
Institute of Computer and
Network Engineering

Technische Universität
Braunschweig

2nd Workshop on Mapping Applications to MPSoCs
St. Goar, June 2009

Timing Analysis on Complex Real-Time
Automotive Multicore Architectures

Mircea Negrean
Simon Schliecker
Rolf Ernst

2Institute of Computer and
Network Engineering

Automotive challenges
• Requirements of automotive E/E platforms and architectures

- Sufficient computing power and communication bandwidth
- Avoid unnecessary over-dimensioning of computing resources
- Low cost

Find sweet spot between maximum performance and minimum costs

• Requirements of automotive OEMs (for certification)
- Analytical proof:

• That systems correctly work under maximum load
• Sufficient resource availability at any time

Formal performance verification techniques
- During different system design phases
- For final product to increase SIL (safety integrity level) compliance

3Institute of Computer and
Network Engineering

Outline

• Abstractions for the analysis of real-time systems
• Multicore architectures
• Timing implications and countermeasures
• Formal analysis method
• Conclusion

4Institute of Computer and
Network Engineering

Outline

• Abstractions for the analysis of real-time systems
• Multicore architectures
• Timing implications and countermeasures
• Formal analysis method
• Conclusion

5Institute of Computer and
Network Engineering

Scheduler

T1 T2

activations
Resource

Task

System

CPU1

HWShared Memory

CPU2 CoP

Arbiter

Local
Memory

Software Timing Hierarchy

…

…

6Institute of Computer and
Network Engineering

Local Scheduling Analysis

• Large body of methods available to derive
WCRTs for different scheduling policies
- SPP, TDMA, RR, EDF,…
- considering realistic scheduling effects

(context switch times, offsets,…)

CPU1 Preemption
Stalling

Execution
• Single core task execution (classical model)

• Single core task execution (with shared resources)

WCRT
Shared Resource

CPU1

Valid assumption for single
processor systems:
Shared Resource access
times are part of the Core
Execution Time Ci

7Institute of Computer and
Network Engineering

Model Task Activation as “Event Streams”

t [ms]

events

events

D [ms]

Event Stream

Arrival Curves

• Response Time Analysis requires traffic models:

Derive event
bounds

Determined by
• application model (Simulink,

LabView, …)
• environment model (reactive

systems)
• service contracts (max no of

requests per time, …)

T1

Extract key parameters
(optional)

P Period
J Jitter
dmin Minimum event

distance

T1

8Institute of Computer and
Network Engineering

Component Performance Analysis

• Output event model of one processor becomes input event model of
successor compose multiple local analyses into system level
analysis

Comp 1

scheduling
comp 1

T4

T3 output event
streams

input event
streams

9Institute of Computer and
Network Engineering

• Abstractions for the analysis of real-time systems
• Multicore architectures
• Timing implications and countermeasures
• Formal analysis method
• Conclusion

10Institute of Computer and
Network Engineering

Multicore Architectures
• Expected in near future automotive designs

local
resources CPU1 local

resourcesCPU2

local
resources core1 local

resourcescore2

shared
resources

ECU1 ECU2

MC-ECU

Current distributed system
• All accesses to local resources
• Bus communication clearly

specified and systematic

Multicore system
• Accesses to local and shared

resources
• Complicated, interleaved and

less systematic communication
timing

Complex impact on timing

11Institute of Computer and
Network Engineering

• Abstractions for the analysis of real-time systems
• Multicore architectures
• Timing implications and countermeasures
• Formal analysis method
• Conclusion

12Institute of Computer and
Network Engineering

Task Execution in Multicore

• Multicore task execution with shared resources

WCRT

Shared Resource

CPU1

CPU2

• Single core task execution (with shared resources)

WCRT
Shared Resource

CPU1

• Mapping to multicore architectures changes timing
- Leads to new timing dependencies between applications!

13Institute of Computer and
Network Engineering

Software Timing Hierarchy

Scheduler

T1 T2

activations
Resource

Task

System

CPU1

HWShared Memory

CPU2 CoP

Arbiter

Local
Memory

…

Botto
m-up

bro
ke

n

14Institute of Computer and
Network Engineering

Countermeasures
• Orthogonalize resources

- Introduce schedulers that give upper bounds on interference independently
of competing streams

- At least perform traffic shaping
imposes strict hardware guidelines
protection from partially false system specification
prone to over-provisioning (not so much in hard real-time setups)

• Use formal analysis that covers dynamism
- Find realistic upper bounds on application behavior
- Provide formulas and analysis methods matching actual system

requires comprehensive knowledge of hardware behavior to set up analysis
requires safe assumptions about behavior of the software
allows considering dynamic schedulers and load

• Mix of the above

15Institute of Computer and
Network Engineering

• Abstractions for the analysis of real-time systems
• Multicore architectures
• Timing implications and countermeasures
• Formal analysis method
• Conclusion

