
Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

Mapping and Scheduling of Parallel C
Applications with Ant Colony Optimization
onto Heterogeneous Reconfigurable
MPSoCs

Fabrizio Ferrandi
Dipartimento di Elettronica ed Informazione
Politecnico di Milano
ferrandi@elet.polimi.it

2nd Workshop on Mapping of
Applications to MPSoCs

2

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

Outline

 Introduction and Motivation

 Preliminaries and Problem Definition

 Proposed Methodology

 Experimental Results

 Conclusions and Future Work

3

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

Introduction

 The design of application for Multi-Processor System on Chip
requires to:

Partition the application (task partitioning)

Assign the tasks to the processing elements (mapping)

Determine the order of execution of the tasks
(scheduling)

 Scheduling and mapping are NP-complete problems

 Additional problems due to heterogeneous components and
design constraints

Possibility to generate unfeasible solutions

4

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

hArtes Project

 Integrated European Project in FP6 (2006-2009)

 New holistic (end-to-end) approach for complex real-time
embedded system design:

support for different formats in algorithm description;

a framework for design space exploration, which aims to
automate design partitioning, task transformation, and
metric evaluation for all the components;

a system synthesis tool producing near-optimal
implementations that best exploits the capability of each
type of processing element.

 We rely on C-to-C transformations and pragma insertion to
represent partitioning and mapping

Each task is represented by a function

5

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

hArtes Overview

 We have in charge the task
partitioning of the initial
specification and an initial guess of
mapping

 In this presentation we focus on
the mapping phase

Analyze a partitioned
application

Identify the candidate
processing element for the
execution of the tasks

Generate the related pragmas

6

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

PandA Framework for task partitioning
and mapping

Note: In this presentation, we focus on Task Mapping

7

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

 Generic architectural template composed of processing and
communication elements. A valid test case is the following
one:

Renewable (e.g., local memories, bandwidth)

and non-renewable resources (e.g., hw area)

associated with all the components

Target Architecture

ARM

DSP

L
o
c
a
l

M
e
m

o
ry

L
o
c
a
l

M
e
m

o
ry

Local
Memory

PowerPC

CLBs

MPSoC Virtex-4 FX

Shared Memory

S
h
a
re

d
 b

u
s

8

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

Application Model

 A Task Graph is a graph G=(T,E) which nodes represent
group of instructions and edges represent dependences.

 Edges are annotated with the amount of data to be
transferred

Communication delay is considered during the evaluation
of the design solution

 For cyclic task graph, we adopted the Hierarchical Task
Graph representation, where nodes are classified as:

simple: tasks with no sub-tasks

compound: tasks with other HTGs associated (e.g.,
subroutines)

loop: tasks that represent a loop whose (partitioned)
iteration body is a HTG itself

9

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

Example

/* task T1*/
while(/*condition Loop0*/){

#pragma omp parallel sections default(shared) num_threads(2)
{

#pragma omp section
{

while(/*condition Loop1*/){
#pragma omp parallel sections default(shared) num_threads(2)
{

#pragma omp section
{ /* task T2 */ }
#pragma omp section
{ /* task T3 */ }

}
}

}
#pragma omp section
{

while(/*condition Loop2*/){
#pragma omp parallel sections default(shared) num_threads(2)
{

#pragma omp section
{ /* task T4 */ }
#pragma omp section
{ /* task T5 */ }

}
}

}
}

}
/* task T6 */

10

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

Ant Colony Optimization (1)

 Introduced by Dorigo et al. as the Ant System (AS)

 Inspired by the observations of the behavior of ants when
searching for food

 Ants start from their nest looking food going in random
directions depositing a trail of pheromones that motivates
other ants to follow the same path

 Cooperative behavior

Food

11

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

Ant Colony Optimization (2)

 Initially formulated for the Traveling Salesman Problem

Find the best hamiltonian tour for all the cities (the nodes of
a connected, undirected graph)

1. Associate each arc with

a pheromone trail

2. Put m ants on an

initial city

3. Each ant constructs its

tour

4. The quality of the

result is evaluated.

5. The pheromone trails

are updated

6. If !goal, goto step 2.

Probability decision:

Pheromone update (std):

12

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

Problem Definition

 Job: generic activity (task or communication) to be
completed in order to execute the specification.

 Implementation point: the mode for the execution of a job. It
represents a combination of latency and requirements of
resources on the related target component.

 Mapping: assign each job to an admissible implementation
point, respecting the constraints imposed by the resources of
the components.

 Scheduling: determine the order of execution of all the jobs
of the specification in terms of priorities.

 Objective: minimize the overall execution time of the
application on the target architecture.

