
Faithful multi-task
implementations of

synchronous programs

Paul Caspi

Verimag-CNRS (emeritus)

WSS 16 october2009

I historical overview
I multi-tasking



Some safety critical control systems

flight control emergency shutdown

speed control, signalling
full automation



Looking inside

Fly-by-wire ? Drive-by-wire ? Electronic Control Units ?

Fly-by-computers ! Fly-by-software !



Looking inside

Fly-by-wire ? Drive-by-wire ? Electronic Control Units ?
Fly-by-computers ! Fly-by-software !



Two Questions

Knowing the low reliability of computing technology

I thousands of car “recalled” for computing bugs
I Ariane V accident
I your personal computer . . .

1. Is it wise to use this poor technology in safety critical
systems?

2. Why, nevertheless, things are not as bad as could be
expected?

A Tentative Answer

The safety-critical control industry has designed a very strong
model-based development method



Two Questions

Knowing the low reliability of computing technology

I thousands of car “recalled” for computing bugs
I Ariane V accident
I your personal computer . . .

1. Is it wise to use this poor technology in safety critical
systems?

2. Why, nevertheless, things are not as bad as could be
expected?

A Tentative Answer

The safety-critical control industry has designed a very strong
model-based development method



Two Questions

Knowing the low reliability of computing technology

I thousands of car “recalled” for computing bugs
I Ariane V accident
I your personal computer . . .

1. Is it wise to use this poor technology in safety critical
systems?

2. Why, nevertheless, things are not as bad as could be
expected?

A Tentative Answer

The safety-critical control industry has designed a very strong
model-based development method



Two Questions

Knowing the low reliability of computing technology

I thousands of car “recalled” for computing bugs
I Ariane V accident
I your personal computer . . .

1. Is it wise to use this poor technology in safety critical
systems?

2. Why, nevertheless, things are not as bad as could be
expected?

A Tentative Answer

The safety-critical control industry has designed a very strong
model-based development method



Some steps in model-based design of control
systems

I Early eigthies: first automatic program generation from
high level control models

I SAO (block-diagrams) and the Airbus A320 fly-by-wire
I Lustre, Signal, Esterel, the French synchronous school
I . . .

I integration into control modelling tool-boxes (early nineties)
I Targetlink (Dspace), Ascet (Etas), RTW (Mathworks),

Simulink Gateway (Esterel)

I Qualified code generation
I SCADE (Esterel): Do178B Level A, EN 50128 SIL 4

I Connection with formal tools
I Prover plugins: SCADE, RTW
I Abstract interpretation

I Time triggered distributed implementations



Interest of automatic code generation

Twofold :

I Automatic code generation from high-level control models:

=> easier and earlier debugging

I Graphic languages close to the cultural background of
application engineers, test pilots, suppliers, certification
authorities, . . . :

=> allows easier communication within the entreprise

=> preserves the know-how and makes easier the
technology transfer



Single Thread Code Generation

I Allows generating code for any discrete-time model that
can be simulated

I Allows many optimisations
I The need for Real-Time Operating System is minimised
I Provides in general robust and efficient code
I But in some cases it is very inefficient and even not

possible:

need for multi-thread code generation



Multi-Periodic Systems

Models are based on null execution times
But implementations take time !!

Example:

I period (3,0)
I period(1,0)

single-thread code generation:
can yield



Multi-Periodic Systems

Models are based on null execution times
But implementations take time !!

Example:

I period (3,0)
I period(1,0)

single-thread code generation:
can yield even worse



Multi-Periodic Systems

Models are based on null execution times
But implementations take time !!

Example:

I period (3,0)
I period(1,0)

multi-thread code generation:
and preemptive scheduling can yield



Event and time-triggered systems

An engine control example:

Uniform Random
Number

Scope2

Scope

Pulse
Generator1

Pulse
Generator

acceleration intake

Ignition

noise

intake

speed

angle

Engine

actual speed

desired speed

acceleration

Control



Preemptive scheduling

If the deadline associated with event-triggered computations is
smaller than the execution time of time-triggered tasks,
preemptive scheduling is mandatory:

Control

Ignition

Mixed



Scheduling

Schedulability test: formula of response times

Rj =
∑

i=1,j−1

⌈
Rj

Ti

⌉
Ci + Cj

I thread priorities in decreasing order
I Ti minimum inter-arrival time of thread i
I Ci : worst case execution times of thread i

