
© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 1

Automatic Design Space Exploration and
Prototyping from Behavioral Models

Joachim Falk, Jens Gladigau, Michael Glaß, Martin Lukasiewycz,
Joachim Keinert, Felix Reimann, Martin Streubühr,

Christian Haubelt, Jürgen Teich

Hardware/Software Co-Design
University of Erlangen-Nuremberg

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 2

JPEG Decoder Application
0100100010010101111100101101010111111111111000000110000
1111110000001100001110101011111100000000000011110100100
0010101111100101101010111111111111000000110000010010001
1111110000001100001110100000000111101001000101111110000

parser Huffman
decode inv ZRL DC

decode

inv
quant Inv

ZigZag

IDCT
2D Shuffle YCbCr PPM

Sink

Some Questions:
Run everything in software? How many
processor cores?
Design a hardware accelerator for this
application?
Compute only parts in hardware?

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 3

Controller Bus

SDRAM

MPSoC Platform

µController

Local Bus

Local RAM

Bridge

Shared
RAM

DSP Bus

HW Accl

HW Accl

DSP RAM

MemCtrl µController

DSP

Video
Front End

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 4

Mapping

Application

Automatic Mapping

Platform

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 5

Agenda
Overview
Design Space Exploration
Embedded Software Generation
Prototyping
Case study
Conclusions

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 6

System Synthesis
System synthesis comprises:

Resource allocation
Actor binding
Channel mapping
Transaction routing

Idea:
Formulate system synthesis problem as 0-1 ILP
Use Pseudo-Boolean (PB) solver to find a feasible solution
Use Multi-Objective Evolutionary Algorithm (MOEA) to optimize
Decision Strategy of the PB solver

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 7

System Synthesis (Resource Allocation)

R denotes the set of resources
Resource activation α: R → {0,1}
α(r) = 1 denotes resource activation
α(r) = 0 denotes resource deactivation

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 8

System Synthesis (Actor Binding)
A denotes the set of actors
Actor binding activation α: A x R → {0,1}
α(a,r) = 1 binds actor a onto resource r
∀a∊A: ∑ α(a,r) = 1 (Each actor is bound exactly once)

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 9

System Synthesis (Channel Mapping)

C denotes the set of channels
Channel mapping activation α: C x R → {0,1}
α(c,r) = 1 maps channel c onto resource r
∀c∊C: ∑ α(c,r) = 1 (Each channel is mapped exactly once)

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 10

System Synthesis (Transaction Routing)

Additional variables for transactions (memory accesses)
ta,c,r,n, tc,a,r,n ∊ {0,1}
n is the communication step
Set of constraints

Transaction has to start or end at the resource a
sending/receiving actor is bound to, respectively
Each transaction must not visit a resource more than once
Successive communication steps must be performed on
adjacent resources

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 11

Design Space Exploration

pe
rfo

rm
an

ce
cost

◈◈◈
◈

◈

◈◈ ◈
◈ ◈

Mutation

Crossover

PB Solver

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 12

Agenda
Overview
Design Space Exploration
Embedded Software Generation
Prototyping
Case study
Conclusions

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 13

SystemC Advantages

Permits hardware/software co-design
Actor-oriented design

Network graph
Channels
Actors

Actors are only allowed to communicate via channels

parser Huffman
decode inv ZRL DC

decode

inv
quant Inv

ZigZag

IDCT
2D Shuffle YCbCr PPM

Sink

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 14

SystemC Disadvantages

Complex control flow and
unstructured channel
accesses prevent proper
analysis leading often to
suboptimal application
implementations

class PPMSink: public sc_module {
void process() {
while(1) {
dimX = i2.read();
dimY = i2.read();
pixels = dimX*dimY;
printHeader();
for (int n=0; n<pixels; n++)
printPixel(i1.read());

}
};

class PPMSink: public sc_module {
void process() {
while(1) {
dimX = i2.read();
dimY = i2.read();
pixels = dimX*dimY;
printHeader();
for (int n=0; n<pixels; n++)
printPixel(i1.read());

}
};

parser Huffman
decode inv ZRL DC

decode

inv
quant Inv

ZigZag

IDCT
2D Shuffle YCbCr PPM

Sink

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 15

schedule() {
while(true) {
forall actors a ∊ A {
if is_executable(a) {
execute(a)

}
}

}
}

schedule() {
while(true) {
forall actors a ∊ A {
if is_executable(a) {
execute(a)

