
Data-dependencies and Thread
Interaction in Parallel Loops

Per Larsen, Sven Karlsson and Jan Madsen
{pl,ska,jm}@imm.dtu.dk

17/04/2008Data-dependencies and Thread Interaction in
Parallel Loops

2 DTU Informatics, Technical University of Denmark

Outline

• Motivation
• Inter-task dependencies in parallelized stencil operations
• Proposed solution
• Empirical evaluation
• Wrap-up

17/04/2008Data-dependencies and Thread Interaction in
Parallel Loops

3 DTU Informatics, Technical University of Denmark

Synthesizing Task Graphs from Source Code

final
product

DSE
toolsspecification

functional prototype
C/C++ with
OpenMP directives

some form of
task graph

scheduled and
mapped code???

17/04/2008Data-dependencies and Thread Interaction in
Parallel Loops

4 DTU Informatics, Technical University of Denmark

Synthesizing Task Graphs from Source Code

final
product

DSE
toolsspecification

functional prototype
C/C++ with
OpenMP directives+
new directive

some form of
task graph

scheduled and
mapped code+
runtime checks

17/04/2008Data-dependencies and Thread Interaction in
Parallel Loops

5 DTU Informatics, Technical University of Denmark

Why Add Directives?
Approaches Task Graph Synthesis

• Program analysis: correct results for every possible execution
– Use simplifying assumptions to make problem tractable
– produces over-approximations of inter-task dependencies

• Simulation: captures detailed performance behavior
– Only accurate for a single program execution
– How to combine results from multiple program executions?

• Manual synthesis: leverages human high-level understanding
– prone to errors
– does not scale with increasing

• code churn
• lines of source code

17/04/2008Data-dependencies and Thread Interaction in
Parallel Loops

6 DTU Informatics, Technical University of Denmark

Parallel Stencil Operations

step n

step n+1

stencils can vary in
size, shape and dimensions

they all result in loops with predictable array access patterns!

17/04/2008Data-dependencies and Thread Interaction in
Parallel Loops

7 DTU Informatics, Technical University of Denmark

Parallel Stencil Operations

tn tn+1 tn+2 tn+3

synchronization/
communication

17/04/2008Data-dependencies and Thread Interaction in
Parallel Loops

8 DTU Informatics, Technical University of Denmark

Comparing Actual Dependencies with
Over-approximated Dependencies

step n

step n+1


1,n


2,n


3,n


4,n


1,n+1


2,n+1


3,n+1


4,n+1


1,n


2,n


3,n


4,n


1,n+1


2,n+1


3,n+1


4,n+1

major contributors to over-approximation:
•number of threads executing loop is unknown (by design)
•collapsing multi-dimensional arrays
•using pointer arithmetic
•pointer aliasing
•loop ranges unknown
•scheduling of loop iterations to threads unknown
•stencil size unknown

refactor!

use directive!

1a) actual dependencies 1b) conservative approximation

use restrict kw

17/04/2008Data-dependencies and Thread Interaction in
Parallel Loops

9 DTU Informatics, Technical University of Denmark

The taskshare Directive

• Need to know how many tasks access each slice of an array to compute actual
inter-task dependencies (cf. Fig. 1a)

– number of tasks ts accessing slices with length at least s_min with a stencil of
size k is bounded by:

• Idea: user annotates parallel loop with

#pragma taskshare(arr,ts)

meaning that at most ts tasks will access each slice when stencil size is k
– minimal slice size s_min depends on number of threads executing loop,

number of iterations, scheduling of iterations to threads, etc.
– stencil k size may also be unknown at compile time

1)Calculate s_min at runtime
2)raise exception if Eq. (1) does not hold

ts≥⌈
k

smin

⌉ smin≥⌈
k
ts
⌉ (1)

17/04/2008Data-dependencies and Thread Interaction in
Parallel Loops

10 DTU Informatics, Technical University of Denmark

Instrumentation

• Used OpenMP directives for parallelization
• Wrote compiler* plug-in which inserts calls to check correctness of
taskshare directives at runtime

– OpenMP directives are translated into OpenMP runtime calls by
compiler

– calls to openmp runtime are wrapped by a set of functions which
calculate checks slice sizes and raise an error if taskshare directive is
violated

• Two variations of runtime checking:
– Minimal slice size can be calculated at entry to the loop:

• overhead per loop is constant
– Must check each time a new slice is mapped to a thread by openmp

runtime:
• overhead per loop is proportional to number of slices in loop

*Used llvm-gcc compiler – a combination of
gcc 4.2.1 front-end and llvm 2.5 back-end

17/04/2008Data-dependencies and Thread Interaction in
Parallel Loops

11 DTU Informatics, Technical University of Denmark

Runtime Overhead – Edge Detection

• UTDSP benchmark
performing edge detection

• Used variant with arrays
and no software pipelining
for parallelization

• Used 4096x4096 element
data-set for input

• Annotated 1 loop

Testbench: Intel Core i7 2.66GHz CPU,
32-bit Ubuntu Linux 9.04, llvm-gcc 2.5 -O2

17/04/2008Data-dependencies and Thread Interaction in
Parallel Loops

12 DTU Informatics, Technical University of Denmark

Runtime Overhead - Demosaicing

• Digital camera application
• Interpolates input from

CFA sensor in camera into
bitmap.

• Annotated 3 loops
• No measurements for

“guided” schedule due to
compiler bug.

Testbench: Intel Core i7 2.66GHz CPU
32-bit Ubuntu Linux 9.04, llvm-gcc 2.5 -O2

17/04/2008Data-dependencies and Thread Interaction in
Parallel Loops

13 DTU Informatics, Technical University of Denmark

Runtime Overhead – Heat diffusion

• Heat diffusion simulation
using finite difference
method

• Common in high
performance computing

• Annotated inner loop

Testbench: Intel Core i7 2.66GHz CPU,
32-bit Ubuntu Linux 9.04, llvm-gcc 2.5 -O2

01/07/09Data-dependencies and Thread Interaction in
Parallel Loops

14 DTU Informatics, Technical University of Denmark

Summary

• Aim to generate task graphs from simple loops expressed as C code
parallelized with OpenMP.

• Multiple factors complicate this
– use of arrays in ways which is opaque to compiler analysis

• refactor array accesses
– pointer aliasing

• use restrict keyword and/or more precise analysis
– factors determining inter-task dependencies only known at runtime

• use taskshare directive to quantify inter-task dependencies
• Experiments suggests that impact of using taskshare directive on

– coding effort
– overhead of runtime checking

… is neglible
• Extend work to more general kinds of parallel loops

Questions?

Thanks for your attention!
Reach me at pl@imm.dtu.dk

