Energy and thermal management in MPSOCs

Prof. Tajana Šimunić Rosing Dept. of Computer Science

System Energy Efficiency Lab see seelab.ucsd.edu

Texas Instruments Inc.

- Energy consumption is a critical issue:
 - Wireless systems: maximize battery life, optimize energy harvesting
 - High performance systems: minimize operational costs

Reference: J. Rabaey, "A Brand New Wireless Day," Keynote Presentation, ASPDAC Jan. 08

What are we doing about it?

NSF Projects GreenLight & FlashGordon

- Green cyber-infrastructure in energyefficient mobile facilities
- Closed-loop power and thermal management

Dynamic power management (DPM)

- Optimal DPM for a given class of workloads
- Machine learning to adapt
 - Select among specialized policies
 - Use sensors and performance counters to monitor
 - Multitasking/within task adaptation of voltage and frequency

Dynamic thermal management (DTM)

- Workload scheduling:
 - Power vs. thermal management
 - Runtime adaptation to get best temporal and spatial profiles using closed-loop sensing
 - Negligible performance overhead
- Machine learning for dynamic adaptation
- Proactive thermal management

۲

DPM: Workloads - Idle State

Hard Disk Trace

WWW Trace

Pareto Distribution:

 $E_{user} = 1 - a \cdot t^{-b}$

- Assumptions:
 - general distribution governs the first request arrival
 - exponential distribution represents arrivals after the first arrival
 - user, device and queue are stationary

Obtain globally optimal policy using linear programming

Measurements on hard disk within 11% of ideal oracle policy factor of 2.4 lower than always-on factor of 1.7 lower than default time-out

Policies used in experiments

• Hard disk drive

Expert	Characteristics
Fixed Timeout	Timeout = $7*T_{be}$
Adaptive Timeout	Initial timeout = $7*T_{be}$; Adjustment = $+0.1T_{be}/-0.1T_{be}$
Exponential Predictive	$I_{n+l} = a i_n + (1 - a).I_n,$ with $a = 0.5$
TISMDP	Optimized for delay constraint of 3.5% on HP-1 trace

Trace Name	Duration (in sec)	$\overline{t_{RI}}$	$\sigma_{_{t_{_{RI}}}}$	
HP-1Trace	32311	20.5	29	
HP-2 Trace	35375	5.9	8.4	
HP-3 Trace	29994	17.2	2	
$\overline{t_{RI}}$: Average Request Inter-arrival Time (in sec)				

- CPU: Xscale
- Workloads:
 - qsort, djpeg, blowfish, dgzip

Freq (MHz)	Voltage (V)
208	1.2
312	1.3
416	1.4
520	1.5

Measurements on HDD

HP1 Trace **HP2** Trace **HP3** Trace Policy %delay %energy %delay %energy %delay %energy Oracle 68.17 65.9 0 0 0 71.2 Timeout 4.2 49.9 4.4 46.9 3.3 55 66.3 8.7 64.7 67.7 Ad Timeout 7.7 6 TISMDP 3.4 44.8 2.26 36.7 1.8 42.3 **Predictive**/ 8 66.6 9.2 65.2 6.5 68

With Individual Experts

Converges to Predictive

With Controller

	Maximupset	ierav Bert	indese	HI	P-2 Trace	HP-3	Trace
V	Least D	%delay	%energy	%delay	%energy	%delay	%energy
	Low delay	3.5	45	2.61	37.41	2.55	49.5
	↓ ↓	6.13	60.64	5.86	54.2	4.36	61.02
	High energy savings	7.68	65.5	8.59	64.1	5.69	66.28

CPU: Higher utilization tasks

Single task: within 7% of the max possible energy savings

Bench.	Low perf delay> Higher energy savings					
	%delay	%energy	%delay	%energy	%delay	%energy
qsort	6	17	16	32	25	41
djpeg	7	21	15	37	26	45
dgzip	15	30	21	42	27	49
bf	6	11	16	27	25	40

Bench.	208MHz/1.2V		
	%delay	%energy	
qsort	56	48	
djpeg	34	54	
dgzip	33	54	
bf	40	51	

- Multitasking environment: energy savings 20-50% maximum
 - energy savings are average of per thread savings (e.g. djpeg & dgzip)

Bench.	Low perf delay> Higher energy savings					
	%delay	%energy	%delay	%energy	%delay	%energy
qsort+djpeg	6	17	15	33	25	41
djpeg+dgzip	13	24	19	39	27	48
qsort+djpeg	7	20	18	35	26	42
dgzip+bf	13	18	22	32	27	44

CPU: Frequency of Selection

For qsort

Performance vs. Energy

- Assume a simple static-DVFS policy
 - AMD Opteron (four v-f settings):
 - 1.25V/2.6GHz, 1.15V/1.9GHz, 1.05V/1.4GHz, 0.9V/0.8GHz
- Compare against a base system with no DVFS and three simple idle PM policies:

Policy	Description	
PM-1	switch CPU to ACPI state C1 (remove clock supply) and move to lowest voltage setting	
PM-2	switch CPU to ACPI state C6 (remove power)	
PM-3	switch CPU to ACPI state C6 and switch the memory to self- refresh mode	

