Automatic Parallelization of NLPs with Non-Affine Index-
Expressions

Marco Bekooij (NXP research)
Tjerk Bijlsma (University of Twente)

r‘
\ Y

University of Twente
founded by Philips Enschede - The Netherlands

Outline

» Context: car-entertainment applications
» Mapping Flow

» Motivation

» Basic ldea

» Automatic Parallelization
|. Extraction of tasks
lI. Addition of inter-task communication via CBs
lll. Computation of the window sizes
V. Insertion of communication and synchronization statements
V. Computation of sufficient buffer capacities

Conclusion

v

December 2, 2009

Multi-stream car-entertainment system

December 2, 2009

Car entertainment use-case

use-case

\I/ i | d o2
' >ADC — PDC— CFE — VIT — CBE— SRC— APP — DAC >

Real-time digital radio job A

Y
L >ADC — PDC— CFE = VIT = CBE—DEC—SRD—DAC

Real-time digital radio job B

December 2, 2009

Mapping flow

Representative Temporal MPSoC instance Sequential code
streams constraints 1

> . . .
.| automatic parallelization

1 task graphs

> task analysis
>

l task graphs + ET + storage req.

.| setting computation
Use-cases > (dataflow analysis)
Design-time _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|taskgraphs + mapping options
Run-time
Start/stop job resource allocation
Accept/reject job «

December 2, 2009)

Main reasons to extract task-level parallelism

» Meet the throughput constraint of the application
» Satisfy storage constraints embedded memories

» Correct by construction analysis model extraction

December 2, 2009 6

Important short-comings of existing
parallelization techniques

» Restrictions on input language do not match well with multimedia stream
processing domain:
— Affine index-expression, for-loops containing side-effect free functions
— Typically not well supported: if-conditions, while-loops, pointers, dynamic
memory allocation, communication deep in function call hierarchy

» Parallelization is not driven by temporal & storage constraints
— Missing underlying analysis model

» Observations:

— Task-graph radio applications can often be represented as a dataflow model
(e.g. VPDF and in some cases CSDF)

— Dataflow model can be used to compute throughput, buffer capacities,
scheduler settings, and synchronization granularity

December 2, 2009 7

Basic idea

» Input is single assignment nested loop program (NLP)
with side-effect free functions

» Each function becomes a task

» Tool must insert synchronization calls and communication calls and
must compute buffer capacities

» Prevent complex control by making use of circular buffers instead of
FIFO buffers

— Potentially multiple writing and reading tasks per buffer
— Hide irregular access patterns in buffers with sliding windows

December 2, 2009

Automatic Parallelization

» Parallelization steps:
|. Extraction of tasks

[l. Addition of inter-task communication via buffers
[ll. Computation of the window sizes

V. Insertion of communication and synchronization
statements

V. Computation of sufficient buffer capacities

= A cyclo static dataflow model is used
» To guarantee deadlock free execution
» To compute buffer capacities

December 2, 2009

|. Extraction of tasks

s,[0]=0
L11=1;
X[0]=0; |
X[1]=1;
for(i O|<1;i++){ S,

F(x[i]);
| ()
for(i=0;i<1;i++){

F(s,1]);
}

December 2, 2009

10

|. Extraction of tasks

» We create a task out of each assignment-statement

50l01=0; s,,[11=1; s,[01=0; s[11=1;

N @ @ oNo
[O]_01
X[1]=1:

for(i=0;i<1;i++){ S.o S,
F(xIi]); .
| \@/ (»
for(i=0;i<1;i++){ for(i=0;i<1;i++){
if(i==0) F(s,li]);
F(SXO[i]); }
else
F(s,4[i]);

December 2, 2009

11

|. Extraction of tasks

» We create a task out of each assignment-statement

Sxl01=0; sq[11=1; §01=0; s [1]=1;

. ® ® ¢
[0]=0;
X[1]=1:

SxO Sx1

N\ /.

for(i=0:i<1:i++)

