

How Unthoughtful Resource Sharing Counteracts

WCET-Analysis

Dipl.-Inf. Christoph Cullmann
AbsInt Angewandte Informatik GmbH

Motivation

❚ Static analysis is widely accepted for calculating
worst-case execution times (WCET) for safety-critical
hard-realtime systems

❚ Tool support is available: aiT, e.g.

❚ The demand for more performance leads to the
introduction of multi-core architectures, not
designed for safety-critical applications

Single-Core WCET Analysis
❚ Analysis of „complex“

processors possible because
the actual computations and
accesses are fully determined
by the control flow graph

❚ Therefore even possible to
analyse architectures with
timing anomalies and domino
effects

Domino Effect

❚ Timing anomaly

❚ Execution time increase is not bounded
by hardware determined constants

❚ Certain instruction sequences e.g. in loop
bodies can trigger this effect and increase
latencies in further iterations

Pseudo-LRU Replacement

❚ Used for example in PPC G3

❚ Each setting of B[0..2] points to a specific line:

B0

B1 B2

10

10 10

L0 L1 L2 L3

4-way PLRU Domino Effect
Non-empty cacheEmpty cache

c: c . . . 1
1 0

c d . . 1
0 0

c d f . 0
0 1

c d f . 1
1 1

c d f . 1
0 1

c d f h 0
0 0

c d f h 1
1 0

c d f h 1
0 0

c d f h 0
0 1

c d f h 1
1 1

c d f h 1
0 1

c d f h 0
0 0

. . . . 0
0 0

d:
f:
c:
d:
h:
c:
d:
f:
c:
d:
h:

c e a b 1
1 0

c e d b 0
1 1

c f d b 1
0 1

c f d b 1
1 1

c f d b 0
1 1

c h d b 1
0 1

c h d b 1
1 1

c h d b 0
1 1

c f d b 1
0 1

c f d b 1
1 1

c f d b 0
1 1

c h d b 1
0 1

f e a b 0
0 0

c:
d:
f:
c:
d:
h:
c:
d:
f:
c:
d:
h:

Sequence: c, d, f, c, d, h

This sequence is then
repeated ad infinitum

 only cache hits

two misses each time

b

PPC755 Pipeline

Instruction Sequence S1
A lwz r20, 0(r2)

B addi r21, r20, 4

C mullw r19, r14, r29

D lwz r23, 0(r20)

E addi r24, r23, 4

F addi r25, r14, 4

G lwz r26, 0(r19)

H mullw r27, r14, r29

I lwz r28, 0(r26)

J addi r22, r28, 0

 mullw can only be
executed by integer
unit IU1

 lwz can only be
executed by the load/
store unit LSU

 S1 must be repeated
at least 3 times

Execution Units Overview
Distribution of instruction sequence S1 on the execution units IU1, IU2 and LSU.

❚ In cycle 1 instructions A and B are dispatched to LSU and IU2.
So C can be dispatched to IU1 in cycle 1.

❚ 10 + 9(n-1) cycles are needed with n being the number of
iterations

Example: Domino Effect
Distribution of instruction sequence S1 on the execution units IU1, IU2 and LSU
with an additional leading instruction X. Domino effect!

❚ With the insertion of instruction X, B is dispatched to IU1 in cycle 1.
❚ C can only be executed by IU1 and so has to wait for B to finish. B has to wait

for the results of A.
❚ While J is executing B can be already dispatched to IU1 and the stream is again

delayed
❚ 3 more cycles per iteration (33%)!

Problem of Sharing
❚ On typical multi-core

architectures memories are
shared

❚ Simplistic WCET analysis
would assume conflicts
possible on each memory
access

=> in the best case same
performance as a
single-core

❚ Idea:

❙ Reduce conflicts

❙ Count number of
conflicting accesses

Classification of Architectures

❚ Fully timing compositional architectures

No timing anomalies (ARM7)

❚ Compositional architectures with constant-bounded effects

Timing anomalies but no domino effects (Infineon TriCore)

❚ Non-compositional architectures:

Domino effects and timing anomalies (PowerPC 755)

Memory Hierarchies, Pipelines, and Buses for
Future Architectures in Time-critical Embedded
Systems
Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling, Markus Pister, Christian Ferdinand

Reduce use of shared resources!

❚ Use compositional pipelines

❚ Use predictable caches
❙ LRU-Replacement policy and/or scratchpad

memories

❙ Seperate instruction and data caches

❚ Non-shared memory where there is little
sharing in the application

The PROMPT Design for
Predictable Multi-core
Architectures

The PREDATOR Consortium

Reconciling Predictability with Performance

PREDATOR is an ICT project in the 7th Framework Program of the EU

The PROMPT Design Process
1. Hierarchical privatization

– decomposition of the set of applications according to the
sharing relation on the global state

– allocation of private resources for non-shared code and
state

– sound (and precise) determination of delays for accesses
to the shared global state

2. Controlled socialization
• introduction of sharing to reduce costs
• controlling loss of predictability

3. Sharing of lonely resources – seldom accessed resources,
e.g. I/O devices

Principles for the PROMPT
Architecture and Design Process

❚ No interference on shared resources
where not needed for performance

❚ Harmonious integration of
applications, i.e. without introducing
interferences on shared resources not
existing in the applications

	Folie 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	The PROMPT Design for Predictable Multi-core Architectures
	Steps of the Design Process
	Principles for the PROMPT Architecture and Design Process

