


High-Level Objectives 

●  technology and design techniques for achieving 
predictability of systems 

–  especially on modern platforms 

●  trade-offs between performance and predictability 

Predictability  transverses all levels of abstraction in 
embedded systems design: 

–  Verification, modeling, compilation, OS, platforms. 



Industrial Sectors 

●  safety-critical systems 
–  transportation, power automation, medical systems, ... 
–  Market of over $900 million in 2008 [int. ARC Advisory Group] 

●  sectors, where systems failure may lead to economic 
consequences 

–  consumer electronics, telecom, ... 



Partners 
OS & Networks 

●  Cantabria                                      
(Michael Gonzalez–Harbour) 

●  SSSA (Giorgio Buttazzo) 

●  York (Alan Burns) 

Hardware Platforms & MPSoC 

●  Bologna (Luca Benini) 

●  Braunschweig (Rolf Ernst) 
[affiliated] 

●  ETHZ – Zürich (Lothar Thiele) 

●  IMEC – Belgium                       
(Stylianos Mamagkakis) 

●  Linköping (Petru Eles) 

Modeling & Validation:  

●  IST – Austria (Tom Henzinger) 

●  INRIA – France (Alain Girault) 

●  Uppsala (Bengt Jonsson) 

●  PARADES – Italy                       
(Alberto Sangiovanni–Vincentelli) 

Code Generation & Timing analysis 

●  Dortmund (Peter Marwedel) 

●  Saarland (Reinhard Wilhelm) 

●  TU Vienna (Peter Puschner) 



Building Excellence 

●  Most existing work is within one system level, e.g,: 
–  Modeling and verification of timed component-based systems, 
–  Timing analysis for programs 
–  Compiler techniques for timing and memory predictability 

–  OS Scheduling and resource management 
–  Predictability in memory 

Main Aim: 

●  Integrate research across different levels of abstraction 



System Modeling and Validation 
Modeling & Validation:  
●  IST - Austria (Tom Henzinger) 
●  INRIA – France (Alain Girault) 
●  Uppsala (Bengt Jonsson) 
●  PARADES (Alberto Sangiovanni–Vincentelli) 
Code Generation & Timing analysis 
●  Dortmund (Peter Marwedel) 
●  Saarland (Reinhard Wilhelm) 
●  TU Vienna (Peter Puschner) 
OS & Networks 
●  Cantabria (Michael Gonzalez–Harbour) 
●  SSSA (Giorgio Buttazzo) 
●  York (Alan Burns) 
Hardware Platforms & MPSoC 
●  Bologna (Luca Benini) 
●  Braunschweig (Rolf Ernst) [affiliated] 
●  ETHZ – Zürich (Lothar Thiele) 
●  IMEC – Belgium (Stylianos Mamagkakis) 
●  Linköping (Petru Eles) 

Checking Predictability and Robustness 
•  Y1: formalizations of predictability and robustness 

as determinism/continuity, 
•  Y2: algorithms for checking and synthesizing 

predictable and robust programs/circuits 
Component-based design under RT constraints 
          (RT-CCM component model) 
Standardization: Continuation of UML MARTE 
•  Participation to SysML standardization 
•  Dissemination of MARTE 

•  Workshops 
•  Methodology 



Timing Analysis and Compiler Techniques 
Modeling & Validation:  
●  IST - Austria (Tom Henzinger) 
●  INRIA – France (Alain Girault) 
●  Uppsala (Bengt Jonsson) 
●  PARADES (Alberto Sangiovanni–Vincentelli) 
Code Generation & Timing analysis 
●  Dortmund (Peter Marwedel) 
●  Saarland (Reinhard Wilhelm) 
●  TU Vienna (Peter Puschner) 
OS & Networks 
●  Cantabria (Michael Gonzalez–Harbour) 
●  SSSA (Giorgio Buttazzo) 
●  York (Alan Burns) 
Hardware Platforms & MPSoC 
●  Bologna (Luca Benini) 
●  Braunschweig (Rolf Ernst) [affiliated] 
●  ETHZ – Zürich (Lothar Thiele) 
●  IMEC – Belgium (Stylianos Mamagkakis) 
●  Linköping (Petru Eles) 

WCET Analysis for  different features 
•  New cache replacement policies (FIFO) 
•  Pipeline representation 
•  Operating modes in software 
•  Dynamic memory allocation 
•  Context switches 
Integration of  WCET analysis and compilation 
•  Continuation of Y1 work 
•  Loop bound analysis 
•  WCET-aware optimizations 
Resulting in the WCC compiler (the leading WCET-

aware compiler). 



Time Predictability on Multiprocessor systems 
Modeling & Validation:  
●  IST - Austria (Tom Henzinger) 
●  INRIA – France (Alain Girault) 
●  Uppsala (Bengt Jonsson) 
●  PARADES (Alberto Sangiovanni–Vincentelli) 
Code Generation & Timing analysis 
●  Dortmund (Peter Marwedel) 
●  Saarland (Reinhard Wilhelm) 
●  TU Vienna (Peter Puschner) 
OS & Networks 
●  Cantabria (Michael Gonzalez–Harbour) 
●  SSSA (Giorgio Buttazzo) 
●  York (Alan Burns) 
Hardware Platforms & MPSoC 
●  Bologna (Luca Benini) 
●  Braunschweig (Rolf Ernst) [affiliated] 
●  ETHZ – Zürich (Lothar Thiele) 
●  IMEC – Belgium (Stylianos Mamagkakis) 
●  Linköping (Petru Eles) 

