
Model-Based Code Generation  

is not a Replacement for 

Programming 

Edward A. Lee 

Robert S. Pepper Distinguished Professor 

UC Berkeley 

With thanks to Man-Kit Leung, Bert Rodier, Gang Zhou 

Invited Talk 

Workshop on Software Synthesis (part of ES Week) 

Grenoble, France, October 16, 2009 



Lee, Berkeley 2 

It is  programming! 

The language is different. 

The language has features well suited to express some things. 

The language is not well suited to express some other things. 

Recognizing the difference appears to be difficult. 

Raffaello Sanzio, The Athens School 



Lee, Berkeley 3 

The Problem 

Students, 

professors, 

engineers, and 

even grownups 

will use whatever 

modeling tool 

they are familiar 

with for every 

task at hand, 

whether it is 

suitable or not. 



Lee, Berkeley 5 

Properties of Languages 

Modeling languages like Simulink 

Concurrent 

Timed 

Express dynamics well 

Imperative languages like C 

Sequential 

Untimed 

Express algorithms well 

Hybrid languages that mix imperative with threads like Java 

Sequential unstructured nondeterminate concurrency 

Untimed 

Express few things well, unless you limit yourself to the sequential subset. 

Maybe the features of the first two should be mixed in a different way 



Lee, Berkeley 6 

Respect for Imperative Reasoning! 

Imperative reasoning (algorithms, proofs, recipes, etc.) 

is unnatural to express in actor-oriented languages (as 

it is also in functional languages). 

Banning imperative reasoning does not seem like a 

good idea. 

Since people seem to insist on a homogeneous 

solution, the result is that only a tiny fraction of 

programmers use actor-oriented languages. 

This can be fixed! 



Lee, Berkeley 7 

Our Proposal: Modeling Languages as Component 

Architectures rather than Languages 

Proposed component architectures: Actor oriented: 

actor name 

data (state) 

ports 

Input data 

parameters 

   Output data 

What flows through 

an object is 

evolving data 

class name 

data 

methods 

call return 

What flows through 

an object is 

sequential control 

Established component architectures: Object-oriented: 

Things happen to objects 

Actors make things happen 



Lee, Berkeley 8 

Ptolemy II: Our Open-Source Laboratory for Experiments 

with Actor-Oriented Design 
http://ptolemy.org 

Director from a library 

defines component 

interaction semantics 

Large, behaviorally-

polymorphic component 

library. 

Visual editor supporting an abstract syntax 

Type system for 

transported data 

Concurrency management supporting 

dynamic model structure. 



Lee, Berkeley 9 

Approach: Concurrent Composition of Software Components, 

which are themselves designed with Conventional Languages 

(Java, C, C++ MATLAB, Python) 



Lee, Berkeley 10 

The challenge is to synthesize good 

implementations from the blend! 

This would be a good problem for bored compiler people! 

Our attempts: 

Ptolemy Classic (Buck, Pino, Ha, ... 1990-1997) 

Copernicus (Neuendorffer, 2002-2006) 

Ptolemy II codegen version 1 (2004-2008) 

Ptolemy II codegen version 2 (2009- ??) 



Lee, Berkeley 11 

Ptolemy Classic Leveraged SDF to Generate 

Parallel Code 
SDF model, parallel schedule, and synthesized parallel code (1990) 

It is an interesting (and rich) research 

problem to minimize interlocks and 
communication overhead in complex 

multirate applications. 



Lee, Berkeley 12 

Ptolemy Classic Provided Cosimulation of Hardware 

and Generated Software 

An SDF model, a 

“Thor” model of a 2-

DSP architecture, a 

“logic analyzer” 

trace of the 

execution of the 

architecture, and 

two DSP code 

debugger windows, 

one for each 

processor (1990). 



Lee, Berkeley 13 

Multicore Architecture Targeted by Ptolemy Classic Code 

Generation (1993) 

Four DSP 96000 

floating point 

processors 

interconnected 

using the "ordered 

memory 

architecture," which 

greatly reduced 

shared memory 

synchronization 

costs [Sriram, 1993] 



Lee, Berkeley 14 

Second Attempt (Copernicus) 

Steve Neuendorffer created in Ptolemy II a code 

generator base on the idea of object specialization. 

Java objects would be translated at the byte code level 

to more specialized Java objects based on their usage 

in a particular context. 

A tour-de-force, but unmaintainable in our context... 