F(x[il)-

| A buffer that can be written by multiple
tasks simplifies the extraction of tasks

Tor(i=U;I=T,I++)Q TOT(T=U;TST,
if(i==0) F(s,il);
F(SXO[i]);
else

F(s,4l]);

December 2, 2009

|. Extraction of tasks

» Application restrictions
—Constant bounds in for-loops
— Side-effect-free functions
* No implicit dependencies
—Single assignment code
—The variables in the condition of
an if-statement are iterators
—An index-expressions is a
function of its iterators
—Arrays are accessed using an

Index-expression
* Not limited to affine expressions

December 2, 2009

SN WON =

12.
13.
14.
15.
10.
17.

int x[10];
for (i;=0; iy <5; ig++){
X[2ig] = Fo(~) + F4(~);
X[2i,+1] = F,(~);
}
for (i,=0; i, <5; i;++){
for (i,=0; i, <2; i, ++){
printf(“ %i ", X[2ig-i;+1]);
printf(“ %i ", X[F4(iq,i1)]);
}
}

int F5(int iy, inti,){
if (i,==2 && i,==0)
return 3;
else
return 2i,+i,;

}

13

|. Extraction of tasks

» Application restrictions
—Constant bounds in for-loops
— Side-effect-free functions
* No implicit dependencies
—Single assignment code
—The variables in the condition of
an if-statement are iterators
—An index-expressions is a
function of its iterators

i S o

0.

int x[10];
for (i;=0; iy <5; ig++){
X[2ig] = Fo(~) + F4(~);
X[2igt1] = Fo(~);
}
for (i,=0; iy <5; ig++){
for (i,=0; i; <2; i;++)
printf(“ %i ", X[2ig-i;+1]);
printf(“ %i ", X[F4(iq,i1)]);
}

These are sufficient restrictions to capture
the behavior in a dataflow model

December 2, 2009

5. M (I7——Z &&T,—=U]
14. return 3;

15. else

16. return 2iy+iy;

17. }

14

Il. Inter-task communication via buffers

» Replace array accesses by communication via a buffer
—Index-expression indicate the location to be accessed

rFirst-in-first-out (FIFO) buffer int x[10];
: for (i,=0; iy <10; ig++){
—Read and write pattern must match X[ig] = ~;
« Otherwise reordering task required }

for (i,=0; iy <10; ig--){
printf(“ %i ", X[io]);
}

» Existing solutions require
affine index-expressions [Turjan 2004 CASES]

Nk WN=

»Alternative
—Read from and write at locations in the buffer

December 2, 2009 15

Il. Inter-task communication via buffers

»Circular buffer

—Write window and read window

 Locations can be accessed in an arbitrary order
* Do not overlap

Direction in which sliding windows advance

>

Circular buffer

»Each access in a window

 Adds a location to head
« Removes a location from the tall

»No atomic read-modify-write operations required

December 2, 2009 16

Il. Inter-task communication via buffers

»Circular buffer

—Write window and read window

 Locations can be accessed in an arbitrary order
* Do not overlap

Direction in which sliding windows advance

>

Circular buffer

vEacl A window hides a possibly
' irregular access pattern

»No atomic read-modify-write operations required

December 2, 2009 17

Il. Inter-task communication via buffers

»Generalization with multiple write and read windows
—Qverlap read windows (RWSs)

—Overlap write windows (\WWs)
» Possible due to single assignment code

Direction in which sliding windows advance

>

| [rw,] [row,] o, |

Circular buffer

December 2, 2009 18

lll. Computation of the window sizes

»An access in a window
—Preceded by adding a location to the head
—Succeed by removing a location from the talil
—Window contains location to be accessed

Direction in which sliding windows advancg

| [Read window| [iiiteindonl |

Circular buffer

» Initially add a number of locations to the window
—Called the lead-in

» Delay removal of locations from the window
— Called the lead-out

» Window size is determined by the lead-in and lead-out

December 2, 2009 19

IV. Insertion of communication and synchronization statements

» Replace array communication
—Insert read and write calls that indicate the buffer to be accessed

