
Institute for Integrated Signal Processing Systems

MAPS and a high-level virtual platform (MVP)

Anastasia Stulova, Jianjiang Ceng, Jeronimo Castrillon, Weihua Sheng,

Rainer Leupers

30 June 2009

2

Outline

� A Brief Introduction of the MAPS Project

� MAPS High-level Virtual Platform (MVP)

� MVP in the MPSoC SW design flow

� MVP Overview

� Instrumentation toolchain

� VPE structure

� Related work

� Summary

3

MAPS - MPSoC Application Programming Studio

� MAPS is a research project which targets the problem of
MPSoC software development.

Application
Modeling

Code
Generation

Functional
Verification

Scheduling
& Mapping

Parallelization

Performance
Estimation

Simulation
Platforms

4

MVP in the MPSoC SW Design Flow

Early SW
Development

High-Level
Simulation

High-level
Specification

Architecture
Exploration

VP Development

HW
DevelopmentEvaluation

on VP

Evaluation
on HW

Target SW
Development

Project Timing SW Team HW Team Accuracy

M
V

P
 S

u
p
p
o
rte

d

Early

Late

Low

High

5

MAPS tool framework

MAPS virtual platform

functional verification,
early SW performance
estimation

MAPS compiler

code partitioning,
spatial+temporal
task mapping

SW release

6

MVP Overview

�C applications are directly compiled by the MVP specific toolchain

into dynamic libraries

�The SystemC based MVP simulator dynamically loads the

compiled binaries

�Configurations can be stored as XML files for reconfiguration

�A virtual IO device is available, which can be used to see the
execution result directly

App1

.c

App2

.c

MVP Simulator

App-1

.c

App-1

.so

Dynamic Load

App-n

.c

App-n

.so

MVP Toolchain

Configuration
File (XML)

MVP
GUI

Virtual

IO

7

Software Toolchain

� The MVP software toolchain enables normal C applications
to be executed in the SystemC based simulator

� IR level instrumentation is performed

� The toolchain is built on the LLVM (alternatively CoSy)
compiler framework

int main(){

printf(“hello

world\n”);

return 0;

}

hello.so

LLVM-GCC
Frontend

MVP
Instrumentation

IR

Instrumented

IR
C

Backend

hello.mvp.c
Native Compiler

e.g. GCC

8

Virtual Processing Element (VPE)

� A parameterized abstract processor

� Clock Frequency: f

� Type: vt (RISC|VLIW|DSP|SIMD|User_Defined)

� Generic OS behavior:

� Scheduling Algorithm

� Round-Robin

� Earliest Deadline First (EDF)

� Priority Based Scheduling

VPE

App1

A1.so

App2

A2.so

RUN

REQ_SLEEP

…

…

9

Related work

� Simulation based approaches for ESL

TAMediumNoGeneric

SystemC

threadsMediumVPU, Coware Inc.

High

High

High

Medium

Medium

Low

Speed

No timingNomITRON

C

processesLow/Medium

HW/SW cosim. with RTOS for

MPSoC, Takada Laboratory

Yes

No

No

No

No

Multi-

applications

oriented

TAGeneric

C

processesMediumHdS, TIMA

Generic

Generic

Not included

Target

OS

modelling

Lower than

TA

C

processesLowMVP

Lower than

TA

SpecC

processes

Medium/

High

RTOS modelling for SLD,

University of California

TA

Rule-based

(SysteMoC)MediumSystemCoDesigner, VPC

CA, IA

HW

restricted High

SHAPES VP

HOPES VP

Timing

accuracyMoC

Arch. modelling

effortFramework

CA- Cycle Accurate

IA- Instruction Accurate

TA- Transaction Accurate

10

Summary

� MVP is an easy-to-use high-level virtual platform

� Platform and multi-applications scenarios modelling effort is
reduced to almost ZERO

� The platform focuses on functional simulation for early
MPSoC software development

� C applications can be directly compiled and executed (no
SystemC coding is required)

� C code developed for the platform is completely reusable
(due to light MVP APIs)

� MVP allows to model broad range of applications due to
generality of its MoC

� Application execution can be monitored via GUI

� SW developer can get early performance estimation
information

11

Thank you !

