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Outline 
   Context: car-entertainment applications 

   Mapping Flow 

   Motivation 

   Basic Idea 

   Automatic Parallelization 
I.  Extraction of tasks 
II.  Addition of inter-task communication via CBs 
III.  Computation of the window sizes 
IV.  Insertion of communication and synchronization statements 
V.  Computation of sufficient buffer capacities 

   Conclusion 
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Multi-stream car-entertainment system 
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Car entertainment use-case 

use-case 

ADC 

Real-time digital radio job A 

PDC CFE 

f1 
VIT CBE SRC APP DAC 

f2 

ADC 

Real-time digital radio job B 

PDC CFE 

f1 
VIT CBE DEC DAC 

f2 
SRD 
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Mapping flow 

automatic parallelization 

Sequential code 

task analysis 

setting computation 
(dataflow analysis) 

MPSoC instance Temporal  
constraints 

Representative  
streams 

task graphs 

task graphs + ET + storage req. 

task graphs + mapping options 

Use-cases 

resource allocation Start/stop job 
Accept/reject job 

Design-time 
Run-time 
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Main reasons to extract task-level parallelism 

   Meet the throughput constraint of the application 

   Satisfy storage constraints embedded memories 

   Correct by construction analysis model extraction  
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Important short-comings of existing 
parallelization techniques 
  Restrictions on input language do not match well with multimedia stream 

processing domain: 
– Affine index-expression, for-loops containing side-effect free functions 
– Typically not well supported: if-conditions, while-loops, pointers, dynamic 

memory allocation, communication deep in function call hierarchy  

  Parallelization is not driven by temporal & storage constraints 
– Missing underlying analysis model 

  Observations:  
– Task-graph radio applications can often be represented as a dataflow model 

(e.g. VPDF and in some cases CSDF) 
– Dataflow model can be used to compute throughput, buffer capacities, 

scheduler settings, and synchronization granularity 
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Basic idea 
   Input is single assignment nested loop program (NLP) 

with side-effect free functions 

  Each function becomes a task 

  Tool must insert synchronization calls and communication calls and 
must compute buffer capacities 

  Prevent complex control by making use of circular buffers instead of 
FIFO buffers 

– Potentially multiple writing and reading tasks per buffer 
– Hide irregular access patterns in buffers with sliding windows 
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Automatic Parallelization 
   Parallelization steps: 

I.  Extraction of tasks 

II.  Addition of inter-task communication via buffers 

III.  Computation of the window sizes 

IV.  Insertion of communication and synchronization 
statements 

V.  Computation of sufficient buffer capacities 
  A cyclo static dataflow model is used 

  To guarantee deadlock free execution 
  To compute buffer capacities 
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I. Extraction of tasks 

sx[0]=0; 
sx[1]=1; 

for(i=0;i≤1;i++){ 
 F(sx[i]); 

} 

t0 

t1 

sx 

X[0]=0; 
X[1]=1; 
for(i=0;i≤1;i++){ 
 F(x[i]); 

} 
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I. Extraction of tasks 
  We create a task out of each assignment-statement 

X[0]=0; 
X[1]=1; 
for(i=0;i≤1;i++){ 
 F(x[i]); 

} 

sx1[1]=1; 

for(i=0;i≤1;i++){ 
 if(i==0) 
  F(sx0[i]); 
 else 
   F(sx1[i]); 

} 

for(i=0;i≤1;i++){ 
 F(sx[i]); 

} 

t1 

t2 

sx 

t0 

t2 

sx0 

t1 t0 

sx1 

sx0[0]=0; sx[1]=1; sx[0]=0; 
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I. Extraction of tasks 
  We create a task out of each assignment-statement 

X[0]=0; 
X[1]=1; 
for(i=0;i≤1;i++){ 
 F(x[i]); 

} 

sx1[1]=1; 

for(i=0;i≤1;i++){ 
 if(i==0) 
  F(sx0[i]); 
 else 
   F(sx1[i]); 

} 

for(i=0;i≤1;i++){ 
 F(sx[i]); 

} 

t1 

t2 

sx 

t0 

t2 

sx0 

t1 t0 

sx1 

sx0[0]=0; sx[1]=1; sx[0]=0; 

A buffer that can be written by multiple  
tasks simplifies the extraction of tasks 
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I. Extraction of tasks 
  Application restrictions 

