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Outline

� A Brief Introduction of the MAPS Project

� MAPS High-level Virtual Platform (MVP) 

� MVP in the MPSoC SW design flow

� MVP Overview

� Instrumentation toolchain

� VPE structure

� Related work

� Summary
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MAPS - MPSoC Application Programming Studio

� MAPS is a research project which targets the problem of 
MPSoC software development.
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MVP in the MPSoC SW Design Flow
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MAPS tool framework

MAPS virtual platform
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MVP Overview

�C applications are directly compiled by the MVP specific toolchain 

into dynamic libraries

�The SystemC based MVP simulator dynamically loads the 

compiled binaries

�Configurations can be stored as XML files for reconfiguration

�A virtual IO device is available, which can be used to see the 
execution result directly
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Software Toolchain

� The MVP software toolchain enables normal C applications 
to be executed in the SystemC based simulator

� IR level instrumentation is performed

� The toolchain is built on the LLVM (alternatively CoSy) 
compiler framework

int main(){

printf(“hello 

world\n”);

return 0;

}
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Virtual Processing Element (VPE) 

� A parameterized abstract processor

� Clock Frequency: f

� Type: vt (RISC|VLIW|DSP|SIMD|User_Defined) 

� Generic OS behavior:

� Scheduling Algorithm

� Round-Robin

� Earliest Deadline First (EDF) 

� Priority Based Scheduling
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Related work

� Simulation based approaches for ESL
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Summary

� MVP is an easy-to-use high-level virtual platform

� Platform and multi-applications scenarios modelling effort is 
reduced to almost ZERO

� The platform focuses on functional simulation for early 
MPSoC software development

� C applications can be directly compiled and executed (no 
SystemC coding is required) 

� C code developed for the platform is completely reusable 
(due to light MVP APIs) 

� MVP allows to model broad range of applications  due to 
generality of its MoC

� Application execution can be monitored via GUI

� SW developer can get early performance estimation 
information
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Thank you !


