

Composition in Heterogeneous Systems

Janos Sztipanovits ISIS, Vanderbilt University

12 October, 2009

- Effects of heterogeneity
- Passivity-based design
- Toward a high-confidence model-based design tool chain

Key Idea: Manage design complexity by creating abstraction layers in the design flow.

Abstraction layers define platforms.

Abstractions are linked through mapping.

Abstraction layers allow the verification of different properties .

Claire Tomlin, UC Berkeley

Sifakis at al: "Building Models of Real-Time Systems from Application Software," *Proceedings of the IEEE* Vol. 91, No. 1. pp. 100-111, January 2003 In CPS, essential system properties such as stability, safety, performance are expressed in terms of physical behavior

• *f* : reactive program. Program execution creates a mapping between logical-time inputs and outputs.

• f_R : real-time system. Programs are packaged into interacting components. Scheduler control access to computation and communication resources according to time constraints *P*

timing analysis (*P*) $\forall \rho \in E, \forall \pi \in f_R(\rho), (\rho, \pi) \in P$ **Abstraction layers: PHY-SW-RTS**

<u>Goals:</u>

- Compositional verification of essential dynamic properties
 - stability
 - safety
- Robustness against implementation changes and uncertainties
 - fault induced reconfiguration of SW/HW
 - network uncertainties (packet drops, delays)
- Decreased verification complexity

timing analysis (*P*) $\forall \rho \in E, \forall \pi \in f_R(\rho), (\rho, \pi) \in P$

Composition Inside Abstraction Layers

Composition Inside Abstraction Layers

Composition and Heterogeneity

- Consequence of the lack of composability across system layers
 - intractable interactions
 - unpredictable system level behavior
 - full-system verification does not scale
- Approach: simplification strategies
 - Orthogonalization: Use passivity for decoupling stability and implementation induced time variant delays

- Effects of heterogeneity
- Passivity-based design
- Toward a high-confidence model-based design tool chain

Physical layer: Passivity-based design

<u>Key idea</u>: Passivity-based design of networked control systems provides robustness to timevarying delays

- Various mathematical definitions
 - A passive system only stores and dissipates energy but cannot generate energy of its own

• Passive systems interact in a stable manner

- When connected in either a parallel or negative feedback manner the overall system remains passive
- Passive control theory applies to
 - Linear and nonlinear systems
 - Continuous and discrete-time systems
- Easier and safer to control
 - Independent joint PD controller for robotic manipulator
 - Asymptotic stability for set-point tracking

Sztipanovits: 10

- Milestones:
 - Wave digital filters (Fettweis, 70's)
 - Passive structures (Peceli, 80's)
 - Teleoperation over the Internet (Niemmeyer, 04)
 - Power junctions (Kottenstette, Antsaklis, 08)
- Work at ISIS:
 - Design tool suite and extension through applications (Eyisi, Hall, Porter, Kottenstette, Koutsoukos, Sztipanovits)

Basic concepts

- Wave variables were introduced by Fettweis in order to circumvent the problem of delay-free loops and guarantee that the implementation of wave digital filters is realizable
- Wave variables defined by a bilinear transformation under which a stable minimum phase continuous-time system is mapped to a stable minimum phase discrete-time system. The transformation preserves passivity.

Modularization - composition for passivity (Kottenstette, Kotsoukos)

- Bilinear transform (b)
- Power and Wave variables
- Passive down- and up-sampler

Sztipanovits: 14 (PUS, PDS)

- Delays
- Power junction
- Passive dynamical system

Modularization - composition for passivity (Kottenstette, Kotsoukos)

- Bilinear transform (b)
- Power and Wave variables
- Passive down- and up-sampler (PUS, PDS)

Sztipanovits: 15 (

- Delays
- Power junction
- Passive dynamical system

Modularization - composition for passivity (Kottenstette, Kotsoukos)

- Bilinear transform (b)
- Power and Wave variables
- Passive down- and up-sampler (PUS, PDS)

Sztipanovits: 16

- Delays
- Power junction
- Passive dynamical system

Modularization - composition for passivity (Kottenstette, Kotsoukos)

- Bilinear transform (b)
- Power and Wave variables
- Passive down- and up-sampler