Results

Bonchmark Frog		% dolay	%Energy _{savingsPM-i}			
Denchmark	rreq	7ouelay	PM-1	PM-2	PM-3	
	1.9	29	5.2	0.7	-0.5	
mcf	1.4	63	8.1	0.1	-2.1	
	0.8	163	8.1	-6.3	-10.7	
	1.9	37	4.7	-0.6	-2.1	
bzip2	1.4	86	7.4	-2.4	-5	
	0.8	223	7.8	-9.0	-14	
	1.9	32	6	1	-0.1	
art	1.4	76	7.3	-1.7	-4	
	0.8	202	8	-8	-13	
	1.9	37	5	-0.5	-2	
sixtrack	1.4	86	6	-4.3	-7.2	
	0.8	227	7	-11	-16.1	

Key points

- Simple power management policies provide better energy performance tradeoffs
- Lower v-f setting offer worse e/p tradeoffs due to high performance delay
- DVFS still useful for:
 - Peak power reduction
 - Thermal management
 - Systems with simpler memory controllers and low power system components

Evaluating Thermal Management Policies

- Combination of temperature characteristics and performance:
 - Hot Spots:
 - Thermal Cycles:
 - Spatial Gradients:
 - Performance:

% time spent above threshold % time cycles above ΔT_{cyc} are observed % time gradients above ΔT_{spat} are observed across the die Load average (sum of run queue length and number of jobs currently running)

DTM: Evaluation Framework

DTM: Policies compared

- Optimal and static:
 - ILP-energy
 - minimizes the overall energy consumption
 - ILP-comb
 - minimizes the thermal hot spots and the temperature gradients
- Dynamic:
 - Load balancing
 - Balances threads for performance only
 - Adaptive-Random Policy
 - Minimizes & balance temperature with low scheduling complexity
 - *Probability* of sending a workload to a core based on temperature history
 - Adapts to changes in temperature dynamics
 - DVFS, DPM, Thread migration
- Online learning (OL)
 - Various specialist/expert combinations

Load balancing vs. optimal policies

 Energy or performance-aware methods are not always sufficient to manage temperature.

Dynamic Policies: Thermal Hot Spots

 Workloads collected at an operational datacenter over a period of a week; concatenated 1hr of each day to show adaptation

in average in comparison to the best policy

Reactive vs. Proactive Management

 e.g., DVFS, fetch-gating, workload migration,

. . .

Reactive vs. Proactive Management

Proactive

 e.g., DVFS, fetch-gating, workload migration,

. . .

- Reduce and balance temperature
 - Adjust workload, V/f setting, etc.

Detection with SPRT

System Model

Proactive Temperature Balancing

- Uses principle of locality as in default load balancing policy at initial assignment
- Utilizes ARMA predictor & thermal forecast:
 - A core is projected to have a hot spot <u>OR</u>
 - $\Delta T_{spatial}$ is projected to be large
 - → Migrate threads to balance temperature
 - → Move "waiting" threads

Proactive vs. Reactive: Hot Spots

- Proactive Balancing (PTB) achieves similar hot spot reduction with P-DVS while improving performance by ~8%
- PTB reduces hot spots 60% over reactive migration

Power and Thermal Management

- e energy savings by exploiting
- Power management can achieve large energy savings by exploiting variations in workload
 - TISMDP DPM/DVS policy optimized for stationary workloads
 - Implementable in hardware
 - Machine learning to optimally select among individual DPM/DVS policies
- Minimizing power consumption does not always lead to optimal thermal profiles both in terms of hot spots and temperature gradients
- Thermal management:
 - Very low overhead policies minimize hot spots and thermal gradients
 - Online learning performs significantly better than any individual policy
 - Proactive thermal management further reduces hotspots by 60% with practically no overhead

Power management

•DAC'09

MODELING & ANALYSIS

MODELING & ANALISIS	
 Novel memory systems – DRAM & PCM Cycle-accurate simulation of energy consumed by CPU, memory hierarchy, interconnect, power conversion system and battery Energy software profiler Software optimization to minimize the energy consumption using complex instruction mapping speech recognition, multimedia 	 IEEE D&T '04 DSD'04, GLVLSI'04 IEEE TCAD'03 DAC'02, DATE'02 ICASSP '02 IEEE TVLSI'01 DATE'00, DAC'99 ISLPED'99, ISSS'00 CODES'99
STOCHASTIC POLICIES	•Book: "The best papers
 Statistical models of workload and devices in computing systems Optimal power management algorithms using Time-Indexed Semi-Markov decision processes 	•ESTIMedia'03, DATE'02 •IEEE TCAD'01 •DAC'01, MOBICOM'00 •DATE'00, ISLPED '00 •ISSS'99
ONLINE LEARNING	•IEEE TCAD'09
 Adaptively selects among a set of policies 	•USEINIX-HOLPOWER U8

