
Automatic Parallelization of NLPs with Non-Affine Index-
Expressions

Marco Bekooij (NXP research)
Tjerk Bijlsma (University of Twente)

December 2, 2009 2

Outline
   Context: car-entertainment applications

   Mapping Flow

   Motivation

   Basic Idea

   Automatic Parallelization
I.  Extraction of tasks
II.  Addition of inter-task communication via CBs
III.  Computation of the window sizes
IV.  Insertion of communication and synchronization statements
V.  Computation of sufficient buffer capacities

   Conclusion

December 2, 2009 3

Multi-stream car-entertainment system

December 2, 2009 4

Car entertainment use-case

use-case

ADC

Real-time digital radio job A

PDC CFE

f1
VIT CBE SRC APP DAC

f2

ADC

Real-time digital radio job B

PDC CFE

f1
VIT CBE DEC DAC

f2
SRD

December 2, 2009 5

Mapping flow

automatic parallelization

Sequential code

task analysis

setting computation
(dataflow analysis)

MPSoC instance Temporal
constraints

Representative
streams

task graphs

task graphs + ET + storage req.

task graphs + mapping options

Use-cases

resource allocation Start/stop job
Accept/reject job

Design-time
Run-time

December 2, 2009 6

Main reasons to extract task-level parallelism

   Meet the throughput constraint of the application

   Satisfy storage constraints embedded memories

   Correct by construction analysis model extraction

December 2, 2009 7

Important short-comings of existing
parallelization techniques
  Restrictions on input language do not match well with multimedia stream

processing domain:
– Affine index-expression, for-loops containing side-effect free functions
– Typically not well supported: if-conditions, while-loops, pointers, dynamic

memory allocation, communication deep in function call hierarchy

  Parallelization is not driven by temporal & storage constraints
– Missing underlying analysis model

  Observations:
– Task-graph radio applications can often be represented as a dataflow model

(e.g. VPDF and in some cases CSDF)
– Dataflow model can be used to compute throughput, buffer capacities,

scheduler settings, and synchronization granularity

December 2, 2009 8

Basic idea
   Input is single assignment nested loop program (NLP)

with side-effect free functions

  Each function becomes a task

  Tool must insert synchronization calls and communication calls and
must compute buffer capacities

  Prevent complex control by making use of circular buffers instead of
FIFO buffers

– Potentially multiple writing and reading tasks per buffer
– Hide irregular access patterns in buffers with sliding windows

December 2, 2009 9

Automatic Parallelization
   Parallelization steps:

I.  Extraction of tasks

II.  Addition of inter-task communication via buffers

III.  Computation of the window sizes

IV.  Insertion of communication and synchronization
statements

V.  Computation of sufficient buffer capacities
  A cyclo static dataflow model is used

  To guarantee deadlock free execution
  To compute buffer capacities

December 2, 2009 10

I. Extraction of tasks

sx[0]=0;
sx[1]=1;

for(i=0;i≤1;i++){
 F(sx[i]);

}

t0

t1

sx

X[0]=0;
X[1]=1;
for(i=0;i≤1;i++){
 F(x[i]);

}

December 2, 2009 11

I. Extraction of tasks
  We create a task out of each assignment-statement

X[0]=0;
X[1]=1;
for(i=0;i≤1;i++){
 F(x[i]);

}

sx1[1]=1;

for(i=0;i≤1;i++){
 if(i==0)
 F(sx0[i]);
 else
 F(sx1[i]);

}

for(i=0;i≤1;i++){
 F(sx[i]);

}

t1

t2

sx

t0

t2

sx0

t1 t0

sx1

sx0[0]=0; sx[1]=1; sx[0]=0;

December 2, 2009 12

I. Extraction of tasks
  We create a task out of each assignment-statement

X[0]=0;
X[1]=1;
for(i=0;i≤1;i++){
 F(x[i]);

}

sx1[1]=1;

for(i=0;i≤1;i++){
 if(i==0)
 F(sx0[i]);
 else
 F(sx1[i]);

}

for(i=0;i≤1;i++){
 F(sx[i]);

}

t1

t2

sx

t0

t2

sx0

t1 t0

sx1

sx0[0]=0; sx[1]=1; sx[0]=0;