» Add synchronization statements

—acquire statement adds a location to a window
—release statement removes a location from a window

Three phases:
—Initial phase

» Acquires lead-in locations
—Processing phase

* Encapsulate communication statements
—Final phase

* Release lead-out locations

while(1){
acquire(4,x);
for(iy=0;iy<5;ig++)
acquire(1,x);
write(sx,2iy,F1(~)+F2(~));
release(1,x);
}
acquire(1,x);
release(1,x);
0. release(4,x);
1.

}

S20ONOORONS

December 2, 2009 20

IV. Insertion of communication and synchronization statements

» Replace array communication
—Insert read and write calls that indicate the buffer to be accessed

» Add synchronization statements

—acquire statement adds a location to a window
—release statement removes a location from a window

Three phases:
—Initial phase

» Acquires lead-in locations
—Processing phase

* Encapsulate communication statements
—Final phase

* Release lead-out locations

while(1){

acquire(4,x);

for(iy=0;iy<5;ig++)
acquire(1,x);
write(sx,2iy,F1(~)+F2(~));
release(1,x);

}

acquire(1,x);

release(1,x);

0. release(4,x);
1 1

P 2O ONO U A WN A

Inserted synchronization is correct by construction

December 2, 2009 21

V. Computation of sufficient buffer capacities

» Regular synchronization pattern of the windows can be captured in

cyclo static dataflow model

— A token models a synchronization event, instead of a communicated value
« Acquire is modeled by consumption from edge
* Release is modeled by production on edge

()—(x)
0, 4> <10x1,0,0»

while(1){ while(1){ /
acquire(4,x); int [,=0;
for(iy=0;iy<5;ip++)} acquire(1,x);
acquire(1,x); for(iy=0;i;<5;iy++){
write(sx,2iy,F1(~)+F2(~)); for(i,=0;i,<2;i,++)
if(1,<9) acquire(1,x); o
} printf(“ %i ”, read(x,2iy-iy*+1))
acquire(1,x); if(1,>0) release(1,x); o (4’6)(1 ’O) (O’O’ 1 OX1)
[,++;
release(4,x); } i
} release(1,x);
}

December 2, 2009 22

V. Computation of sufficient buffer capacities

» Regular synchronization pattern of the windows can be captured in

cyclo static dataflow model

— A token models a synchronization event, instead of a communicated value
« Acquire is modeled by consumption from edge
* Release is modeled by production on edge

— Computation of sufficient buffer capacities for deadlock free execution
« Algorithm of [Wiggers 2007 DAC] has a polynomial complexity

(t)—(2)
0, 4> <10x1,0,0»

while(1)Y while(1) /
acquire(4,x); int [,=0;
for(iy=0;iy<5;ip++)} acquire(1,x);
acquire(1,x); for(iy=0;i;<5;iy++){
write(sx, 2ig,F1(~)+F2(~)); for(i,=0;i,<2;i,++) V4
if(1,<9) acquire(1,x); o
} printf(“ %i ”, read(x,2iy-iy*+1))
acquire(1,x); if(1,>0) release(1,x); o (4’6)(1 ’O) (O’O’ 1 OX1)
[,++;
release(4,x); } i
} release(1,x);
}

December 2, 2009 23

Conclusions

» Parallelization has been added to our mapping flow, in order to:
— Meet the throughput constraint of the application
— Derive a correct analysis model

» Automatic parallelization
— We can extract parallelism from an application with non-affine index-
expressions
— A buffer for multiple reading and writing tasks simplifies the derivation of
parallelism
— A CSDF model is used to computed the capacities of the buffers that are

large enough to guarantee deadlock free execution of the application
» Future work: compute scheduler settings, adjust synchronization granularity

If interested, please ask for a demo of the mapping flow

December 2, 2009 24

December 2, 2009

Questions?

25