Sztipanovits: 17 (PUS, PDS)

- Delays
- Power junction
- Passive dynamical system

Modularization - composition for passivity (Kottenstette, Kotsoukos)

- Bilinear transform (b)
- Power and Wave variables
- Passive down- and up-sampler

Sztipanovits: 18 (PUS, PDS)

- Delays
- Power junction
- Passive dynamical system

Modularization - composition for passivity (Kottenstette, Kotsoukos)

- Bilinear transform (b)
- Power and Wave variables
- Passive down- and up-sampler

Sztipanovits: 19 (PUS, PDS)

- Delays
- Power junction
- Passive dynamical system

- Developed by Emeka Eyisi using the Model Integrated Computing (MIC) tools, (GME, UDM).
- PaNeCS Meta-model
 - Main Components
 - Plant Subsystem
 - Controller Subsystem
 - PowerJunction Subsystem
 - Network Subsystem

Plant Subsystem

Components

- Plant
 - Discrete-Time LTI
- BilinearTransformP
- PassiveDownSampler
- PassiveUpSampler
- Interconnections
 - Plant_Bilinear
 - Bilinear_To_DownSampler
 - UpSampler_To_Bilinear

x(k + 1) = Ax(k) + Bu(k)y(k) = Cx(k) + Du(k)

Controller Subsystem

Components

- DigitalController
- BilinearTransformC
- Reference Input
- ZeroOrderHold

Interconnections

- Controller_Bilinear
- ZOH_Controller
- Input_ZOH

Components

- PowerInputPowerOutput (Plant connection to PowerJunction)
- PowerOutputPowerInput (Controller connection to PowerJunction)

- Network representation
 - Defines parameters for the network
 - Ability to introduce network disturbance for simulation purposes

WirelessNetwork < <model>></model>	
DataRate :	field
DisturbancePacketSize	field
DisturbancePeriod :	field

- Provides visualization of the control modeling layer indicating flow of control and sensor signals.
- Components represent control design concepts.
- Visible Components
 - Plant Subsystem
 - Controller Subsystem
 - Powerjunction

Control Design Aspect

- Provides visualization of the physical platform layer indicating the flow of data packets over the network.
- Components represent physical entities
- Visible components
 - Plant Subsystem
 - Controller subsystem
 - Wireless network

Platform Design Aspect

- OCL Implementation
 - Connection between BilinearTransformC and DigitalController

Description: There must be one connection between the DigitalController block and the BilinearTransformC block Equation:

self.connectionParts("Controller_Bilinear").size
()=1

- In order to achieve the desirable properties of passive systems
 - Analyze the networked control system
- Analysis of the NCS
 - Component Analysis
 - System-level Analysis

- Analyze individual components of the NCS

 Only Plant and Controller Components
- Designed Model Interpreter Tool integrated in GME visits each tool and invokes the analysis function.

$$\begin{bmatrix} A^T P A - P - \hat{Q} & A^T P B - \hat{S} \\ (A^T P B - S)^T & -\hat{R} + B^T P B \end{bmatrix} \leq 0$$

$$\hat{Q} - C^T Q C, \quad \hat{S} - C^T S + C^T Q D$$

$$\hat{R} = D^T Q D + (D^T S + S^T D) + R$$

$$\exists \varepsilon > 0, \quad Q = -\varepsilon I, \quad R = 0, \quad S = \frac{1}{2}I$$
 Kottenstette, Antsaklis 2008

• CVX semi-definite programming tool (SDP) used in a Matlab script to solve LMI.

- Due to the "correct-by-construction" approach
 - Network as a whole ensure global robustness by a combination of
 - Individual components satisfaction of passivity constraints.
 - Passive Composition constraints encoded in the modeling language.
- Reduction in the analysis burden of verifying passivity.

