
Introducing the GCC to the Polyhedron Model

Introducing the GCC to the Polyhedron Model

Michael Claßen

University of Passau

St. Goar, June 30th 2009

1/15

Introducing the GCC to the Polyhedron Model

Agenda

Agenda

1 GRAPHITE
Introduction
Status of GRAPHITE

2 The Polytope Model in GRAPHITE
What code can be represented?
GPOLY - The polytope representation in GRAPHITE

3 Coverage of GRAPHITE
Compile time and hot spot coverage

4 Conclusions

2/15

Introducing the GCC to the Polyhedron Model

GRAPHITE

Introduction

The GRAPHITE Project

part of GCC 4.4

goals:

provide interface to Polytope Model
cover as much “real world code” as possible

in this talk: overview about status and code coverage
experiments

3/15

Introducing the GCC to the Polyhedron Model

GRAPHITE

Introduction

Definitions

GIMPLE

intermediate code representation in GCC

common abstract language of all language frontends (e.g.
C/C++, Fortran, Java)

GRAPHITE

interface for polyhedra representation of GIMPLE

goal: more high level loop optimizations

4/15

Introducing the GCC to the Polyhedron Model

GRAPHITE

Status of GRAPHITE

Status of GRAPHITE

GIMPLE GPOLY GIMPLE

GRAPHITE

Analysis

Front End Back End

p = planned
d = in development
w = working
f = finished

(w) (w)

−Dependency analysis (w)

− Autopar support (d)

− Autopar (d)

− Traditional loop transformations (p)

i = idea

− Vectorization (i)

− Expose more parallelism − LooPo (p)

Optimizations

− Advanced polytope optimizations (i)

5/15

Introducing the GCC to the Polyhedron Model

The Polytope Model in GRAPHITE

What code can be represented?

What code can be represented?

Structured code

Affine loop bounds (e.g. i < 4*n+3*j-1)

Constant loop strides (e.g. i += 2)

Conditions contain comparisions (<, <=, >,>=, ==, ! =)
between affine functions

Affine array accesses (e.g. A[3i+1])

Analysis is working on GIMPLE, so the textual representation does
not matter → hand made goto based loops work as well.

6/15

Introducing the GCC to the Polyhedron Model

The Polytope Model in GRAPHITE

GPOLY - The polytope representation in GRAPHITE

GPOLY

SCoP The optimization unit (e.g. a loop with some
statements)
scop := ([black box])

black box An operation (e.g. statement) where only the
memory accesses are known
black box :=
(iteration domain, scattering matrix, [data reference])

iteration domain The set of loop iterations for the black box

scattering matrix Defines the execution order of statement
iterations (e.g. schedule)

data reference The memory cells accessed by the black box

7/15

Introducing the GCC to the Polyhedron Model

The Polytope Model in GRAPHITE

GPOLY - The polytope representation in GRAPHITE

Possible optimizations in GPOLY

Iteration domain

Remove statement iterations

Scattering matrix

Change the execution order of statement iterations to improve
cache locality
... expose parallelism (for vectorizer or autopar)

Data reference (not yet supported)

Change the data layout to improve cache behaviour
... to save memory.
Add additional memory to allow more parallelism

8/15

Introducing the GCC to the Polyhedron Model

Coverage of GRAPHITE

Coverage of GRAPHITE

Is it worth to write optimizations using GRAPHITE?

9/15

Introducing the GCC to the Polyhedron Model

Coverage of GRAPHITE

Compile time and hot spot coverage

Code coverage

Compile time coverage:

Count GIMPLE statements, loop headers and conditions

Items are covered, if they are part of an “interesting” SCoP

Coverage: ratio of covered items to total number of items

Hot spot coverage:

One reference run → count loop iterations

Scale number of stmts, loops and conditions by number loop
iterations

⇒ Hot spots are taken into account ⇒ more realistic metric

10/15

Introducing the GCC to the Polyhedron Model

Coverage of GRAPHITE

Compile time and hot spot coverage

a = 10 ;
f o r (i =0; i <100; i ++){

b = 2 ∗ i ;
i f (b >= 0)

c = 3 ;
}

Coverage:

Compile Hot Spot
loops 1/1 100/100
conds 2/2 200/200
stmts 7/9 700/702

bb0 :
a = 10 ;
i = 0 ;

l oop head :
b = 2 ∗ i ;
i f (b >= 0) goto then
e l s e goto e x i t c o n d

then :
c = 3 ;
goto e x i t c o n d

e x i t c o n d :
i ++;
i f (i < 100) goto l oop head ;

11/15

Introducing the GCC to the Polyhedron Model

Coverage of GRAPHITE

Compile time and hot spot coverage

Code coverage GRAPHITE: SPEC 2006

Compile Time Hotspot
Benchmark Coverage Coverage
bwaves 1.46 0.09
cactusADM 3.54 99.41
calculix 5.28 76.09
gromacs 2.77 2.20
h264ref 2.21 7.96
lbm 35.79 0.02
leslie3d 1.23 0.72
wrf 7.70 54.86
zeusmp 1.11 0.11
others (14) < 1 < 1

average of all 23 2.90 10.62

Figure: Coverage May 2009 [in %]

12/15

Introducing the GCC to the Polyhedron Model

Coverage of GRAPHITE

Compile time and hot spot coverage

Space for improvements?

Compile Time Hotspot
Benchmark Coverage Coverage
base 2.90 10.61
SCEV UNKNOWN 4.61 22.30
all conditions 18.50 19.58
all data structures 14.25 17.08
all structured control 48.43 63.65

Figure: Average coverage May 2009 [in %]

13/15

Introducing the GCC to the Polyhedron Model

Conclusions

Conclusions

GRAPHITE

Polytope Model part of GCC 4.4

some simple optimizations implemented

good code coverage

=⇒ ready to start implementing optimizations!

14/15

Introducing the GCC to the Polyhedron Model

Conclusions

Thank You

wiki: http://gcc.gnu.org/wiki/Graphite

mailing list: http://groups.google.com/group/gcc-graphite

15/15

http://gcc.gnu.org/wiki/Graphite
http://groups.google.com/group/gcc-graphite

	Agenda
	GRAPHITE
	Introduction
	Status of GRAPHITE

	The Polytope Model in GRAPHITE
	What code can be represented?
	GPOLY - The polytope representation in GRAPHITE

	Coverage of GRAPHITE
	Compile time and hot spot coverage

	Conclusions

