On Automatic Code Generation for
Control Applications

Karl-Erik Arzén

Dept of Automatic Control, LTH
Lund University

Sweden

LUND INSTITUTE
OF TECHNOLOGY
Lund University



Discretization
Realization
Execution order
Multi-Core

Outline



Current Situation

 Automatic code generation used a lot in industry
for control applications

— Automotive, aerospace, .....

* Generate, typically C, code from high-level
abstractions used for control design and analysis

— Matlab/Simulink, Scilab/Scicos, SCADE/Lustre, Esterel,

* Growing interest for data-flow programming
models (SDF, DDF, Kahn ...) and associated code
generation tools



Why Automatic Code Generation

e Shorten lead times
e Minimize # of software errors

— “Correct-by-construction”

* Save money




Control Design Flow

Plant Model Specifications

— =

. Controller Design
Controller Synthesis ,

Controller

/

Code Generation -

v

Other Software Controller Software Hardware

y /

Integration

Software Synthesis y
System SW/HW

Physical plant




Controller Design

e Different control design

methods plmtviodel| | pstinen

* Model-based or
empirica

* More or less formal e (s

* More or less \ I l

automated

e Verification by simulation
in e.g. Matlab/Simulink



Code Generation

Automatic code generation

tools Plant Model —
Threads as the main model

of computation
Single-threaded or multi- “— oo W ——
threaded \ \

Verification by simulation
against hi-fidelity model,
HW in the loop techniques,
etc



Integration

e Shared computing and

communication resources '
in the implementation | comvoler_|
platform cause non- \f - !
determinism

* Schedulability-based [ swenswpw_|
verification increasingly !
difficult

* Limited tool support



Problem with Feedback

SW/HW ysical

Controller - ] System (“plant”)

 Errors can be difficult to isolate

* Similar symptoms can be the cause of errors
either in the controller design, the code
generation, or the software integration +
errors in the information transfer between

the phases



Background

Realization
Execution order
Multi-Core

Outline



Discrete or Continuous Time?

* When designing a controller you often have the choice to
either perform the design in the continuous-time
framework or in the discrete-time framework

Continuous-Time Plant Model

Control Design in
Continuous Time

Discretized Plant Model

Discretized Controller

I
I
I
I
I
Control Design in I
Discrete Time :

I

1

Difference Equations

Code



Discrete or Continuous Time?

e Discrete-Time when
— Plant model on discrete-time form

— Control design method assumes a discrete-time
controller, e.g. MPC

— Fast sampling not possible
* Continuous-Time when
— Empirical control design
— Nonlinear continuous-time model

* However, in most cases the choice does not
matter from a control design point of view



Continuous-Time Approximations

Continuous-Time Plant Model

Control Design in
Continuous Time

v i

Discretized Plant Model

v

Control Design in
Discrete Time

Difference Equations

v

Code

A lot of alternative methods
e No clear consensus about which method to use



Approximation Alternatives

* Forward Euler

* Backward Euler

* Tustin w/wo frequency prewarping
e Step invariance (ZOH-sampling)
 Ramp invariance (FOH-sampling)

* Pole-zero matching

» May get quite different results



Magnitude (abs)

Phase (deg)

Example

Bode Diagram
1072 S —— e . - . Bode Diagram
I -
10 T T T
— Gis)
— G(s
Sl :fovwand(z) t(.,si 2
» by - n
107F [-= Hpactward® 3 £ 107 [ = Hoewapin? 3
@D
E
107 1 & ot : ]
2 !
0
107 ' : : 10° . ; e
180 7 RN ! 90 T REMRRRAL ™ ™
I A\ = ~
45 - ot - - J N -
T — = \
g R ]
m @ -45F 1 | i
& ‘\ o
= = -
| o -9 N Il I
-135 | B
1t pn -180 = '0 L ; = 2
10° 101 10 103 10 10 10 10
Fraquency (rad/sec) Frequency (rad'sec)
Bode Diagram
107 . . . :
= 1
k3
@ 3
g ]
" 4
c
§ E
[ ]
10‘5 1 il 1
go T T T]
_— 0 B — =
f=2] ~,
§ \
@ -90F 1
& \
- ~
o
-180 | ' B
At ~ ,'
_270 1 1 1
10° 10’ 10° 10°

Frequency (rad’'sec)




Code Generation Conseguences

Several code generation tools perform
approximation of continuous-time controllers
automatically

Potentially quite dangerous

The control designer need to be aware of this
and to be in full control

In my opinion it is the responsibility of the
control designer to perform the discretization



Background
Discretization

Execution order
Multi-Core

Outline



Transfer Functions

Several control design methods assume input-
output models

Resulting controller is a transfer function

— Laplace transfer function
— Z transfer function

bo + bzl + ...+ b,z7"

H(z) =
(2) l14+a1z7t+...+a,z"

Can be realized in a number of different ways
with the same input-output behavior

— Assuming infinite precision arithmetic
— Not the case for fixed point arithmetic



Realization Forms

e Directform—

* Companionforms-
— Controllable
— Observable

 Series form

e Parallel form

u(k) = Z biy(k —1) — Z a;u(k —1)
i=0 =1

x(k+1) =

(—a; —ay -

1 0
0 1
0 0
;
bl Z)2 s

b, ] (k)

—Qp—1 —Ap )

1
0

x(k) + | : ] y(k)
0

Hy(z)

P[4

% >
2%




Example

C(2) = 2t — 2.132% + 2.3512% — 1.4932 4+ 0.5776 (Direct)
24 -3.92234+3.99722 — 2.301z + 0.5184

B (22 — 1.635z + 0.9025) (zz —0.4944z + 0.64)

S .
2 _ 17122+ 081 /\ 2214882+ 0.64 (Series)

—5.3962 + 6.302 6.4662 — 4.907
-1 Parallel
t 21719, 1081 T Z_14sss 1061 \rarallel




Magnitude (dB)

Phase (deqg)

40— : 30
—_— 20
20 \ 10
\\\ :
“\_.——’-';» g" or
= N | -
— C(z AN -10
—— C(z) direct form N=8 /
-20 —— — ~20

-1

-2

Bode Diagram
—— .