– Constant bounds in for-loops 
– Side-effect-free functions 

•  No implicit dependencies 
– Single assignment code 
– The variables in the condition of 

an if-statement are iterators 
– An index-expressions is a 

function of its iterators 
– Arrays are accessed using an 

index-expression 
•  Not limited to affine expressions 

1.  int x[10]; 
2.  for (i0=0; i0 <5; i0++){ 
3.    x[2i0] = F0(~) + F1(~); 
4.    x[2i0+1] = F2(~); 
5.  } 
6.  for (i0=0; i0 <5; i0++){ 
7.    for (i1=0; i1 <2; i1++){ 
8.      printf(“ %i ", x[2i0-i1+1]); 
9.      printf(“ %i ", x[F3(i0,i1)]); 
10.    } 
11.  } 

12.   int F3(int i0, int i1){ 
13.     if (i0==2 && i1==0) 
14.      return 3; 
15.    else 
16.      return 2i0+i1; 
17.  } 
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I. Extraction of tasks 
  Application restrictions 

– Constant bounds in for-loops 
– Side-effect-free functions 

•  No implicit dependencies 
– Single assignment code 
– The variables in the condition of 

an if-statement are iterators 
– An index-expressions is a 

function of its iterators 
– Arrays are accessed using an 

index-expression 
•  Not limited to affine expressions 

1.  int x[10]; 
2.  for (i0=0; i0 <5; i0++){ 
3.    x[2i0] = F0(~) + F1(~); 
4.    x[2i0+1] = F2(~); 
5.  } 
6.  for (i0=0; i0 <5; i0++){ 
7.    for (i1=0; i1 <2; i1++){ 
8.      printf(“ %i ", x[2i0-i1+1]); 
9.      printf(“ %i ", x[F3(i0,i1)]); 
10.    } 
11.  } 

12.   int F3(int i0, int i1){ 
13.     if (i0==2 && i1==0) 
14.      return 3; 
15.    else 
16.      return 2i0+i1; 
17.  } 

These are sufficient restrictions to capture  
the behavior in a dataflow model 
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II. Inter-task communication via buffers 
  Replace array accesses by communication via a buffer 

– Index-expression indicate the location to be accessed 

  First-in-first-out (FIFO) buffer 
– Read and write pattern must match 

• Otherwise reordering task required 
•  Existing solutions require  

affine index-expressions [Turjan 2004 CASES] 

  Alternative 
– Read from and write at locations in the buffer 

1.  int x[10]; 
2.  for (i0=0; i0 <10; i0++){ 
3.    x[i0] = ~; 
4.  } 
5.  for (i0=0; i0 <10; i0--){ 
6.    printf(“ %i ", x[i0]); 
7.  } 
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II. Inter-task communication via buffers 

  Circular buffer 
– Write window and read window 

•  Locations can be accessed in an arbitrary order 
• Do not overlap 

  Each access in a window 
•  Adds a location to head 
• Removes a location from the tail 

  No atomic read-modify-write operations required 

Direction in which sliding windows advance 

Read window Write window 
Circular buffer 
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II. Inter-task communication via buffers 

  Circular buffer 
– Write window and read window 

•  Locations can be accessed in an arbitrary order 
• Do not overlap 

  Each access in a window 
•  Adds a location to head 
• Removes a location from the tail 

  No atomic read-modify-write operations required 

Direction in which sliding windows advance 

Read window Write window 
Circular buffer 

A window hides a possibly 
irregular access pattern 
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II. Inter-task communication via buffers 

  Generalization with multiple write and read windows 
– Overlap read windows (RWs) 
– Overlap write windows (WWs) 

•  Possible due to single assignment code 

Direction in which sliding windows advance 

RW0          WW0 

Circular buffer 

RW1 WW1 
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III. Computation of the window sizes 
  An access in a window 

– Preceded by adding a location to the head 
– Succeed by removing a location from the tail 
– Window contains location to be accessed 

  Initially add a number of locations to the window 
– Called the lead-in 

  Delay removal of locations from the window 
– Called the lead-out 

  Window size is determined by the lead-in and lead-out 

Direction in which sliding windows advance 

Read window Write window 
Circular buffer 
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IV. Insertion of communication and synchronization statements 

  Replace array communication 
– Insert read and write calls that indicate the buffer to be accessed 