Lee, Berkeley 15 

               model  

(actor-oriented program) 
partial evaluator 
(code generator) 

execution context: 

data types, buffer sizes, 
schedules, parameters,  

model structure, etc. 

model analysis 

highly optimized 

target code blocks 

c
o
d
e
  g

e
n
e
ra

tio
n
   

input monolithic and  

efficient executable 
output 

target code execution 

:  data 

:  program 

Third attempt: resurrect Ptolemy Classic codegen, 

but with partial evaluation concepts 

Gang Zhou 

Man-Kit Leung 



Lee, Berkeley 16 

The Code Generation Process 

Definition 
ITERATION := prefire . fire* . postfire 

EXECUTION := initialize . ITERATION* . wrapup 

Executable: 

Initialize() 

Fire() 

Prefire() 

Postfire() 

Wrapup() 

Code Generator: 

GenerateInitialCode() 

GenerateFireCode() 

GeneratePrefireCode() 

GeneratePostfireCode() 

GenerateWrapupCode() 



Lee, Berkeley 17 

The Code Generation Process 

CompositeActor: 

  fire() { 

    D.fire() 

  } 

------------------------ 

Director: 

  fire() { 

    order = getSchedule() 

    for each A  order 

      A.fire() 

  } 

CompositeActor_fire() { 

   A1_fire(); 

   A2_fire(); 

   A3_fire(); 

} 

Generated code: 

The order is 

pre-determined 

at the time of 

code 

generation 



Lee, Berkeley 18 

Fourth attempt: Build on this, but create a 

Software Architecture for Experimentation 

CodeGenerator 
------------------------------------------ 

+ generateBodyCode() 
+ generateInitializeCode() 

+ generatePreinitializeCode() 
+ generateSharedCode() 
+ generateWrapupCode() 

 … 

CodeGeneratorAdaptor 
------------------------------------------ 

+ generateFireCode() 
+ generateInitializeCode() 

+ generatePreinitializeCode() 
+ generateSharedCode() 
+ generateWrapupCode() 

 … 

1 n 

Director 
--------------- 

… 

AtomicActor 
------------------ 

… 

TypedCompositeActor 
-------------------------------- 

… 

Ptolemnizer 
------------ 

… 

FFT 
------------------ 

… 

DEDirector 
------------------ 

… 

extends 

1 n 

CCodeGenerator 
------------------------ 

… 

ProgramGenerator 
-------------------------- 

… 



Lee, Berkeley 19 

Target Hierarchy 

generic 

program 

procedural 

C Java 

VHDL 

HTML 

MP

I 
posix win3

2 
pret 

… 

$PTII/ptolemy/cg/kernel/generic/ 

$PTII/ptolemy/cg/kernel/generic/program/ 



Lee, Berkeley 20 

Sections of the Generated Content:  

IncludingFiles 
------------------------------------------ 

SharedCode 
------------------------------------------ 

VariableDeclaration 
------------------------------------------ 

PreinitizeCode 

------------------------------------------ 

InitializeCode 
------------------------------------------ 

BodyCode                                       
------------------------------------------ 

WrapupCode 



Lee, Berkeley 21 

Non-trivial Components 

If we need to generate complex code for an 

atomic component (e.g. FFT) that is highly 

parameterizable… 



Lee, Berkeley 22 

Meta Programming 

Our (rather primitive) meta-programming 

mechanism uses templates:. 

Var $v1; 
Var $v2; 
Var $v3; 

Function $foo () { 
  loop i = 1 to $bound: 
    bar(i); 
  end loop 

} 

Static Text 

Holes  
(parameterized text) 



Lee, Berkeley 23 

This mechanism enables integration of C code 

into actor-oriented models. 

The EmbeddedCActor in Ptolemy II 

wraps low-level functionality (written in C) 

to define an actor. This approach makes 

it easy to build actor-oriented models and 

to generate efficient, platform-specific C 

implementations. 



Lee, Berkeley 24 

Example target showing that very low overhead 

code generation and integration of legacy C code  

is possible. 

The iRobot Create (the platform for the Roomba vacuum cleaner) 

with a pluggable Command Module has an Atmel 8-bit 

microcontroller with a very small amount of memory. 



Lee, Berkeley 25 

This design of a hill-climbing control 

algorithm wraps code provided by iRobot 
as demo codeinto actors in Ptolemy II for 

accessing sensors  
and actuators. 

Adapter classes 

provide code 

generators for 
generic actors and 

FSM controllers. 

EmbeddedCActor 

provides code 

generator to 
interface the C 

templates with the 

rest of the system. 



Lee, Berkeley 26 

Conclusion 

Heterogeneous models 
Actor models 

Imperative code 

Code generation 
Synthesis of practical realization 

A component technology 
Chunks of imperative logic encapsulated in a concurrent MoC 




