Model-Based Code Generation
IS not a Replacement for
Programming

Edward A. Lee
Robert S. Pepper Distinguished Professor

UC Berkeley

With thanks to Man-Kit Leung, Bert Rodier, Gang Zhou

Invited Talk
Workshop on Software Synthesis (part of ES Week)

Grenoble, France, October 16, 2009

It iIs programming!

o The language is different.
o The language has features well suited to express some things.
o The language is not well suited to express some other things.

o Recognizing the difference appears to be difficult.

+F = 5 - = f"'-*\"‘ o ".\":5.' Py o~
v B o N X » U o
'y = - - _“J‘l‘-‘

Raffaello Sanzio, The Athens School

Lee, Berkeley 2

MOLE SIMULATION

All units in SI

f Piston Pipe4

The Problem

Ares of Piston Pipe1

Piston Acosleration

~-

.124572.81

roz of Gravity1

Students,
professors,
engineers, and
even grownups
will use whatever =
modeling tool
they are familiar
with for every
task at hand, e
whether it is]
suitable or not.

Piston Velocity1

Integratort

Mole Velocity1 Impact Velocity
=R Switch2

Piston Velocity

Piston Mass

Switch3

ol Veloi B
Initial Velocity Post Impact Position

Clodk2]

Integrator2 Integrator2

Switch@

Initial Mo

2.0 MPa 1.187-8.81

Normasl Foros

Lee, Berkeley 3

Properties of Languages

o Modeling languages like Simulink
Concurrent
Timed
Express dynamics well
o Imperative languages like C
Sequential
Untimed
Express algorithms well
o Hybrid languages that mix imperative with threads like Java
Seqguential unstructured nondeterminate concurrency

Untimed
Express few things well, unless you limit yourself to the sequential subset.

Maybe the features of the first two should be mixed in a different way

Lee, Berkeley 5

Respect for Imperative Reasoning!

o Imperative reasoning (algorithms, proofs, recipes, etc.)
IS unnatural to express in actor-oriented languages (as
it Is also in functional languages).

o Banning imperative reasoning does not seem like a
good idea.

o Since people seem to insist on a homogeneous
solution, the result is that only a tiny fraction of
programmers use actor-oriented languages.

This can be fixed!

Lee, Berkeley 6

Our Proposal: Modeling Languages as Component
Architectures rather than Languages

Established component architectures: Object-oriented:

r

call

class name

data

methods 1

return

What flows through
an object is
sequential control

Things happen to objects

Proposed component architectures: Actor oriented:

>

actor name

data (state)

parameters ‘

ports

Input data Output data

Actors make things happen

What flows through
an object is
evolving data

Lee, Berkeley 7

Ptolemy II: Our Open-Source Laboratory for Experiments
with Actor-Oriented Design

http://ptolemy.org

Concurrency management supporting

dynamic model structure.

@@l@ﬂbll\.!#h#%tﬁ%O

~] Utilities
= — DE Director
Directors

= _4 Sources

[#-__] GenericSources
= JTlmedSources
" Clock

5 CurrentTime
PoissonClock
- [B=] TimedSinewave
Bl TriggeredClock
- YariableClock
ceSources

Master Clock

’u@—o—e»

li‘:l_] S
[+ __] Sinks
[+) Array
EJ---_] Conversion:
[+ | FlowControl

String Sequence

[

Sequence Count

rd Assembler actor composes a

Director from a library
defines component
Interaction semantics

a record token, which is then passed through a channel that
has random delay. The tokens arrive possibly in another

order. The Record Disassembler actor separates the string
from the sequence number. The strings are displayed as
received (possible out of order), and resequenced by the
Sequencer actor, which puts them back in order. This example
demonstrates how types propagate through record composition
and decomposition.

Display As Received

Record Assembler

Channel Model
Record

Large, behaviorally-
polymorphic component

t
S

Resequenced

library.

The channel is modeled

[Type system for
transported data

L=

by a variable delay, which

< |&] visual editor supporting an abstract syntax

| AUUIOTS. COwWala /. Cee ara 1 univng Ay

]

Berkeley 8

Approach: Concurrent Composition of Software Components,
which are themselves designed with Conventional Languages

(Java, C, C++ MATLAB, Python)

File View Edit Graph Debug Help

File Help

(=3

;aaa»ni!-n--umm

Utilities

Directors
A
=) _ 4 Sources
+- | GenericSources
=)~ _4 TimedSources
Clock
CurrentTime
PoissonClock
TimedSinewave
TriggeredClock
VariableClock
[+~ __| SequenceSources
®-) Sinks
- | Array
#-__| Conversions
-] FlowControl
#-__| HigherOrderactors
IQ“;;JIO
-] Logic

THn it ot cxm g b i Pty & T

~

O D

DE Director

Master Clock

>
Gaussian

Authors: Edward A
I

String Sequence

Sequence Count

This model
Record As:
a record to
has randor
order. The
from the s¢g
received (N
Sequencer
demonstral
and decom

[
|

Customize

Documentation
Appearance

Save Actor In Library

Listen to Actor
Set Breakpoints
Convert to Class
Open Actor
Open Instance

public class Gaussian extends RandonmSource {

/%% Construct an actor with the given container and name.
* [@param container The container.

