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Future of IT

 Energy consumption is a critical issue:

Reference: J. Rabaey, “A Brand New Wireless Day,” Keynote Presentation, ASPDAC Jan. 08

 Energy consumption is a critical issue:
 Wireless systems: maximize battery life, optimize energy harvesting
 High performance systems: minimize operational costs



What are we doing about it?

NSF Projects GreenLight & FlashGordon
G b i f t t i• Green cyber-infrastructure in energy-
efficient mobile facilities 

• Closed-loop power and thermal 
management 

Dynamic thermal management (DTM)
kl d h d li

Dynamic power management (DPM)
O i l f i l f • Workload scheduling:

• Power vs. thermal management
• Runtime adaptation to get best temporal 

and spatial profiles using closed-loop 
i

• Optimal DPM for a given class of 
workloads

• Machine learning to adapt
• Select among specialized policies

U d f sensing
• Negligible performance overhead

• Machine learning for dynamic adaptation
• Proactive thermal management

• Use sensors and performance 
counters to monitor

• Multitasking/within task adaptation 
of voltage and frequency



DPM: Workloads - Idle State
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DPM: TISMDP model
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 Assumptions:

 general distribution governs the first request arrival 
 exponential distribution represents arrivals after the first arrival
 user device and queue are stationary user, device and queue are stationary

Obtain globally optimal policy using linear programming

Measurements on hard disk within 11% of ideal oracle policyMeasurements on hard disk within 11% of ideal oracle policy
factor of 2.4 lower than always-on
factor of 1.7 lower than default time-out 



Online Learning for Power Management

Selected expert manages

 Experts:
 DPM: A state of the art DPM policy
 DVFS: v-f setting

Selected expert manages 
power 

for the operative period………..EXP 1 EXP 2 EXP 3 EXP n

Selects the best performing
expert for managing power

D iDevice

Performance converges to that of the best performing expert 
ith i  idl  i d  t t   TNO /)(l

Controller

with successive idle periods at rate  TNO /)(ln

Evaluates performance of all 
the experts

Controller

EXP y :Dormant Experts EXP y :Operational Expert



Policies used in experimentsp
 Hard disk drive  CPU: Xscale

 Workloads:
Expert Characteristics

Fixed Timeout Timeout = 7*Tbe

Adaptive Timeout Initial timeout = 7*Tbe;
Adjustment = +0.1Tb /-0.1Tb

 Workloads:
 qsort, djpeg, blowfish, 

dgzip
Adjustment  +0.1Tbe/ 0.1Tbe

Exponential Predictive In+l = a in + (1 – a).In,
with a = 0.5

TISMDP Optimized for delay constraint of 
3.5% on HP-1 trace

Freq
(MHz)

Voltage 
(V)

208 1.2

Trace 
Name

Duration
(in sec) RIt RIt

312 1.3

416 1.4

520 1 5
HP-1Trace 32311 20.5 29

HP-2 Trace 35375 5.9 8.4

HP-3 Trace 29994 17.2 2

520 1.5

: Average Request Inter-arrival Time (in sec)RIt



Measurements on HDD

With Individual Experts

Policy HP1 Trace HP2 Trace HP3 Trace

%delay %energy %delay %energy %delay %energy

Oracle 0 68.17 0 65.9 0 71.2

Timeout 4.2 49.9 4.4 46.9 3.3 55

Ad Timeout 7.7 66.3 8.7 64.7 6 67.7

TISMDP 3.4 44.8 2.26 36.7 1.8 42.3

Predictive 8 66.6 9.2 65.2 6.5 68

With ControllerConverges to TISMDPConverges to Predictive
Preference HP-1 Trace HP-2 Trace HP-3 Trace

%delay %energy %delay %energy %delay %energy
Low delay

I
3.5 45 2.61 37.41 2.55 49.5

Least DelayMaximum Energy Savings

IV
High energy

savings

6.13 60.64 5.86 54.2 4.36 61.02

7.68 65.5 8.59 64.1 5.69 66.28



DVFS: Mem vs. CPU
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Energy Loss = (0.9 – 0.7) = 0.2
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CPU: Higher utilization tasks

Bench. Low perf delay -------> Higher energy savings Bench. 208MHz/1.2V

%d l %

 Single task: within 7% of the max possible energy savings

%delay %energy %delay %energy %delay %energy

qsort 6 17 16 32 25 41
djpeg 7 21 15 37 26 45

%delay %energy

qsort 56 48
djpeg 34 54
dgzip 33 54dgzip 15 30 21 42 27 49

bf 6 11 16 27 25 40

dgzip 33 54
bf 40 51

 Multitasking environment: energy savings 20-50% maximum

Bench. Low perf delay -------> Higher energy savings

 Multitasking environment: energy savings 20 50% maximum
 energy savings are average of per thread savings (e.g. djpeg & dgzip)