  Add synchronization statements 
– acquire statement adds a location to a window 
– release statement removes a location from a window 
Three phases: 
– Initial phase 

•  Acquires lead-in locations 
– Processing phase 

•  Encapsulate communication statements 
– Final phase 

•  Release lead-out locations 

1.  while(1){ 
2.    acquire(4,x); 
3.    for(i0=0;i0<5;i0++){ 
4.      acquire(1,x); 
5.      write(sx,2i0,F1(~)+F2(~)); 
6.      release(1,x); 
7.    } 
8.    acquire(1,x); 
9.    release(1,x); 
10.     release(4,x); 
11.  } 
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IV. Insertion of communication and synchronization statements 

  Replace array communication 
– Insert read and write calls that indicate the buffer to be accessed 

  Add synchronization statements 
– acquire statement adds a location to a window 
– release statement removes a location from a window 
Three phases: 
– Initial phase 

•  Acquires lead-in locations 
– Processing phase 

•  Encapsulate communication statements 
– Final phase 

•  Release lead-out locations 

1.  while(1){ 
2.    acquire(4,x); 
3.    for(i0=0;i0<5;i0++){ 
4.      acquire(1,x); 
5.      write(sx,2i0,F1(~)+F2(~)); 
6.      release(1,x); 
7.    } 
8.    acquire(1,x); 
9.    release(1,x); 
10.     release(4,x); 
11.  } 

Inserted synchronization is correct by construction 
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V. Computation of sufficient buffer capacities 
  Regular synchronization pattern of the windows can be captured in 

cyclo static dataflow model 
– A token models a synchronization event, instead of a communicated value 

•  Acquire is modeled by consumption from edge 
•  Release is modeled by production on edge 

while(1){ 
  acquire(4,x); 
  for(i0=0;i0<5;i0++){ 
    acquire(1,x); 
    write(sx,2i0,F1(~)+F2(~)); 
    release(1,x); 
  } 
  acquire(1,x); 
  release(1,x); 
  release(4,x); 
} 

t2 t0 

while(1){ 
  int l2=0;   
  acquire(1,x); 
  for(i0=0;i0<5;i0++){ 
    for(i1=0;i1<2;i1++){ 
      if(l2<9) acquire(1,x); 
      printf(“ %i ”, read(x,2i0-i0+1)) 
      if(l2>0) release(1,x); 
      l2++; 
    } 
    release(1,x); 
  } 

v2 v0 

‹0,6x1,4› ‹10x1,0,0› 

‹0,0,10x1› ‹4,6x1,0› 
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V. Computation of sufficient buffer capacities 
  Regular synchronization pattern of the windows can be captured in 

cyclo static dataflow model 
– A token models a synchronization event, instead of a communicated value 

•  Acquire is modeled by consumption from edge 
•  Release is modeled by production on edge 

– Computation of sufficient buffer capacities for deadlock free execution 
•  Algorithm of [Wiggers 2007 DAC] has a polynomial complexity 

while(1){ 
  acquire(4,x); 
  for(i0=0;i0<5;i0++){ 
    acquire(1,x); 
    write(sx,2i0,F1(~)+F2(~)); 
    release(1,x); 
  } 
  acquire(1,x); 
  release(1,x); 
  release(4,x); 
} 

t2 t0 

while(1){ 
  int l2=0;   
  acquire(1,x); 
  for(i0=0;i0<5;i0++){ 
    for(i1=0;i1<2;i1++){ 
      if(l2<9) acquire(1,x); 
      printf(“ %i ”, read(x,2i0-i0+1)) 
      if(l2>0) release(1,x); 
      l2++; 
    } 
    release(1,x); 
  } 

v2 v0 

‹0,6x1,4› ‹10x1,0,0› 

‹0,0,10x1› ‹4,6x1,0› 

7 
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Conclusions 
  Parallelization has been added to our mapping flow, in order to: 

– Meet the throughput constraint of the application 
– Derive a correct analysis model 

  Automatic parallelization 
– We can extract parallelism from an application with non-affine index-

expressions 
– A buffer for multiple reading and writing tasks simplifies the derivation of 

parallelism 
– A CSDF model is used to computed the capacities of the buffers that are 

large enough to guarantee deadlock free execution of the application 
•  Future work: compute scheduler settings, adjust synchronization granularity 

If interested, please ask for a demo of the mapping flow 
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Questions? 