}
}

}
}

Single Processor Scheduling

Potential
scheduling
overhead

parser Huffman
decode inv ZRL DC

decode

inv
quant Inv

ZigZag

IDCT
2D Shuffle YCbCr PPM

Sink

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 16

SystemCoDesigner Modeling Approach

Queue
(FIFO Semantics)

#i1≥1 & #o1≥1
& !check
/ transform

i1

PPM Sink

main

#i2≥2 / size

o1i2
loop

check

dimX = i2[0];
dimY = i2[1];

size pixel = i1[0];
…
o1[0] = pixel;

transform if(x<dimX || y<dimY)
return(false);

return(true);

check

parser Huffman
decode inv ZRL DC

decode

inv
quant Inv

ZigZag

IDCT
2D Shuffle YCbCr PPM

Sink

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 17

SysteMoC
SysteMoC – SystemC library for actor-based design

Actor functionality (member functions and variables)
Communication behavior (activation pattern)

C++ Language Standard

Core Language
Modules
Ports
Processes
Events
Interfaces
Channels

Data-Types
4-valued logic types (01zx)
4-valued logic vectors
Bits and bit-vectors
Arbitrary-precision integers
Fixed-point numbers
C++ user-defined types

Elementary Channels
Signal, timer, mutex, semaphore, FIFO, etc.

SysteMoC
Elementary channels separating functionality and communication
C++ syntax for specifying actor communication behavior as FSMs
Scheduler for (dynamic) dataflow MoC domain

Event-driven Simulation Kernel

C
++

Sy
st

em
C

Sy
st

eM
oC

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 18

Hierarchy of Streaming MoCs

HSDF

SDF

CSDF

BDF

KPN

DDF

RPN

RPN: Reactive Process Network
DDF: Dynamic Dataflow
KPN: Kahn Process Network
BDF: Boolean Dataflow
CSDF: Cyclo-Static Dataflow
SDF: Synchronous Dataflow
HSDF: Homogeneous SDF

BDF and larger: Turing complete

FunState ≈ RPN

[Basten@MoCC2008]

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 19

Improvement
parser Huffman

decode inv ZRL DC
decode

inv
quant Inv

ZigZag

IDCT
2D Shuffle YCbCr PPM

Sink

schedule() {
while(true) {
if is_executable(inv. ZigZag) {
execute(inv. ZigZag)
execute(IDCT2D)

}
forall actors a ∊ Adyn {
if is_executable(a) {
execute(a)

}
}

}
}

schedule() {
while(true) {
if is_executable(inv. ZigZag) {
execute(inv. ZigZag)
execute(IDCT2D)

}
forall actors a ∊ Adyn {
if is_executable(a) {
execute(a)

}
}

}
}

JPEG Decoder example
speedup by a factor of two.

Synthetic benchmarks
speedup up to a factor of 10.

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 20

The Situation

a2
2

2

2

a1 a3

2

1

11 1

1
1

We got a dataflow graph
Some actors, or even the topology, are unknown
But a subgraph of SDF actors is known
How to find a good quasi-static schedule?

?
?
? ?

?
?

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 21

Clustering (SDF)

a2
2

2

2

a1 a3

2

1

11 1

1
1

a4

2

2 2

2

τ = (2*a1,1*a2,2*a3)

1 1

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 22

Clustering (CSDF)

a2
2

2

2

a1 a3

2

1

11 1

1
1

a4

[0,2]

[1,1] [1,1]

[0,2]

τ = ((1*a1,1*a3), (1*a1,1*a2, 1*a3))

1 1

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 23

Clustering 2 (CSDF)

a2
2

2

2

a1 a3

2

1

11 1

1
1

[2,0]

[0,2] [0,2]

[2,0]

τ = ((1*a2),(2*a1,2*a3))

i1

i2

o1

o2 so

#i1≥1 && #i2≥1 && #o1≥2

#i1≥1 && #i2≥1 && #o2≥2

s1s2

#i1≥1 && #i2≥1 && #o1≥2

#i1≥1 && #i2≥1 && #o2≥2

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 24

Clustering (dynamic dataflow)

i1

i2

o1

o2 so

#i1≥1 && #i2≥1 && #o1≥2

#i1≥1 && #i2≥1 && #o2≥2

s1s2

#i1≥1 && #i2≥1 && #o1≥2

#i1≥1 && #i2≥1 && #o2≥2

i1

i2 o2

o1

1

s0

s2

s1

s3

#i1≥2/(a2)

#i2≥1/(a1,a3)

#i2≥1/(a1,a3)

#i1≥2/(a2)

#i2≥1/(a1,a3)

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 25

Clustering Results

Real world example [EMSOFT2008]
JPEG QCIF (176x144) decoding
Dynamic scheduling obtained 88 ms per frame
After clustering of the IDCT and the InvZigZag actor 42 ms per frame
were obtained.
Whole system speedup by a factor of two.