A buffer that can be written by multiple
tasks simplifies the extraction of tasks

December 2, 2009 13

I. Extraction of tasks
  Application restrictions

– Constant bounds in for-loops
– Side-effect-free functions

•  No implicit dependencies
– Single assignment code
– The variables in the condition of

an if-statement are iterators
– An index-expressions is a

function of its iterators
– Arrays are accessed using an

index-expression
•  Not limited to affine expressions

1.  int x[10];
2.  for (i0=0; i0 <5; i0++){
3.  x[2i0] = F0(~) + F1(~);
4.  x[2i0+1] = F2(~);
5.  }
6.  for (i0=0; i0 <5; i0++){
7.  for (i1=0; i1 <2; i1++){
8.  printf(“ %i ", x[2i0-i1+1]);
9.  printf(“ %i ", x[F3(i0,i1)]);
10.  }
11.  }

12.   int F3(int i0, int i1){
13.   if (i0==2 && i1==0)
14.  return 3;
15.  else
16.  return 2i0+i1;
17.  }

December 2, 2009 14

I. Extraction of tasks
  Application restrictions

– Constant bounds in for-loops
– Side-effect-free functions

•  No implicit dependencies
– Single assignment code
– The variables in the condition of

an if-statement are iterators
– An index-expressions is a

function of its iterators
– Arrays are accessed using an

index-expression
•  Not limited to affine expressions

1.  int x[10];
2.  for (i0=0; i0 <5; i0++){
3.  x[2i0] = F0(~) + F1(~);
4.  x[2i0+1] = F2(~);
5.  }
6.  for (i0=0; i0 <5; i0++){
7.  for (i1=0; i1 <2; i1++){
8.  printf(“ %i ", x[2i0-i1+1]);
9.  printf(“ %i ", x[F3(i0,i1)]);
10.  }
11.  }

12.   int F3(int i0, int i1){
13.   if (i0==2 && i1==0)
14.  return 3;
15.  else
16.  return 2i0+i1;
17.  }

These are sufficient restrictions to capture
the behavior in a dataflow model

December 2, 2009 15

II. Inter-task communication via buffers
  Replace array accesses by communication via a buffer

– Index-expression indicate the location to be accessed

  First-in-first-out (FIFO) buffer
– Read and write pattern must match

• Otherwise reordering task required
•  Existing solutions require

affine index-expressions [Turjan 2004 CASES]

  Alternative
– Read from and write at locations in the buffer

1.  int x[10];
2.  for (i0=0; i0 <10; i0++){
3.  x[i0] = ~;
4.  }
5.  for (i0=0; i0 <10; i0--){
6.  printf(“ %i ", x[i0]);
7.  }

December 2, 2009 16

II. Inter-task communication via buffers

  Circular buffer
– Write window and read window

•  Locations can be accessed in an arbitrary order
• Do not overlap

  Each access in a window
•  Adds a location to head
• Removes a location from the tail

  No atomic read-modify-write operations required

Direction in which sliding windows advance

Read window Write window
Circular buffer

December 2, 2009 17

II. Inter-task communication via buffers

  Circular buffer
– Write window and read window

•  Locations can be accessed in an arbitrary order
• Do not overlap

  Each access in a window
•  Adds a location to head
• Removes a location from the tail

  No atomic read-modify-write operations required

Direction in which sliding windows advance

Read window Write window
Circular buffer

A window hides a possibly
irregular access pattern

December 2, 2009 18

II. Inter-task communication via buffers

  Generalization with multiple write and read windows
– Overlap read windows (RWs)
– Overlap write windows (WWs)

•  Possible due to single assignment code

Direction in which sliding windows advance

RW0 WW0

Circular buffer

RW1 WW1

December 2, 2009 19

III. Computation of the window sizes
  An access in a window

– Preceded by adding a location to the head
– Succeed by removing a location from the tail
– Window contains location to be accessed

  Initially add a number of locations to the window
– Called the lead-in

  Delay removal of locations from the window
– Called the lead-out

  Window size is determined by the lead-in and lead-out

Direction in which sliding windows advance

Read window Write window
Circular buffer

December 2, 2009 20

IV. Insertion of communication and synchronization statements

  Replace array communication
– Insert read and write calls that indicate the buffer to be accessed