%delay %energy %delay %energy %delay %energy

qsort+djpeg 6 17 15 33 25 41
djpeg+dgzip 13 24 19 39 27 48
qsort+djpeg 7 20 18 35 26 42

dgzip+bf 13 18 22 32 27 44



CPU: Frequency of Selection

For qsort
25% CPU i t i
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Performance vs. Energy
 Assume a simple static-DVFS policy
 AMD Opteron (four v-f settings):

1 25V/2 6GH 1 15V/1 9GH 1 05V/1 4GH 0 9V/0 8GH 1.25V/2.6GHz, 1.15V/1.9GHz, 1.05V/1.4GHz, 0.9V/0.8GHz

 Compare against a base system with no DVFS and 
three simple idle PM policies:three simple idle PM policies:

Policy Description
PM-1 switch CPU to ACPI state C1 (remove clock 

supply) and move to lowest voltage setting 
PM-2 switch CPU to ACPI state C6 (remove power)
PM-3 switch CPU to ACPI state C6 and switch the 

memory to self- refresh mode 



Results

%EnergysavingsPM-iBenchmark Freq %delay
gysavingsPM-i

PM-1 PM-2 PM-3

mcf

1.9 29 5.2 0.7 -0.5

1 4 63 8 1 0 1 -2 1mcf 1.4 63 8.1 0.1 2.1

0.8 163 8.1 -6.3 -10.7

bzip2

1.9 37 4.7 -0.6 -2.1

1 4 86 7 4 2 4 5bzip2 1.4 86 7.4 -2.4 -5

0.8 223 7.8 -9.0 -14

art

1.9 32 6 1 -0.1

1 4 76 7 3 1 7 4art 1.4 76 7.3 -1.7 -4

0.8 202 8 -8 -13

i t k

1.9 37 5 -0.5 -2

1 4 86 6 4 3 7 2sixtrack 1.4 86 6 -4.3 -7.2

0.8 227 7 -11 -16.1



Key points

 Simple power management policies provide better Simple power management policies provide better 
energy performance tradeoffs

 Lower v-f setting offer worse e/p tradeoffs due to g p
high performance delay

 DVFS still useful for:
 Peak power reduction
 Thermal management
 Systems with simpler memory controllers and low power 

system components



Evaluating Thermal 
M t P li iManagement Policies

 Combination of temperature characteristics and performance: Combination of temperature characteristics and performance:

 Hot Spots: % time spent above threshold
 Thermal Cycles: % time cycles above ∆Tcyc are 

observed
 Spatial Gradients: % time gradients above ∆T are Spatial Gradients: % time gradients above ∆Tspat are 

observed across the die
 Performance: Load average 

(sum of run queue length and 
number of jobs currently running)



DTM: Evaluation Framework

Inputs: 
• Workload – collected at a data center

R

• Workload – collected at a data center
• Floorplan, temperature (for dynamic policies)

Power Manager
DPM, DVS

Resource manager
Static: Fixed allocation (ILP)
Dynamic:  Dependent on the policy Inputs: 

• Power trace for each unit

S

o e t ace o eac u t
• Floorplan, package and die

properties (Niagara-1)

Thermal Simulator
HotSpot [Skadron, ISCA’03]

Transient Temp. 
Response for Each Unit



DTM: Policies compared 
 Optimal and static:

 ILP-energy 
 minimizes the overall energy consumption

 ILP-comb
 minimizes the thermal hot spots and  the temperature gradients

 Dynamic:
 Load balancing

 Balances threads for performance only
 Adaptive-Random Policy

 Minimizes & balance temperature with low scheduling complexity Minimizes & balance temperature with low scheduling complexity
 Probability of sending a workload to a core based on temperature history
 Adapts to changes in temperature dynamics

 DVFS, DPM, Thread migrationg
 Online learning (OL)

 Various specialist/expert combinations



Load balancing vs. 
optimal policiesoptimal policies

 Energy or performance-aware methods are not always gy p y
sufficient to manage temperature.
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Dynamic Policies: Thermal Hot SpotsDynamic Policies: Thermal Hot Spots

 Workloads collected at an operational datacenter over a period of 
a week; concatenated 1hr of each day to show adaptation
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Online learning gives 20% hot spot reduction 
in average in comparison to the best policy



Reactive vs. Proactive Management

R i Reactive
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R ti  Proactive

Reactive vs. Proactive Management

 Reactive  Proactive
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 e.g., DVFS,

fetch-gating, 
workload migrationworkload migration, 
…



R i P ti

Reactive vs. Proactive Management

 Reactive  Proactive
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 e.g., DVFS,
fetch-gating, 

 Reduce and balance 
temperature 
 Adjust workloadworkload migration, 

…

 Adjust workload,   
V/f setting, etc. 