PaNeCS Design Flow

Experimental Setup

- Two CrustCrawler robotic arms
 - 4 DOF with AX-12 smart servos at each joint
- Novint haptic paddle
- Five networked Windows PCs with Matlab/Simulink

x-y-z coordinates and angle of joint 2 of reference, robot 2, and robot 3

Sztipanovits: 32

Time Delay Between Robot 2 and Power Junction

Angle of joint 3 and y coordinate of reference, robot 2, and robot 3

Experiment 2: Intermittent Wireless Connection

Angle of joint 3 and y coordinate of reference, robot 2, and robot 3

- Effects of heterogeneity
- Passivity-based design
- Toward a high-confidence model-based design tool chain

Experimental Platform

Gumstix/Robostix

Real-time Simulation Platform 'Virtual plant'

- Linux + AVR micro
- TT Virtual Machine on Linux/UDP + FreeRTOS
- No fault tolerance (yet)

Design Flow: Passive Controllers

Passive systems are robust to network delays and quantization errors. We can design controllers to "passify" many systems that are not quite passive.

Quadrotor Control Architecture

This example is a subset of the full quadrotor model we're using for testing.

Sztipanovits: 41

Design Flow: Moving toward implementation

Design Flow: Platform

Two processors connected by a timetriggered bus

System timing parameters are captured here:

- fundamental tick time of processing units
- data transfer setup times
- bus rates

Design Flow: Software

- Composition in heterogeneous systems requires decoupling among design concerns
- Decoupling requires significant effort, but the benefits are also significant: this is the primary tool for decreasing complexity
- There is a performance tradeoff; in safety critical systems it still may be the right choice.

Some References

- Kottenstette, N., J. Hall, X. Koutsoukos, P. J. Antsaklis, and J. Sztipanovits, "Digital Control of Multiple Discrete Passive Plants Over Networks", *Int. J. of Systems, Control and Communications* Special Issue on "Progress in Networked Control Systems" (in press) available as ISIS Technical Report# ISIS-09-102
- Emeka Eyisi, Joseph Porter, Joe Hall, Nicholas Kottenstette, Xenofon, Koutsoukos and Janos Sztipanovits: "PaNeCS: A Modeling Language for Passivity-based Design of Networked Control Systems", Second International Workshop on Model Based Architecting and Construction of Embedded Systems ACES09, Denver CO October 6, 2009
- Nicholas Kottenstette, Xenofon Koutsoukos, Joe Hall, Panos Antsaklis, and Janos Sztipanovits, ``Passivity-Based Design of Wireless Networked Control Systems for Robustness to Time-Varying Delays", 29th IEEE Real-Time Systems Symposium (RTSS 2008), Barcelona, Spain, November 30 -December 3, 2008
- Joseph Porter, Peter Volgyesi, Nicholas Kottenstette, Harmon Nine, Gabor Karsai, Janos Sztipanovits: "An Experimental Model-Based Rapid Prototyping Environment for High-Confidence Embedded Software," 20th International Symposium on Rapid System Prototyping (RSP09), Paris, France, June 23-26, 2009

Passive Up-sampling and Down-sampling

- Because of bandwidth constraints, the local digital controllers for each robot run at a faster rate than the network controller
- Ensure that no energy is generated, and thus passivity is preserved
- Passive down-sampling

$$u_{\mathsf{pDSk}_k}(j) = \sqrt{\sum_{i=M(j-1)}^{Mj-1} u_{\mathsf{pk}_k}^2(i)} \operatorname{sgn}(\sum_{i=M(j-1)}^{Mj-1} u_{\mathsf{pk}_k}(i))$$

Passive up-sampling

$$v_{\mathsf{pk}_k}(i) = \sqrt{\frac{1}{M}} v_{\mathsf{pDSk}_k}(j-1), \ i = Mj, \dots, M(j+1) - 1$$

where $i = \left\lfloor \frac{t}{T_s} \right\rfloor$ and $j = \left\lfloor \frac{t}{MT_s} \right\rfloor$

Power Junction

- Compose a network in which multiple passive plants can be interconnected to multiple passive controllers
- Interconnect wave variables from multiple controllers and plants such that the total power input is always greater than or equal to the total power output

$$\sum_{k=m+1}^{n} (u_{k}^{\mathsf{T}} u_{k} - v_{k}^{\mathsf{T}} v_{k}) \ge \sum_{j=1}^{m} (u_{j}^{\mathsf{T}} u_{j} - v_{j}^{\mathsf{T}} v_{j})$$