* [@param name The name of this actor.

* [@exception IllegaliActionException If the actor cannot be contained
+* by the proposed container.

* [@exception NameDuplicationException If the container already has an
* actor with this name.

*/

public Gaussian(CompositeEntity container,
throws NameDuplicationException,
super (container, name);

String name)

output.setTypeEquals (BaseType.DOUBLE) ;

mean = new PortParameter (this,
mean.setTypeEquals (BaseType.DOUEBLE) ;

standardDeviation = new PortParameter (this,
standardDeviation.setExpression("1.0");
standardDeviation.setTypeEquals (BaseType.DOUELE) ;

IllegalActionException {

"mean®”, new DoubleToken(0.0)):

"standardDeviation®)

FEELEETETEEEE 08000000008 1d i i i i i id i ididdidididiidiidiidiidiiiidi

ril

ports and parameters

/** The mean of the random number.
*oMhis Yas type double, initially with wvalue 0.

"tParamecer mean;

P landard deviation of the random number.

1as double, initially with wvalue 1.

T eter standardDeviation;

e

EEEEEEEEEEEETEEE 000808080 i i iiiiiiiiiiiiiiiiiiy

public methods
Chrl+L

2 it i 1s i

2

Iy

]

Berkeley 9

The challenge is to synthesize good
Implementations from the blend!

This would be a good problem for bored compiler people!

Our attempts:

o Ptolemy Classic (Buck, Pino, Ha, ... 1990-1997)
o Copernicus (Neuendorffer, 2002-2006)

o Ptolemy Il codegen version 1 (2004-2008)

o Ptolemy Il codegen version 2 (2009- ??)

Lee, Berkeley 10

Ptolemy Classic Leveraged SDF to Generate

Parallel Code
SDF model, parallel schedule, and synthesized parallel code (1990)

odeblock{std)} £

: initialize address registers for coef and
Scheduling example from Gil Sih’s dissertation dE]-aULi"ﬁDVE #$addr(coef)+$val(coeflen)-1.r3
; P : insert here
Figure 4-1 (modified slightiy) move $ref(delaylineStart).rS
delayl ine
= [N R i move #$val(stepSize) x1
T - o move $ref{error) . x0
mpyr x0,.x1, a3
move a,.x0
move x:{r3) b y:{rH)+_yo
3

codeblock{loop) £
do #$val(loopVal). $label{endloop}
macr x0,y0.b
move b == (e
Gantt move x:(r3).b y:{r5)+.y0
$label(endloop)

3

codeblock{noloop) £

macr x0,y0.b

move b x=(r3)—

move x+{r3).b y:{r5)+_yo
3

It is an interesting (and rich) research
problem to minimize interlocks and
communication overhead in complex

period = 19 {vs, min, 19}, busy time = 45%{vs, max, 45%)

pe “cntrl-D” to exit, and “h” for help multlrate appllcatlonsl

Lee, Berkeley 11

Ptolemy Classic Provided Cosimulation of Hardware
and Generated Software

[®] Thor Analyzer

Ptolemy/Thor analyzer {analyzer,Inputs=51) simulator status: running

0 200
cuoee.1k (T An SDF model, a

(- N N s Y “Thor” model of a 2-
Ejiiii‘;ﬁjziﬁ DSP architecture, a

“logic analyzer”
trace of the
execution of the
architecture, and
two DSP code
debugger windows,
one for each

processor (1990).

Pl

MOTOROLA DSPS56000 SIMULATOR: ’—‘
! d1.cmd :

connection with Thor esta , "‘ “

d code1
g file:codel.lod

Jo
SIMULATION ABORTED
X= $00000000000
a= $0000000100000 - — NE E
x1= %) NC

1=

%
Eyels] o
300 b1

dev:0 pc
~38bn] [

Enter Ctr1-C to Halt. dev:0 pc:0000 cyc:0[]
Lee, Berkeley 12

Multicore Architecture Targeted by Ptolemy Classic Code
Generation (1993)

Four DSP 96000
floating point
processors
interconnected
using the "ordered
memory
architecture," which
greatly reduced
shared memory
synchronization
costs [Sriram, 1993]

Lee, Berkeley 13

Second Attempt (Copernicus)

o Steve Neuendorffer created in Ptolemy Il a code
generator base on the idea of object specialization.

o Java objects would be translated at the byte code level
to more specialized Java objects based on their usage
In a particular context.

o A tour-de-force, but unmaintainable in our context...

