions interleave
  From any state q a unique global state is
reached by application of β-transitions

q2

p, f

q1

⊥

p

q2

β,f

Objective: Safe and efficient execution from partial states

a∈γ ∀i∈[1,n] qi - a∩Pi→i q’i O(q1 ,., qn ;a)
(q1 ,., qn) - a →γ (q’1 ,., q’n) where q’I =qI if a∩Pi=∅

qA qB qC qD ⊥ ⊥ ⊥ ⊥ qA ⊥ ⊥ ⊥ qA qB ⊥ ⊥ qA qB ⊥ qD
abcd β β β

β

a? ab? abd?

Distributed Implementation – Oracles

a

O(⊥ y1;a)

x2y1

b ¬ (a π b)

x2y1 x1y1

b ¬ (a π b)

more precise global state Dynamic Oracle

Ideal Oracle

P
ar

al
le

lis
m

 O
verhead

 Static Oracle x2y1 x1y1

b ¬ (a π b)

x2y2 x1y2

Lazy Oracle O(⊥ y1;a) = false

Knowledge-
based Oracle

Distributed Implementation – Asynchronous MP Model

 Before reaching a ready state, the set of the enabled ports is sent to the Engine
 From a ready state, await notification from the Engine indicating the selected port

a

a b

Partial State Model

β, fa

b

β, fb

?a

?a

?b

!{a,b} !{a,b}

?b !{a,b}

Message Passing Model

β, fa β, fb

Distributed Implementation – Example (Forte 08)

O
V
E
R
V
I
E
W

20

  BIP – Global state model

  Distributed centralized implementation

  Decentralized implementations

  Architecture transformations

 Discussion

Decentralized Distributed Implementation – The principle

a c

b

A

B

C

!a

Engine ?a

!b ?b

!c

?c A⊥

B⊥

C⊥

Distributed Implementation – Implementing Connectors

!a

Engine ?a

!b ?b

!c

?c

!a

?a

!b ?b

!c

?c

!a

?a

!b ?b

!c

?c

Centralized solution – Conflict Resolution

I4 I5 I6

I1 I2 I3

A⊥ B⊥ C⊥ D⊥

I1 I2 I3

I4 I6 I5
A B C D

Centralized solution – Conflict Resolution

I1 I2 I3

I4 I6 I5
A B C D

I2 I6

A⊥ B⊥ C⊥ D⊥

Centralized solution – Conflict Resolution

I1 I2 I3

I4 I6 I5
A B C D

I1 alpha
core I2 alpha

core I3

I4 I5 I6

alpha
core

alpha
core

alpha
core

alpha
core

A⊥ B⊥ C⊥ D⊥ alpha
core

alpha
core

alpha
core

alpha
core

Centralized solution – Conflict Resolution

I1 I2 I3

I4 I6 I5
A B C D

I1 I2 I3

I4 I5 I6

A⊥ B⊥ C⊥ D⊥

Distributed Independent Set of Conflicting Interactions

Distributed Independent Set of Conflicting Interactions

Distributed Clique of non Conflicting Interactions

Distributed Clique of non Conflicting Interactions

Centralized solution – Conflict Resolution

I1 I2 I3

I4 I6 I5
A B C D

I1 I2 I3

I4 I5 I6

A⊥ B⊥ C⊥ D⊥

Distributed Graph Matching (edges not sharing a common vertex)

Decentralized Solution

I1 I2 I3

I4 I6 I5
A B C D

A⊥ B⊥ C⊥ D⊥

P
ro

to
co

l

P
ro

to
co

l

P
ro

to
co

l

P
ro

to
co

l

O
V
E
R
V
I
E
W

29

  BIP – Global state model

  Distributed centralized implementation

  Decentralized implementations

  Architecture transformations

 Discussion

Architecture Transformations

Partitioning

Monolithic
Code Generation

Architecture Transformations – Composite to Monolithic

Connector
Flattening

Component
Flattening

Architecture Transformations – Composite to Monolithic

g1 
f1 
p1  g2 

f2 
p2 

p1  p2 

G,  F 

g1 
f1 
p1  g2 

f2 
p2 

p1  p2  p1p2 

p1 p2 
g 
f 

g= g1∧ g2 ∧G 
f = F;(f1||f2) 

