

MAPS and a high-level virtual platform (MVP)

Anastasia Stulova, Jianjiang Ceng, Jeronimo Castrillon, Weihua Sheng, Rainer Leupers 30 June 2009

Institute for Integrated Signal Processing Systems

Outline

- A Brief Introduction of the MAPS Project
- MAPS High-level Virtual Platform (MVP)
 - MVP in the MPSoC SW design flow
 - MVP Overview
 - Instrumentation toolchain
 - VPE structure
 - Related work

Summary

MAPS - MPSoC Application Programming Studio

MAPS is a research project which targets the problem of MPSoC software development.

MVP in the MPSoC SW Design Flow

MAPS tool framework

MVP Overview

C applications are directly compiled by the MVP specific toolchain into dynamic libraries

The SystemC based MVP simulator dynamically loads the compiled binaries

- Configurations can be stored as XML files for reconfiguration
- A virtual IO device is available, which can be used to see the execution result directly

Software Toolchain

- The MVP software toolchain enables normal C applications to be executed in the SystemC based simulator
- IR level instrumentation is performed
- The toolchain is built on the LLVM (alternatively CoSy) compiler framework

Virtual Processing Element (VPE)

- A parameterized abstract processor
 - Clock Frequency: f
 - Type: vt (RISC|VLIW|DSP|SIMD|User_Defined)
- Generic OS behavior:
 - Scheduling Algorithm
 - Round-Robin
 - Earliest Deadline First (EDF)
 - Priority Based Scheduling

Simulation based approaches for ESL

Framework	Arch. modelling effort	МоС	OS modelling	Multi- applications oriented	Speed	Timing accuracy
SHAPES VP		HW				
HOPES VP	High	restricted	Target	No	Low	CA, IA
SystemCoDesigner, VPC	Medium	Rule-based (SysteMoC)	Not included	No	Medium	ТА
VPU, Coware Inc.	Medium	SystemC threads	Generic	No	Medium	ТА
HdS, TIMA	Medium	C processes	Generic	No	Medium	ТА
HW/SW cosim. with RTOS for MPSoC, Takada Laboratory	Low/Medium	C processes	mITRON	No	High	No timing
RTOS modelling for SLD, University of California	Medium/ High	SpecC processes	Generic	No	High	Lower than TA
MVP	Low	C processes	Generic	Yes	High	Lower than TA

CA- Cycle Accurate

IA- Instruction Accurate

TA- Transaction Accurate

- MVP is an easy-to-use high-level virtual platform
 - Platform and multi-applications scenarios modelling effort is reduced to almost ZERO
- The platform focuses on functional simulation for early MPSoC software development
 - C applications can be directly compiled and executed (no SystemC coding is required)
 - C code developed for the platform is completely reusable (due to light MVP APIs)
- MVP allows to model broad range of applications due to generality of its MoC
- Application execution can be monitored via GUI
 - SW developer can get early performance estimation information

Thank you !