I
⌈

Rj
Ti

⌉
:number of times j can be preempted by i while

executing

I
⌈

Rj
Ti

⌉
Ci : maximum time during which j can be preempted

by i while executing
I The sum is taken on every thread with higher priority



Inter-task communication

Communication integrity, several approaches:

I Blocking approaches based on semaphores
Priority inversion (pathfinder !!)
priority inheritance, priority ceiling protocols

I Lock-free methods

I Loop-free, wait-free methods
Burns et Chen (triple buffer)
provide easier schedulability analysis ?



What about semantics?

. . . and model-based development?

Preemption alters the ordering of computations

I In many cases it does not matter (robustness, continuity,
faithfulness. . . )

I In some cases it can (discontinuities, critical races, . . . )

Can we propose executions that be functionally equivalent to
the model?



What about semantics?

. . . and model-based development?

Preemption alters the ordering of computations

I In many cases it does not matter (robustness, continuity,
faithfulness. . . )

I In some cases it can (discontinuities, critical races, . . . )

Can we propose executions that be functionally equivalent to
the model?



A general solution (Scaife & Caspi 2004)

Ensures communication integrity and provides executions that
are functionally equivalent to the model:

Applies to both periodic and sporadic activities

Based on:

1. Syntactic checks: communications from low to high priority
tasks should go through a unit delay on the low task trigger

2. Double buffer protocols where distinction is made between
the occurrence of triggering events and the task executions



Double buffer protocol
I From low to high

I two buffers (“current” et “previous”) managed by Pl , toggled
when el takes place

I when eh occurs, Ph stores the address of “previous”
I Pl writes to “current” et Ph reads into “previous”

I From high to low
I double buffer (”current” et ”next”) managed by Pl
I on el ”current” is set to ”next”
I on eh ”next” is toggled if ”current” equals ”next”
I Ph writes to ”next” and Pl reads into ”current”

I Bit toggling is assumed to take no time



Another (partial) solution

Simulink RTW. . .

Rate Transition

Only works for harmonic multiperiodic systems



Other Results
I Proof by Model-Checking

I Generalisation to EDF
Works the same.

I Several Optimisations
I Tripakis & al.
I DiNatale, ASGV & al.



Industrial Perspectives

There seems to be a clear industrial interest :

I RTW
I SCADE

I Partially implemented in the ASSERT European IP

I Parades (Roma) is currently exploring the same ways



A Key Issue: Faithfulness

What you


model
simulate
prove

is what you
{

implement
execute

(Gérard Berry 1984)



From Handicraft to Industry

In twenty years, the industry of critical control moved from

I handicraft :
I paper design, human coding, validation on hardware

I to industry:
I functional and architectural design and validation based on

formal models that can be simulated and checked,
I automatic code generation ensuring faithfulness between

models and implementations

This is a notable advance that has to be pursued, strengthened
and extended



Some references
I N. Scaife and P. Caspi: Integrating model-based design and preemptive

scheduling in mixed time- and event-triggered systems, Euromicro Conference
Real-Time Systems, ECRTS04, Catania, June 2004

I P.Caspi, N. Scaife, Ch. Sofronis, S. Tripakis: Semantics-preserving multitask
implementation of synchronous programs, ACM Transactions on Embedded
Computing Systems, 7(2), February 2008

I L. Mangeruca, M. Baleani, A. Ferrari and A. Sangiovanni-Vincentelli: Semantics
Preserving Design of Embedded Control Software from Synchronous Models,
IEEE Transactions on Software Engineering, Vol. 33, N. 8, August 2007.

I J.-L. CAMUS, P. VINCENT, O. GRAFF: A verifiable architecture for multi-task,
multi-rate synchronous software, 4th European Congress ERTS EMBEDDED
REAL TIME SOFTWARE, Toulouse 2008
http://www.esterel-technologies.com/technology/WhitePapers/

I http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/
I G.Wang, M. Di Natale and A. Sangiovanni-Vincentelli: Optimizing the

implementation of communication in synchronous reactive models with time
constraints, to appear in IEEE Trans. INDUSTRIAL INFORMATICS, DECEMBER
2009