_45k T~ /
90— /
35t \ =

-1

- ¥ _oor
2

- © |

£ 135

80 \/ . —180}
252 — e — - —225L A —
10° 10 10° 10° 10* 10°

Fraquency (rad'sec) Fraquency (rad

Fixed point arithmetic with 8 bit word length
Q3.4 format

_eft - direct form

Right - series form

_Large qualitative differences




Code Generation Conseguences

* |f the code generation tool at all should be
responsible for choosing realizations then the
user must be able to trust that a numerically
well-conditioned method is used



Background
Discretization
Realization
Execution order
Multi-Core

Outline



Controller Components

Component models for embedded systems are often
based on the “pipe and filter” model

—»//= >\

x(k+1) = f(x(k), u(k)) Update State
v(k) = g(x(k),u(k)) Calculate Output

Components (cp Simulink blocks)
Logical signal flow
However, not enough for controller components



Minimize Latency

Controller Actuator

Sensor Controller |
Comp Comp

Comp Comp

\ 4

Comp

* From sensor input blocks to actuator output blocks

e Solution:

1. Execute the CalculateOutput part of all the components according to
the logical signal flow

2. Afterwards execute the UpdateState part of the components

 Multi-layered cascade control structures where common in
industrial practice



Actuator Saturation and Windup

\ 7

Backward Sweep

All actuators have a limited range

Controllers with integral action must take special precautions to
avoid windup

Information flows backwards from actuator blocks to sensor blocks
Solution:

1. Execute the CalculateOutput part of all the components according to the
logical signal flow - Forward Sweep

2. Afterwards execute the UpdateState part of the components in the
opposite oreder - Backward Sweep



Code Generation Conseguences

Code generation tools and simulation frameworks
should support this

Most do

However, there it is still quite difficult to convince
computer science persons about how important
this really is - especially people in the
components community

Well-known and supported by tools since almost
30 years in the industrial automation community

— DCS, PLC vendors



Outline

Background

Discretization

Realization

Execution order

Data flow and Multi-Core



Data-Flow Models and Multi-Core

Large renewed interest in data-flow models
for media streaming and signal processing

Model parallelism explicitly

Potentially a good well suited for multi and
many-core platform

However,

— Not as easy as it may seem

— Good tools strongly needed



ACTORS

 ACTORS - Adaptivity and Control of Resources
in Embedded Systems
— FP7 STREP coordinated by Ericsson
— SSSA, TUKL, EPFL, ULUND, Evidence, Akatech

— Elements:
* Data-flow programming
* Adaptive resource management

* Bandwidth reservation scheduling techniques 6
* Linux 0
o:’

* ARM 11 and x86 multi-core platforms
ACTORS



ACTORS: Dataflow Modeling

e Data flow programming with actors
— Associate resources with streams

— Clean cut between execution specifics and algorithm design

— Strict semantics with explicit parallelism provides foundation for
analysis and model transformation

e CAL Actor Language (UC Berkeley, Xilinx) http://opendf.org
— Part of MPEG/RVC standardization

— SDF, DDF, .....
_.m Actions II _.:[]I[I—. m —‘:HID_’
-

E

State




CAL Language

actor PingPongMerge ()

Inputl, Inputz ==> Input and output ports
Output:
s := 0; %
State
action Inputl: [x] ==> [x]
guard s = 0 <~—-—__________~
do | Action guards
s := 1;
end
action Input2: [x] ==> [x] _
guard s - 1 | Action body
do /
s := 0;
end
end + priority relations among actions, FSM for

represent action activations, .....




Run-Time System and Code Generation

Code generation from actors code to C (ARM)

code has been implemented

Run-time system for CAL networks

ARM 11 and x86 platforms
Initially:
— Single-threaded run-time

— “System actors” for I/O and
communication

glllle

T

[

ulllle

glllig

-

alllle



Run-Time System and Code Generation

* Second attempt:
— Dynamically partitioned multi-threaded run-time

— One thread per core

— Extremely inefficient PN
0>
* Locking and synchronization J'"$
* Cache effects from data ol || LB || LA 12

shuffling between cores

=




Run-Time System and Code Generation

* Current attempt:
— Statically partitioned multi-threaded run-time
— One thread per core

— Performance gain compared to
single-thread

— But extremely cautious
programming

—>
— | would guess that there m—» A
currently are a lot of J
programmers trying in vain all IR
to get the “promised”
performance gains from
multi-cores © ©

— Tool support necessary



Summary

Automatic code generation for control system
requires a good understanding of control

Issues to consider includes discretization,
realization, and execution ordering

It would be useful to have the same level of
code generation support for dataflow models
as we today have for “Simulink”-type models

Software synthesis tools targeting multi-core
platforms