16Institute of Computer and
Network Engineering

Formal Analysis Method - Example
• Response Time Analysis for multiprocessor systems (DATE2009)

- Set of “m” processor systems each with its own SPP scheduling

- Static set of tasks = { 1, 2, ..., n}
• statically mapped on the „m“ processors

- Unique priority space across processors

• Priority (1) > Priority (2) > ... > Priority (n)
- Set of shared resources

• Local and global
• Arbitration according to MPCP

Evolutionary extension of
OSEK-AUTOSAR scheduling

Matches design practice
in automotive domain

17Institute of Computer and
Network Engineering

Response Time Analysis
• Worst-case response time Ri of a task i on a processor with SPP

- Task own execution
- Interference due to higher priority local tasks
- Blocking time when accessing shared resources

3
1

2
4

5

Local
Resources

Global Shared Resources

G1 G2

CPU 1
Local

Resources

CPU 2

t1

t3

)()()(iiiiiii RBRICRR

5
4
3
2
1

t

)(t

)(t

time interval

number of events

: Number of events per
time interval

)(t
t

18Institute of Computer and
Network Engineering

Types of Blocking - according to MPCP
• Local blocking time • Indirect preemption delay
• Direct blocking time • Local preemption delay

Bi(Ri)= B1(Ri) + B2(Ri) + B3(Ri) + B4(Ri)

CPU1 1

2

3

4

5

8

L1

G1

G1

G1

G1CPU3

CPU2

G1

G1

G1

…

…

…

G2G2

L1 G2

19Institute of Computer and
Network Engineering

Derivation of Shared Resource Latencies
• Concept Use event model concept to capture resource traffic

1
1515,5)(~)(G

direct RRB

• Direct blocking time of task 5:

1
1
G - Time duration when G1 is blocked by 5

1111)()(~ nRtt

srrd
tt)(~1

Bound 1:

Bound 2:

• Possible upper bounds derivation:

20Institute of Computer and
Network Engineering

Multiprocessor Response Time Analysis

Analysis issues:

• Critical instance scenario not valid due to possible self-suspension of
higher priority tasks

compute response times top-down (higher priority first)

• Bi(Ri) depends on the load imposed by other tasks, but their response
time has possibly not been calculated

Iterative computation of tasks WCRT until general convergence
For lower priority tasks use a load derivation that is independent of
WCRT

)()()(
)(

ii
hpl

jjijiiii RBCRRCRR
ij

• Couple local scheduling analysis with the blocking time analysis

21Institute of Computer and
Network Engineering

Applicability

WCRT of task 5

• Modeling and Analysis of multiprocessor systems implemented in
SymTA/S (Symbolic Timing Analysis for Systems)

dsrr - minimum distance between two
consecutive shared resource requests

22Institute of Computer and
Network Engineering

• Abstractions for the analysis of real-time systems
• Multicore architectures
• Timing implications and countermeasures
• Formal analysis method
• Conclusion

23Institute of Computer and
Network Engineering

Conclusion
• Mapping ECU functions on multicore impacts function timing due to

shared resources Cross-processor interference

• New scheduling and analysis algorithms are available for multicore
- Compatible to system level analysis (DATE 2009)
- Can work with incomplete and estimated task sets

Use formal analysis methods to:
• Optimize performance and cost:

- In early design stages to guide towards optimal design choices
- Refine input data during design process to provide verification

strength guarantees for final product
• Achieve compliance to safety standards

24Institute of Computer and
Network Engineering

Thank you
for your attention !

Questions ?

25Institute of Computer and
Network Engineering

Bibliography
[1] Negrean, M., Schliecker, S., and Ernst, R. "Response-Time Analysis of

Arbitrarily Activated Tasks in Multiprocessor Systems with Shared Resources."
In Proceedings of Design, Automation and Test in Europe Conference (DATE),
Nice, France (April 2009).

[2] Schliecker, S., Rox, J., Negrean, M., Richter, K., Jersak, M., and Ernst, R.
"System Level Performance Analysis for Real-Time Automotive Multi-Core and
Network Architectures." IEEE Transactions on Computer Aided Design (July
2009).

[3] Richter, K., Jersak, M., and Ernst, R. "Learning Early-Stage Platform
Dimensioning From Late-Stage Timing Verification." In Proceedings of Design,
Automation, and Test in Europe (DATE), Nice, France, (April 2009).

[4] Schliecker, S., Negrean, M., Nicolescu, G., Paulin, P., and Ernst, R. "Reliable
Performance Analysis of a Multicore Multithreaded System-On-Chip."
Proceedings of the 6th International Conference on Hardware/Software
Codesign and System Synthesis (CODES-ISSS), Atlanta, GA (October 2008).