Lee, Berkeley 14

Third attempt: resurrect Ptolemy Classic codegen,
but with partial evaluation concepts

execution context; C_) : data

data types, buffer sizes :
’ ’ B program
model analysis schedules, parameters, Prod

model structure, etc.

partial evaluator highly optimized
(code generator) target code blocks

model
(actor-oriented program)

neuel;‘a)poo

' onolithic and
input
(") Iefficient executable output)

Gang Zhou target code execution
Man-Kit Leung

uol

Lee, Berkeley 15

The Code Generation Process

o Definition
ITERATION := prefire . fire* . postfire
EXECUTION :-= initialize . ITERATION* . wrapup

Executable: Code Generator:

GeneratelnitialCode()

GeneratePrefireCode()

GenerateFireCode()

GeneratePostfireCode()

GenerateWrapupCode()

Lee, Berkeley 16

The Code Generation Process

CompositeActor:

TfireQ {
. Fire()

Director:
fire(Q {
order = getSchedule()

for each & order
. Fire()

Generated code:

CompositeActor_fire() {
Al fire();
A2 Fire();
A3 Fire();
} NN
The order is A

pre-determined
at the time of
code

_ generation .

Lee, Berkeley 17

Fourth attempt: Build on this, but create a
Software Architecture for Experimentation

CodeGenerator CodeGeneratorAdaptor
+ generateBodyCode() + generateFireCode()
+ generatelnitializeCode() 1 N | + generatelnitializeCode()
+ generatePreinitializeCode() + generatePreinitializeCode()
+ generateSharedCode() + generateSharedCode()
+ generateWrapupCode() + generateWrapupCode()
A
extends
ProgramGenerator
__________________________ Director AtomicActor TypedCompositeActor
_______________ 1 N oo
A
A A
CCodeGenerator
________________________ DEDirector Ptolemnizer FFT

Lee, Berkeley 18

Target Hierarchy

$PTI1/ptolemy/cg/kernel/generic/

generic

procedural @

G N\
GG G G 7N\

$PTI11/ptolemy/cg/kernel/generic/program/

Lee, Berkeley 19

Sections of the Generated Content:

IncludingFiles

WrapupCode

Lee, Berkeley 20

Non-trivial Components

If we need to generate complex code for an
atomic component (e.g. FFT) that is highly
parameterizable...

> ;

Lee, Berkeley 21

Meta Programming

Our (rather primitive) meta-programming
mechanism uses templates:

Vv $vl; i
vg: $Xz; __ Static Text

Var $v3;

_ Holes

to " (parameterized text)

bar(i);
end loop

}

Lee, Berkeley 22

This mechanism enables integration of C code
Into actor-oriented models.

SDF Director

rollAngle.
pitchAngle
yawAngle
roll n oop i
pitchRate RollMYaw
yawRate Loudod PitchPYaw

J*+*fireBlock*+*%/

#ifdef AVR
innerLoop ()

f#else
innerLoop($ref(rollingle),
#endif /% AVR _ #/

S

L

ay

The EmbeddedCActor in Ptolemy Il
wraps low-level functionality (written in C)
to define an actor. This approach makes
It easy to build actor-oriented models and
to generate efficient, platform-specific C
Implementations.

Lee, Berkeley 23

Example target showing that very low overhead
code generation and integration of legacy C code
IS possible.

The iIRobot Create (the platform for the Roomba vacuum cleaner)

with a pluggable Command Module has an Atmel 8-bit
microcontroller with a very small amount of memory.

Command -
Module

~Cargo Bay
Connector

sqt Create

This design of a hill-climbing control
algorithm wraps code provided by iRobot
as demo codeinto actors in Ptolemy Il for

File Help

[

f***initBlock***/
// Set the sensor data to be all =zero.

accessing sensors
and actuators.

StaticSchedyl

Double click
generate coc

SDF Director

This model generat

place until the two tilt

This model agstate drives straight fo

log inputg
axes of the aq
straight forwa
robqt to make
the rpbot poir
startg the rob
obstagle or a
and starts for|

guard: true

guard: true

Adapter classes
provide code
generators for
generic actors and
FSM controllers.

e

[

SDF Director

In this mode, the robot
turns in place until the
two tilt sensors give the
same reading.

egain: 1

AddSubtract
+

Read from the two tilt sensors
and take the difference. When
the two tilt sensor values are
equal, the robot is either on

a flat surface, or is pointing
straight uphill or straight
downbhill.

@ sensitivity:

// This initializes the buffer that gets
/¢ filled by the interrupt sService routine that
// reads from the serial port.
for{int i = 0; i < Sen6Size; i++) {
sensors[i] ox0;

1
fEES

/***fireBlock***/
if (§ref(trigger)) {
// Regquest Sensors Packet 2
byteTx (CrdSensors) ;
/{ Request packet 0, which has 26 bytes of information.
byteTx (0);

for{int i = 0; i < Sen0Size; i++) {
sensors[i] = byteRx():
H

ERpTeTSTeTY

3 tit> sensitivity * e

EmbeddedCActor
provides code
generator to
interface the C
templates with the
rest of the system.

If the tilt sensor reading is below threshold, indicate so on the
LEDs and send a signal up the hierarchy to trigger a mode cha

ogicFunction3 leftProblem

Sensors

or

LogicFunction4 rightProblem

or

Conclusion

o Heterogeneous models
Actor models
Imperative code

o Code generation
Synthesis of practical realization

o A component technology
Chunks of imperative logic encapsulated in a concurrent MoC

Lee, Berkeley 26

