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Some safety critical control systems

flight control emergency shutdown

speed control, signalling
full automation



Looking inside

Fly-by-wire ? Drive-by-wire ? Electronic Control Units ?

Fly-by-computers ! Fly-by-software !
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Two Questions

Knowing the low reliability of computing technology

I thousands of car “recalled” for computing bugs
I Ariane V accident
I your personal computer . . .

1. Is it wise to use this poor technology in safety critical
systems?

2. Why, nevertheless, things are not as bad as could be
expected?

A Tentative Answer

The safety-critical control industry has designed a very strong
model-based development method
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Some steps in model-based design of control
systems

I Early eigthies: first automatic program generation from
high level control models

I SAO (block-diagrams) and the Airbus A320 fly-by-wire
I Lustre, Signal, Esterel, the French synchronous school
I . . .

I integration into control modelling tool-boxes (early nineties)
I Targetlink (Dspace), Ascet (Etas), RTW (Mathworks),

Simulink Gateway (Esterel)

I Qualified code generation
I SCADE (Esterel): Do178B Level A, EN 50128 SIL 4

I Connection with formal tools
I Prover plugins: SCADE, RTW
I Abstract interpretation

I Time triggered distributed implementations



Interest of automatic code generation

Twofold :

I Automatic code generation from high-level control models:

=> easier and earlier debugging

I Graphic languages close to the cultural background of
application engineers, test pilots, suppliers, certification
authorities, . . . :

=> allows easier communication within the entreprise

=> preserves the know-how and makes easier the
technology transfer



Single Thread Code Generation

I Allows generating code for any discrete-time model that
can be simulated

I Allows many optimisations
I The need for Real-Time Operating System is minimised
I Provides in general robust and efficient code
I But in some cases it is very inefficient and even not

possible:

need for multi-thread code generation



Multi-Periodic Systems

Models are based on null execution times
But implementations take time !!

Example:

I period (3,0)
I period(1,0)

single-thread code generation:
can yield
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But implementations take time !!

Example:

I period (3,0)
I period(1,0)

multi-thread code generation:
and preemptive scheduling can yield



Event and time-triggered systems

An engine control example:

Uniform Random
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Preemptive scheduling

If the deadline associated with event-triggered computations is
smaller than the execution time of time-triggered tasks,
preemptive scheduling is mandatory:

Control

Ignition

Mixed



Scheduling

Schedulability test: formula of response times

Rj =
∑

i=1,j−1

⌈
Rj

Ti

⌉
Ci + Cj

I thread priorities in decreasing order
I Ti minimum inter-arrival time of thread i
I Ci : worst case execution times of thread i

I
⌈

Rj
Ti

⌉
:number of times j can be preempted by i while

executing

I
⌈

Rj
Ti

⌉
Ci : maximum time during which j can be preempted

by i while executing
I The sum is taken on every thread with higher priority



Inter-task communication

Communication integrity, several approaches:

I Blocking approaches based on semaphores
Priority inversion (pathfinder !!)
priority inheritance, priority ceiling protocols

I Lock-free methods

I Loop-free, wait-free methods
Burns et Chen (triple buffer)
provide easier schedulability analysis ?



What about semantics?

. . . and model-based development?

Preemption alters the ordering of computations

I In many cases it does not matter (robustness, continuity,
faithfulness. . . )

I In some cases it can (discontinuities, critical races, . . . )

Can we propose executions that be functionally equivalent to
the model?
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A general solution (Scaife & Caspi 2004)

Ensures communication integrity and provides executions that
are functionally equivalent to the model:

Applies to both periodic and sporadic activities

Based on:

1. Syntactic checks: communications from low to high priority
tasks should go through a unit delay on the low task trigger

2. Double buffer protocols where distinction is made between
the occurrence of triggering events and the task executions



Double buffer protocol
I From low to high

I two buffers (“current” et “previous”) managed by Pl , toggled
when el takes place

I when eh occurs, Ph stores the address of “previous”
I Pl writes to “current” et Ph reads into “previous”

I From high to low
I double buffer (”current” et ”next”) managed by Pl
I on el ”current” is set to ”next”
I on eh ”next” is toggled if ”current” equals ”next”
I Ph writes to ”next” and Pl reads into ”current”

I Bit toggling is assumed to take no time



Another (partial) solution

Simulink RTW. . .

Rate Transition

Only works for harmonic multiperiodic systems



Other Results
I Proof by Model-Checking

I Generalisation to EDF
Works the same.

I Several Optimisations
I Tripakis & al.
I DiNatale, ASGV & al.



Industrial Perspectives

There seems to be a clear industrial interest :

I RTW
I SCADE

I Partially implemented in the ASSERT European IP

I Parades (Roma) is currently exploring the same ways



A Key Issue: Faithfulness

What you


model
simulate
prove

is what you
{

implement
execute

(Gérard Berry 1984)



From Handicraft to Industry

In twenty years, the industry of critical control moved from

I handicraft :
I paper design, human coding, validation on hardware

I to industry:
I functional and architectural design and validation based on

formal models that can be simulated and checked,
I automatic code generation ensuring faithfulness between

models and implementations

This is a notable advance that has to be pursued, strengthened
and extended
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