Synthetic benchmarks
Ten random graphs with 60 nodes and 5000 clusters
Maximal speedup found per graph is by a factor of 10.
Selection of actors for clustering has a huge impact on the obtained
speedup.

parser Huffman
decode inv ZRL DC

decode

inv
quant Inv

ZigZag

IDCT
2D Shuffle YCbCr PPM

Sink

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 26

Agenda
Overview
Design Space Exploration
Embedded Software Generation
Prototyping
Case study
Conclusions

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 27

Actor Synthesis

#i1≥1 & #o1≥1
& !check
/ transform

i1

PPM Sink

main

#i2≥2 / size

o1i2

loop

check

dimX = i2[0];
dimY = i2[1];

size pixel = i1[0];
…
o1[0] = pixel;

transform if(x<dimX || y<dimY)
return(false);

return(true);

check

DSP

delay, area,
power

delay, area,
power

Software SynthesisHardware Synthesis

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 28

Communication Synthesis

Queue
(FIFO Semantics)

FIFO Control

Memory Memory

HW/SW Performance Estimation

event handling

Memory commit
policy

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 29

Design Flow
SystemCTM

model

select
implementation

CPUCPU MEMMEM

MEMMEM

BUSBUS

CPUCPU

HWHW HWHW

component
library

model

select CPUs, busses,
hw accelerators, etc.

from component library

specify mapping

rapid
prototyping

exploration
model

Forte Cynthesizer
behavioral synthesis

automatic
design space
exploration

optimized
solutions

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 38

Agenda
Overview
Design Space Exploration
Embedded Software Generation
Prototyping
Case study
Conclusions

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 39

Baseline profile without subsampling (interleaved/non-interleaved)
5650 SysteMoC LoC

4 PDs specification and interface definition
16 PDs module implementation
14 PDs integration and debugging (~ 3 PDs integration)
4 PDs SCD SysteMoC code adaptation

Any HW/SW implementation on Xilinx Virtex II FPGA (50 MHz)
HW only implementation QCIF@65frames/second)

Motion JPEG (1/2)
parser Huffman

decode inv ZRL DC
decode

inv
quant Inv

ZigZag

IDCT
2D Shuffle YCbCr PPM

Sink

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 40

Motion JPEG (2/2)

29
(29)

1 086
(1 395)

1 893
(2 213)

0.10 fps
(0.13 fps)

10 030 ms
(8 076 ms)

all

63
(63)

7 540
(8 148)

15 064
(17 381)

0.16 fps
(0.22 fps)

6 275 ms
(4 465 ms)

8

72
(96)

11 622
(12 393)

35 033
(41 585)

43.0 fps
(40.3 fps)

23.49 ms
(25.06 ms)

1

47
(72)

14 508
(15 078)

40 467
(44 878)

65.0 fps
(81.1 fps)

15.63 ms
(12.61 ms)

0

BRAMFFsLUTsThroughputLatency# SW Actors

7,600 solutions evaluated
366 non-dominated solutions
evaluation time 30.44s/solution

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 41

Agenda
Overview
Design Space Exploration
Embedded Software Generation
Prototyping
Case study
Conclusions

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 42

Conclusions
SystemCoDesigner automatically maps applications to
MPSoC platforms
SystemCoDesigner application model permits an automatic
detection of restricted MoC
Thus, making available design methods applicable
SystemCoDesigner uses a combination of PB solver and
MOEA to perform automatic design space exploration

© University of Erlangen-Nuremberg
Hardware-Software-Co-Design 43

Project Partners
Alcatel-Lucent AG
Audi AG
Cadence Design Technologies
Daimler AG
Forte Design Systems
Fraunhofer Institute for Integrated
Circuits
IBM Germany, GmbH
Infineon Technologies AG
VaST Systems

network
controller
design

SoC optimization
and prototyping

automotive EE
architecture
exploration