Transform the monolithic sequential program (12000 lines of C
code) into a componentized one:

++ reusability, schedulability analysis, reconfigurability
– – overhead in memory and execution time

f_in  f_out 

grabFrame() 

f_in  f_out 

outputFrame() 

GrabFrame  OutputFrame 

f_out  f_out  f_out f_in  f_in f_in 

Encode 

Decomposition:
  GrabFrame: gets a frame and produces macroblocks
  OutputFrame: produces an encoded frame
  Encode: encodes macroblocks

Example – MPEG4 Video Encoder

Reconstruction 

Intraprediction 

IQuant 

IDCT 

MotionEstimation 

DCT 

Quant 

Coding 

GrabMacroBlock 

out 
in 

out 
in 

out 
in 

out 
in 

out 
in 

out 

f_in 

out 
in 

out 
in 

in1  in2 

f_in 

f_out 

f_out 

             : buffered 
           connections 

GrabMacroBlock:   
splits a frame in   
(W*H)/256 macro 
blocks, outputs one 
at a time  

Reconstruction: 
regenerates the 
encoded frame from 
the encoded macro 
blocks. 

Example – MPEG4 Video Encoder

in  out 

      fn() 

in  c<MAX  c:=c+1  

 f_out 
 c=MAX 
 c:=0 

Reconstruction 

Generic Functional component 

f_in 

out 

GrabMacroBlock 

       c<MAX 
grabMacroBlock(), c:=c+1  

in  f_out out 

out 

f_in 

in 

reconstruction() 

         exit 
c=MAX c:=0 

MAX=(W*H)/256
W=width of frame
H=height of frame

Example – MPEG4 Video Encoder

  ~ 500 lines of BIP code
  Consists of 20 atomic components and 34 connectors
  Components call routines from the encoder library

  The generated C++ code from BIP is ~ 2,000 lines
  BIP binary is 288 KB compared to 172 KB of monolithic binary

100% overhead in execution time wrt monolithic code
  ~66% due to computation of interactions (can be reduced by

composing components)
  ~34% due to evaluation of priorities (can be reduced by applying

priorities to atomic components)

Axample – MPEG4 Video Encoder: Results

Source-to-Source – MPEG4 Video Encoder: Results

O
V
E
R
V
I
E
W

38

  BIP – Global state model

  Distributed centralized implementation

  Decentralized implementations

  Architecture transformations

 Discussion

Results

Papers
  A. Basu, Ph. Bidinger, M. Bozga and J. Sifakis. Distributed Semantics and

Implementation for Systems with Interaction and Priority FORTE, 2008, pp. 116-133.
  Marius Bozga, Mohamad Jaber, Joseph Sifakis: Source-to-source architecture

transformation for performance optimization in BIP. IEEE Fourth International Symposium
on Industrial Embedded Systems 2009, pp 152-160

  Ananda Basu, Saddek Bensalem, Doron Peled, Joseph Sifakis: Priority Scheduling of
Distributed Systems Based on Model Checking. CAV 2009: 79-93

  Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Joseph Sifakis. Incremental
Component-based Modeling, Verification, and Performnce Evaluation of Distributed
Reset, DISC 09.

Distributed Implementations

  Centralized BIP Engine (FORTE08)

  Weakly decentralized (one Engine per set of conflicting interactions) over Linux using
TCP sockets

  Weakly decentralized (one Engine per interaction + Conflict resolution with alpha-
core) over Linux using TCP sockets

Discussion

  Study different distributed implementations from fully decentralized to
fully centralized ones

  Use existing distributed algorithms for multiparty interaction and conflict
resolution e.g. maximal matching algorithm

  Prove correctness by using composability techniques - non
interference of features of the composed algorithms

  Performance evaluation – tradeoffs wrt two criteria:
  degree of parallelism
  overhead for coordination

  Implementation tools and case studies.