13

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

Why ACO

 Ant Colony Optimization (ACO) heuristic is a constructive
approach that limits as much as possible the generation of
unfeasible solutions

Stochastic principles guarantee the exploration

Heuristic principles and feed-backs guarantee the
exploitation of good parts of the solutions

 Analysis and evaluation of different combination of mapping
and scheduling

 Constructive approach, based on depth-first analysis, mimics
the execution of the program and helps the handling of the
design constraints, in particular with hierarchy.

14

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

Why ACO

 Exploiting resource partitioning to avoid stalling the loops

 Most of the existing approaches rely on Direct Acyclic Graphs
(DAGs)

Realistic C applications and (loop) partitioning are
naturally described with cycles

 Function calls and loops introduce a hierarchy by definition

We maintain and exploit this hierarchy to better deal with
the design constraints (top-level decisions influence low-
level decisions)

A depth-first analysis on HTG is very similar to the actual
execution of the application

15

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

Design Space Exploration

Generate intermediate representation

Optimization process

Parse C source file(s)

Generate implementation points

Generate output C file with pragmas

Front-end

Ant Colony
Optimization

Back-end

16

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

Design Space Exploration

Initialize pheromones

Prepare N ants

Compute the set C of candidates

Select job and assign to impl.point

Update set C of candidate

Evaluate design solution

Update pheromones

ACO

Colony

Ant

17

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

Solution Evaluation

 The decisions performed by the ant give a trace

Sequence of jobs, where each of them is assigned to an
implementation point

The position into the trace represents the priority for the
scheduling (if they are selected early, they have higher
priority…)

 List-based scheduler based on the mapping is given by the
implementation point and the priority values

Different decisions performed by the ant correspond in
exploring different design solutions (combination of
mapping and scheduling)

 Return overall execution time of the application

18

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

Solution Evaluation for HTGs

 Evaluation for HTGs behaves as described before plus

At the same level of the hierarchy, tasks with higher
priority are scheduled before tasks with lower priority

 If two parallel tasks (at the same level) have sub-graphs
associated:

If the task A has higher priority than the task B, A is
scheduled before B

Since a depth-first analysis is performed, the whole sub-
graph associated to A is scheduled before the one
associated to B

If the two sub-graphs do not involve the same processing
elements, resource partitioning is exploited

 Average loop iterations improves the task-graph

estimation

19

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

Experimental Results

 Comparison on DAGs with other common heuristics:

ACO requires very few evaluations to reach the optimum value

The number of unfeasible solutions is far reduced

The 2-stage decision process scales better with the size of the
problem

20

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

Experimental Results: a case study

 The methodology has been successfully applied to the JPEG
encoder on a multiprocessor prototype on FPGA

The heuristic is able to identify good design solutions for
each different architecture configuration

2 PowerPC

1 Microblaze

8,400 free slices

1 shared bus

2 PowerPC

50 tasks

1 shared bus

 Prediction of the actual performance on the target

platform is quite accurate

21

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

Experimental Results: HTGs

 Initial results on HTGs from MiBench suite:

 It performs far better than SA, TS and Dynamic Scheduling*

 We are working on extending the ILP formulation to cyclic
task graphs…

*Scheduling uses a FIFO policy - Mapping adopts a first available policy

22

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

Conclusions

 Ant Colony Optimization is very attractive for mapping and
scheduling of C applications on heterogeneous MPSoCs

Constructive approach that limits unfeasible solutions

Handling of design constraints is very simple and efficient

 Results show that it is able to outperform most of the
existing search methods

Very fast to reach the optimum value

Allocate and schedule efficiently also data transfers

Able to generate high-quality solutions in real-world
applications

 Extensions to different communication models or

architecture is straightforward.

23

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

Future Work

 Combining information from dynamic profiling has been
demonstrated to improve the estimation of the task graph
performance*

* Fabrizio Ferrandi, Marco Lattuada, Christian Pilato, Antonino Tumeo, “Performance Estimation for

Task Graphs Combining Sequential Path Profiling and Control Dependence Regions”, In Proceedings of
Seventh ACM-IEEE International Conference on Formal Methods and Models for Codesign
(MEMOCODE'2009) [To Appear].

 In particular:

Dynamic path profiling gives information about the
frequency of execution for all the paths into the
specification

Analysis of the intermediate specification gives
information of the contributions for all the tasks to each
path

Estimation metrics for heterogeneous components

based on machine learning techniques

24

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

Future Work

 Integrate the mapping phase with the task transformation
phase

Mapping can support the clustering/partitioning of tasks

 Accurate estimation of communication latency and support to
partial dynamic reconfiguration

 Concurrent optimization of application and architecture
(system-level design)

ACO can suggest how to tailor the architecture to reduce
the number of resources, without affecting the
performance of the application

Workshop on Mapping of Applications to MPSoCs–June 29th,-30th 2009

THANK YOU!

