Michael Claßen

University of Passau

St. Goar, June 30th 2009

<ロ> (四) (四) (三) (三) (三)

1/15

- Agenda

Agenda

1 GRAPHITE

- Introduction
- Status of GRAPHITE
- 2 The Polytope Model in GRAPHITE
 - What code can be represented?
 - GPOLY The polytope representation in GRAPHITE

3 Coverage of GRAPHITE

Compile time and hot spot coverage

4 Conclusions

GRAPHITE

Introduction

The GRAPHITE Project

- part of GCC 4.4
- goals:
 - provide interface to Polytope Model
 - cover as much "real world code" as possible
- in this talk: overview about status and code coverage experiments

GRAPHITE

Introduction

GIMPLE

- intermediate code representation in GCC
- common abstract language of all language frontends (e.g. C/C++, Fortran, Java)

GRAPHITE

- interface for polyhedra representation of GIMPLE
- goal: more high level loop optimizations

GRAPHITE

└─ Status of GRAPHITE

Status of GRAPHITE

The Polytope Model in GRAPHITE

└─What code can be represented?

What code can be represented?

- Structured code
- Affine loop bounds (e.g. i < 4*n+3*j-1)
- Constant loop strides (e.g. i += 2)
- Conditions contain comparisions (<, <=, >, >=, ==, ! =) between affine functions
- Affine array accesses (e.g. A[3i+1])

Analysis is working on GIMPLE, so the textual representation does not matter \rightarrow hand made goto based loops work as well.

The Polytope Model in GRAPHITE

GPOLY - The polytope representation in GRAPHITE

GPOLY

SCoP The optimization unit (e.g. a loop with some statements) scop := ([black box])

black box An operation (e.g. statement) where only the memory accesses are known black box :=

(iteration domain, scattering matrix, [data reference])

iteration domain The set of loop iterations for the black box

scattering matrix Defines the execution order of statement iterations (e.g. schedule)

data reference The memory cells accessed by the black box

The Polytope Model in GRAPHITE

GPOLY - The polytope representation in GRAPHITE

Possible optimizations in GPOLY

Iteration domain

- Remove statement iterations
- Scattering matrix
 - Change the execution order of statement iterations to improve cache locality
 - ... expose parallelism (for vectorizer or autopar)
- Data reference (not yet supported)
 - Change the data layout to improve cache behaviour
 - ... to save memory.
 - Add additional memory to allow more parallelism

Coverage of GRAPHITE

Coverage of GRAPHITE

Is it worth to write optimizations using GRAPHITE?

Coverage of GRAPHITE

Compile time and hot spot coverage

Code coverage

Compile time coverage:

- Count GIMPLE statements, loop headers and conditions
- Items are covered, if they are part of an "interesting" SCoP

• Coverage: ratio of covered items to total number of items

Hot spot coverage:

- \blacksquare One reference run \rightarrow count loop iterations
- Scale number of stmts, loops and conditions by number loop iterations
- $\blacksquare \Rightarrow$ Hot spots are taken into account \Rightarrow more realistic metric

Coverage of GRAPHITE

Compile time and hot spot <u>coverage</u>

$$\begin{array}{l} a = 10; \\ \text{for } (i=0; i < 100; i++) \\ b = 2 * i; \\ \text{if } (b >= 0) \\ c = 3; \\ \end{array}$$

Coverage:

	Compile	Hot Spot
loops	1/1	100/100
conds	2/2	200/200
stmts	7/9	700/702

Coverage of GRAPHITE

└─ Compile time and hot spot coverage

Code coverage GRAPHITE: SPEC 2006

	Compile Time	Hotspot
Benchmark	Coverage	Coverage
bwaves	1.46	0.09
cactusADM	3.54	99.41
calculix	5.28	76.09
gromacs	2.77	2.20
h264ref	2.21	7.96
lbm	35.79	0.02
leslie3d	1.23	0.72
wrf	7.70	54.86
zeusmp	1.11	0.11
others (14)	< 1	< 1
average of all 23	2.90	10.62

Figure: Coverage May 2009 [in %]

Coverage of GRAPHITE

Compile time and hot spot coverage

Space for improvements?

	Compile Time	Hotspot
Benchmark	Coverage	Coverage
base	2.90	10.61
SCEV_UNKNOWN	4.61	22.30
all conditions	18.50	19.58
all data structures	14.25	17.08
all structured control	48.43	63.65

Figure: Average coverage May 2009 [in %]

- Conclusions

GRAPHITE

- Polytope Model part of GCC 4.4
- some simple optimizations implemented
- good code coverage

 \implies ready to start implementing optimizations!

<ロ> (四) (四) (三) (三) (三)

14/15

- Conclusions

Thank You

wiki: http://gcc.gnu.org/wiki/Graphite
mailing list: http://groups.google.com/group/gcc-graphite