Proactive management flow

Temperature Data from 
Thermal Sensors

Predictor
Periodic ARMA 

Model ValidationPredictor
(ARMA) &

Model Update

Temperature at time (tcurrent + tn) 
for all cores

SCHEDULER

Temperature-Aware 
Allocation on Cores



Detection with SPRT



System Model

All ti
Dispatching 

Queues

Allocation 
Policy

Load Balancing:

Threads

• Recently run thread:
Allocate to the core it ran 
previously on

• Otherwise Threads
Allocate to the core that 
has the lowest priority 
thread

• Significant imbalance

Core-1 Core-2 Core-3

Significant imbalance
at runtime

Balance

. . .



Proactive Temperature Balancing

U i i l f l lit i d f lt l d Uses principle of locality as in default load 
balancing policy at initial assignment

 Utilizes ARMA predictor & thermal forecast: Utilizes ARMA predictor & thermal forecast:
 A core is projected to have a hot spot OR
 ∆Tspatial is projected to be large

Mi t th d t b l t t Migrate threads to balance temperature
 Move “waiting” threads

Core 1

Threads

waiting

i Core 2Core-1running Core-2



Proactive vs. Reactive:
Hot SpotsHot Spots

 Proactive Balancing (PTB) achieves similar hot spot reduction with 
P-DVS while improving performance by ~8%
PTB d h t t 60% ti i ti PTB reduces hot spots 60% over reactive migration
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Power and Thermal Management

 Power management can achieve large energy savings by exploiting 
variations in workloadvariations in workload
 TISMDP DPM/DVS policy optimized for stationary workloads

 Implementable in hardware
 Machine learning to optimally select among individual DPM/DVS policies Machine learning to optimally select among individual DPM/DVS policies

 Minimizing power consumption does not always lead to optimal thermal 
profiles both in terms of hot spots and temperature gradients

 Thermal management:
 Very low overhead policies minimize hot spots and thermal gradients
 Online learning performs significantly better than any individual policyg p g y y p y
 Proactive thermal management further reduces hotspots by 60% with 

practically no overhead

Syst m En r  Effici nc  L bSystem Energy Efficiency Lab
seelab.ucsd.edu



Power management
•DAC’09
•IEEE D&T ‘04
•DSD’04, GLVLSI’04
IEEE TCAD’03

• Novel memory systems – DRAM & PCM
• Cycle-accurate simulation of energy consumed by

MODELING & ANALYSIS

•IEEE TCAD’03
•DAC’02, DATE’02
•ICASSP ’02
•IEEE TVLSI’01

Cycle accurate simulation of energy consumed by 
CPU, memory hierarchy, interconnect, power 
conversion system and battery

• Energy software profiler
S ft ti i ti t i i i th •DATE’00, DAC’99

•ISLPED’99, ISSS’00
•CODES’99

• Software optimization to minimize the energy 
consumption using complex instruction mapping

• speech recognition, multimedia

•Book: “The best papers 
in 10 years of DATE”, ‘07
•ESTIMedia’03,  DATE’02
•IEEE TCAD’01

STOCHASTIC POLICIES
• Statistical models of workload and devices in 

computing systems •IEEE TCAD 01
•DAC’01, MOBICOM’00
•DATE’00, ISLPED ’00
•ISSS’99

p g y
• Optimal power management algorithms using Time-

Indexed Semi-Markov decision processes

•IEEE TCAD’09
•USENIX-HotPower’08
•ISLPED’07, ICCAD’06

ONLINE LEARNING
• Adaptively selects among a set of policies



Thermal management
MODELING AND ANALYSIS • SIGMETRICS’09

• DATE’09
• GLSVLSI’08• Fine-grained reliability modeling of multicore systems GLSVLSI 08
• ISQED’08
• IEEE TVLSI’07
•Journal of LPE’06

GLSVLSI’06

• Fast architecture-level simulation framework
• Large scale modeling of system reliability and power
• Modeling and analysis methodologies for 3D circuits
• Thermal estimation based on a limited set of sensors

TEMPERATURE-AWARE SCHEDULING

• GLSVLSI’06
•PATMOS’05, DSD’04

• DATE’09

Thermal estimation based on a limited set of sensors
• Sensor placement for accurate thermal measurement

TEMPERATURE AWARE  SCHEDULING
• IEEE TVLSI’08
• ASPDAC’08
•DAC’08
• DATE’07

• Optimal scheduling solution for known workloads
• Extremely light-weight dynamic OS-level job scheduler
• Scheduling in 3D coupled with liquid cooling

PROACTIVE MANAGEMENT

• DATE 07

• IEEE TCAD’09
• ICCAD’08

g g
• Online learning for selecting the best fit policy

• Highly accurate fully dynamic temperature • ISLPED’08• Highly accurate, fully dynamic temperature 
prediction 

• Proactive job allocation to prevent thermal problems 
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 G. Dhiman, T. Simunic Rosing, “Dynamic Power Management Using Machine Learning,” ICCAD’06
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 T. Simunic, W. Quadeer, G. De Micheli: “Managing heterogeneous wireless environments via Hotspot servers, “ MMCN’05.


