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Automotive challenges
• Requirements of automotive E/E platforms and architectures

- Sufficient computing power and communication bandwidth
- Avoid unnecessary over-dimensioning of computing resources
- Low cost

Find sweet spot between maximum performance and minimum costs

• Requirements of automotive OEMs (for certification)
- Analytical proof: 

• That systems correctly work under maximum load
• Sufficient resource availability at any time

Formal performance verification techniques 
- During different system design phases
- For final product to increase SIL (safety integrity level) compliance
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• Multicore architectures
• Timing implications and countermeasures 
• Formal analysis method
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Local Scheduling Analysis

• Large body of methods available to derive 
WCRTs for different scheduling policies 
- SPP, TDMA, RR, EDF,…
- considering realistic scheduling effects 

(context switch times, offsets,…)

CPU1 Preemption
Stalling

Execution
• Single core task execution (classical model)

• Single core task execution (with shared resources)

WCRT
Shared Resource

CPU1

Valid assumption for single 
processor systems: 
Shared Resource access 
times are part of the Core 
Execution Time Ci
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Model Task Activation as “Event Streams”
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• Response Time Analysis requires traffic models:

Derive event 
bounds

Determined by
• application model (Simulink, 

LabView, …)
• environment model (reactive 

systems)
• service contracts (max no of 

requests per time, …)
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Component Performance Analysis

• Output event model of one processor becomes input event model of
successor compose multiple local analyses into system level 
analysis

Comp 1 

scheduling
comp 1

T4

T3 output event 
streams

input event 
streams
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Multicore Architectures
• Expected in near future automotive designs

local
resources CPU1 local

resourcesCPU2

local
resources core1 local

resourcescore2

shared
resources

ECU1 ECU2

MC-ECU

Current distributed system
• All accesses to local resources
• Bus communication clearly 

specified and systematic

Multicore system
• Accesses to local and shared 

resources
• Complicated, interleaved and 

less systematic communication 
timing

Complex impact on timing
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Task Execution in Multicore

• Multicore task execution with shared resources

WCRT

Shared Resource

CPU1

CPU2

• Single core task execution (with shared resources)

WCRT
Shared Resource

CPU1

• Mapping to multicore architectures changes timing
- Leads to new timing dependencies between applications!
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Software Timing Hierarchy
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Countermeasures
• Orthogonalize resources

- Introduce schedulers that give upper bounds on interference independently 
of competing streams

- At least perform traffic shaping
imposes strict hardware guidelines
protection from partially false system specification
prone to over-provisioning (not so much in hard real-time setups)

• Use formal analysis that covers dynamism
- Find realistic upper bounds on application behavior
- Provide formulas and analysis methods matching actual system

requires comprehensive knowledge of hardware behavior to set up analysis
requires safe assumptions about behavior of the software
allows considering dynamic schedulers and load

• Mix of the above
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Formal Analysis Method - Example
• Response Time Analysis for multiprocessor systems (DATE2009)

- Set of “m” processor systems each with its own SPP scheduling

- Static set of tasks = { 1, 2, ..., n}
• statically mapped on the „m“ processors

- Unique priority space across processors 

• Priority ( 1) > Priority ( 2) > ... > Priority ( n)
- Set of shared resources

• Local and global
• Arbitration according to MPCP

Evolutionary extension of 
OSEK-AUTOSAR scheduling

Matches design practice 
in automotive domain
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Response Time Analysis
• Worst-case response time Ri of a task i on a processor with SPP

- Task own execution
- Interference due to higher priority local tasks
- Blocking time when accessing shared resources
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Types of Blocking - according to MPCP
• Local blocking time • Indirect preemption delay
• Direct blocking time • Local preemption delay

Bi(Ri )= B1(Ri ) + B2(Ri ) + B3(Ri ) + B4(Ri )
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Derivation of Shared Resource Latencies
• Concept Use event model concept to capture resource traffic
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• Direct blocking time of task 5:
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• Possible upper bounds derivation:
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Multiprocessor Response Time Analysis

Analysis issues:

• Critical instance scenario not valid due to possible self-suspension of 
higher priority tasks

compute response times top-down (higher priority first)

• Bi(Ri) depends on the load imposed by other tasks, but their response 
time has possibly not been calculated

Iterative computation of tasks WCRT until general convergence 
For lower priority tasks use a load derivation that is independent of 
WCRT
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• Couple local scheduling analysis with the blocking time analysis
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Applicability

WCRT of task 5

• Modeling and Analysis of multiprocessor systems implemented in  
SymTA/S (Symbolic Timing Analysis for Systems)

dsrr - minimum distance between two   
consecutive shared resource requests
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Conclusion
• Mapping ECU functions on multicore impacts function timing due to 

shared resources Cross-processor interference

• New scheduling and analysis algorithms are available for multicore
- Compatible to system level analysis (DATE 2009)
- Can work with incomplete and estimated task sets

Use formal analysis methods to: 
• Optimize performance and cost:

- In early design stages to guide towards optimal design choices
- Refine input data during design process to provide verification 

strength guarantees for final product
• Achieve compliance to safety standards
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Thank you 
for your attention !

Questions ?
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