  Add synchronization statements
– acquire statement adds a location to a window
– release statement removes a location from a window
Three phases:
– Initial phase

•  Acquires lead-in locations
– Processing phase

•  Encapsulate communication statements
– Final phase

•  Release lead-out locations

1.  while(1){
2.  acquire(4,x);
3.  for(i0=0;i0<5;i0++){
4.  acquire(1,x);
5.  write(sx,2i0,F1(~)+F2(~));
6.  release(1,x);
7.  }
8.  acquire(1,x);
9.  release(1,x);
10.   release(4,x);
11.  }

December 2, 2009 21

IV. Insertion of communication and synchronization statements

  Replace array communication
– Insert read and write calls that indicate the buffer to be accessed

  Add synchronization statements
– acquire statement adds a location to a window
– release statement removes a location from a window
Three phases:
– Initial phase

•  Acquires lead-in locations
– Processing phase

•  Encapsulate communication statements
– Final phase

•  Release lead-out locations

1.  while(1){
2.  acquire(4,x);
3.  for(i0=0;i0<5;i0++){
4.  acquire(1,x);
5.  write(sx,2i0,F1(~)+F2(~));
6.  release(1,x);
7.  }
8.  acquire(1,x);
9.  release(1,x);
10.   release(4,x);
11.  }

Inserted synchronization is correct by construction

December 2, 2009 22

V. Computation of sufficient buffer capacities
  Regular synchronization pattern of the windows can be captured in

cyclo static dataflow model
– A token models a synchronization event, instead of a communicated value

•  Acquire is modeled by consumption from edge
•  Release is modeled by production on edge

while(1){
 acquire(4,x);
 for(i0=0;i0<5;i0++){
 acquire(1,x);
 write(sx,2i0,F1(~)+F2(~));
 release(1,x);
 }
 acquire(1,x);
 release(1,x);
 release(4,x);
}

t2 t0

while(1){
 int l2=0;
 acquire(1,x);
 for(i0=0;i0<5;i0++){
 for(i1=0;i1<2;i1++){
 if(l2<9) acquire(1,x);
 printf(“ %i ”, read(x,2i0-i0+1))
 if(l2>0) release(1,x);
 l2++;
 }
 release(1,x);
 }

v2 v0

‹0,6x1,4› ‹10x1,0,0›

‹0,0,10x1› ‹4,6x1,0›

December 2, 2009 23

V. Computation of sufficient buffer capacities
  Regular synchronization pattern of the windows can be captured in

cyclo static dataflow model
– A token models a synchronization event, instead of a communicated value

•  Acquire is modeled by consumption from edge
•  Release is modeled by production on edge

– Computation of sufficient buffer capacities for deadlock free execution
•  Algorithm of [Wiggers 2007 DAC] has a polynomial complexity

while(1){
 acquire(4,x);
 for(i0=0;i0<5;i0++){
 acquire(1,x);
 write(sx,2i0,F1(~)+F2(~));
 release(1,x);
 }
 acquire(1,x);
 release(1,x);
 release(4,x);
}

t2 t0

while(1){
 int l2=0;
 acquire(1,x);
 for(i0=0;i0<5;i0++){
 for(i1=0;i1<2;i1++){
 if(l2<9) acquire(1,x);
 printf(“ %i ”, read(x,2i0-i0+1))
 if(l2>0) release(1,x);
 l2++;
 }
 release(1,x);
 }

v2 v0

‹0,6x1,4› ‹10x1,0,0›

‹0,0,10x1› ‹4,6x1,0›

7

December 2, 2009 24

Conclusions
  Parallelization has been added to our mapping flow, in order to:

– Meet the throughput constraint of the application
– Derive a correct analysis model

  Automatic parallelization
– We can extract parallelism from an application with non-affine index-

expressions
– A buffer for multiple reading and writing tasks simplifies the derivation of

parallelism
– A CSDF model is used to computed the capacities of the buffers that are

large enough to guarantee deadlock free execution of the application
•  Future work: compute scheduler settings, adjust synchronization granularity

If interested, please ask for a demo of the mapping flow

December 2, 2009 25

Questions?