Thermal management

MODELING AND ANALYSIS	 SIGMETRICS'09 DATE'09 GLSVLSI'08 ISQED'08 IEEE TVLSI'07 Journal of LPE'06 GLSVLSI'06 PATMOS'05, DSD'04 	
 Fine-grained reliability modeling of multicore systems Fast architecture-level simulation framework Large scale modeling of system reliability and power Modeling and analysis methodologies for 3D circuits Thermal estimation based on a limited set of sensors Sensor placement for accurate thermal measurement 		
TEMPERATURE-AWARE SCHEDULING	• DATE'09	
 Optimal scheduling solution for known workloads Extremely light-weight dynamic OS-level job scheduler Scheduling in 3D coupled with liquid cooling Online learning for selecting the best fit policy 	 IEEE IVLSI'08 ASPDAC'08 DAC'08 DATE'07 	
	• IEEE TCAD'09	
	• ICCAD'08	
 Highly accurate, fully dynamic temperature prediction 	ISLPED'08	

• Proactive job allocation to prevent thermal problems

Select recent publications

BOOK CHAPTERS & JOURNAL PAPERS

- E. Regini, D. Lim, T. Simunic Rosing, "Energy management in heterogeneous wireless sensor networks," submitted to I 2009.
- G. Dhiman, T. Simunic Rosing, "Using online learning for system level power management," IEEE TCAD 2009.
- Y. Lu, E. Chung, T. Simunic, L. Benini, G. De Micheli: "Quantitative Comparison of Power Management Algorithms", in The Most Influential Papers of 10 Years DATE, Edited by Lauwereins, Rudy; Madsen, Jan, Springer-Verilag, 2008.
- A. Coskun, T. Simunic Rosing, K. Whisnant, K. Gross, "Static and dynamic temperature-aware scheduling for multiprocessor SoCs," IEEE TVLSI 2008.
- T. Simunic Rosing, K. Mihic, G. De Micheli, "Power and reliability management of SOCs," IEEE Transactions on VLSI, April 2007.
- G. Park, T. Simunic Rosing, M. Todd, C. Farrar, W. Hodgkiss, "Energy Harvesting for Structural Health Monitoring in Sensor Networks," ASCE Journal, 2007.
- J. Kim, T. Simunic Rosing, "Power-aware resource management techniques for low-power embedded systems," in Handbook of Real-Time and Embedded Systems, Edited by S. H. Son, I. Lee, J. Y-T Leung, Taylor-Francis Group LLC, 2006.
- A. Coskun, T. Simunic Rosing, K. Mihic, G. De Micheli, Y. Leblebici, "Analysis and Optimization of MPSoC Reliability," Invited paper to Journal of Low-Power Electronics, April 2006.

• CONFERENCE PAPERS:

- P. Aghera, D. Fang, T. Simunic Rosing, K. Patrick, "Energy management in wireless healthcare systems," IPSN 2009.
- A. Coskun, R. Strong, D. Tullsen, T. Simunic Rosing, "Job scheduling and power management on chip multiprocessors for improved processor lifetime," SIGMETRICS 2009.
- G. Dhiman. T. Simunic Rosing, "Analysis of DVFS in modern processors," HotPower2008.
- A. Coskun, T. Simunic Rosing, K. Gross, "Proactive temperature balancing for low cost thermal management in MPSOCs," ICCAD'08.
- E. Regini, D. Lim, T. Simunic Rosing, "Distributed scheduling for heterogeneous wireless sensor networks," submitted to ISM'08.
- A. Coskun, T. Simunic Rosing, K. Gross, "Proactive temperature management in MPSOCs," to appear in ISLPED 2008.
- A. Coskun, T. Simunic Rosing, K. Gross, "Temperature management in MPSOCs using online learning," to appear in DAC 2008.
- A. Coskun, T. Simunic Rosing, "Temperature-aware MPSOC scheduling for reducing hot spots and gradients," ASPDAC'08.
- S. Sharifi, T. Simunic Rosing, "Accurate temperature sensing for efficient thermal management," ISQED'08.
- G. Dhiman, T. Simunic Rosing, "Dynamic Voltage Scaling using Machine Learning," ISLPED 2007.
- D. Musian, K. Lin, T. Simunic Rosing, "An Active Sensing Platform for Structural Health Monitoring Application," IPSN-SPOTS'07.
- A. Coskun, T. Simunic Rosing, "Temperature-aware task scheduling," DATE'07.
- D. Lim, J. Shim, T. Simunic Rosing, T. Javidi, "Scheduling data delivery in heterogeneous wireless sensor networks," ISM'06.
- G. Dhiman, T. Simunic Rosing, "Dynamic Power Management Using Machine Learning," ICCAD'06
- A. Coskun, T. Simunic Rosing, "A Simulation Methodology for Reliability Analysis in Multi-Core SoCs," GVLSI'06
- T. Simunic, K. Mihic, G. De Micheli: "Optmization of Reliability and Power Consumption in Systems on a Chip, "PATMOS'05.
- T. Simunic, W. Quadeer, G. De Micheli: "Managing heterogeneous wireless environments via Hotspot servers, "MMCN'05.