Scheduling Analysis and Model Checking 
for multicore platforms 
•  Cache isolation (cache coloring) techniques for 

tasks on muticores w. shared caches 
•  Optimal utilization bounds for multiprocessor 

scheduling 
•  Scheduling of tasks that access shared resources 

in a multicore system. 
•  Schedulability tests for task sets with shared 

resources (using priority ceiling) 
•  Combining scheduling and model checking 

techniques 



Platforms and Architectures 
Modeling & Validation:  
●  IST - Austria (Tom Henzinger) 
●  INRIA – France (Alain Girault) 
●  Uppsala (Bengt Jonsson) 
●  PARADES (Alberto Sangiovanni–Vincentelli) 
Code Generation & Timing analysis 
●  Dortmund (Peter Marwedel) 
●  Saarland (Reinhard Wilhelm) 
●  TU Vienna (Peter Puschner) 
OS & Networks 
●  Cantabria (Michael Gonzalez–Harbour) 
●  SSSA (Giorgio Buttazzo) 
●  York (Alan Burns) 
Hardware Platforms & MPSoC 
●  Bologna (Luca Benini) 
●  Braunschweig (Rolf Ernst) [affiliated] 
●  ETHZ – Zürich (Lothar Thiele) 
●  IMEC – Belgium (Stylianos Mamagkakis) 
●  Linköping (Petru Eles) 

Predictability for Fault-tolerant ES 
•  Combining HW (processor hardening)    and 

SW (process re-execution) techniques, and 
associated analysis 

Predictability for MPSoC Architectures 
•  New communication policies 
•  Design and Synthesis of bus controllers 

•  Guaranteeing predictability and efficiency. 

Power prediction algorithms 
For distributed embedded systems 



Time Predictive Hardware and Software 
Modeling & Validation:  
●  IST - Austria (Tom Henzinger) 
●  INRIA – France (Alain Girault) 
●  Uppsala (Bengt Jonsson) 
●  PARADES (Alberto Sangiovanni–Vincentelli) 
Code Generation & Timing analysis 
●  Dortmund (Peter Marwedel) 
●  Saarland (Reinhard Wilhelm) 
●  TU Vienna (Peter Puschner) 
OS & Networks 
●  Cantabria (Michael Gonzalez–Harbour) 
●  SSSA (Giorgio Buttazzo) 
●  York (Alan Burns) 
Hardware Platforms & MPSoC 
●  Bologna (Luca Benini) 
●  Braunschweig (Rolf Ernst) [affiliated] 
●  ETHZ – Zürich (Lothar Thiele) 
●  IMEC – Belgium (Stylianos Mamagkakis) 
●  Linköping (Petru Eles) 

Time predictive language and arch. 
•  PRET-C, time-predictive programming 

language (C with Esterel-like constructs for 
parallel threads) 

Code Generation Techniques 
•  for time-predictable program execution 

(eliminating timing anomalies) 



Overall Assessment and Vision at Y0+2 
●  Many collaborations working very well 

–  WCC Compiler, MPSoC architecture analysis, Definition and 
assessment of “predictability”, Predictable implementation for Model-
based Design,  

–  New developments 
●  Scheduling on Multicore Platforms 
●  Time-predictive HW and SW implementations 

–  Global Event 
●  10 joint publications, several mutual visits and joint projects 

To be improved 
●  Wider transversal integration across levels of abstraction 

–  E.g., Towards implementation of model-based design, timing aware compiler, 
predictable multicore architecture and operating system 

●  More solid definition of what is “predictability” 



Scientific Highlights 

●  Synthesis of Real –Time Controllers from MTL 
specifications 

●  Improved utilization bound for multiprocessor scheduling 

●  New results in WCET analysis 



Synthesis of Predictable Real-time Controllers 
from Temporal Logic 

●  Objective: automatic synthesis of predictable real-time controllers 
from high-level specifications 

●  Metric Temporal Logic (MTL) – real-time high-level specification 
language 

–  Convert the MTL formula φ to a deterministic timed automaton (TA) 
●  Synthesis from specifications given as deterministic timed automata is possible 

●  2 sources of non-determinism in automata constructed from MTL 
formulas 

–  Unbounded number of “events” in a bounded time interval 
●  Automaton needs to remember them 

–  A-causal semantics of MTL 
●  Automaton needs to predict future values of inputs 



From MTL to Deterministic Timed Automata 
●  Impose bounded variability of 

input signals 

●  Separate TA in two parts 

–  Proposition monitor (PM) that 
observes changes in inputs and 
memorizes events with clocks 

●  Deterministic TA by construction 

●  Finite number of clock (bounded 
variability assumption) 

–  Dependent TA (DTA) that handles 
a-causality of MTL 

●  Generates discrete predictions 
regarding future events 

●  Passive use of clocks reset by PM 

●  DTA can be determinized  

memorize events 

discrete 
predictions 

memorize events 

Proposition monitor 

Dependent timed automaton 



Distributed, Modular HTL 

●  Hierarchical Timing Language (HTL)  
–  Real-time coordination language for distributed control systems 
–  Modular syntax and semantics 
–  Time-determinism is a key property of HTL programs 

●  Modularity = compositionality 
–  HTL compilation is (quite) modular 
–  HTL distribution is modular 

●  A system’s I/O behavior is time-deterministic if, for all 
sequences of input values and times, the system always 
produces unique sequences of output values and times. 

–  Time-deterministic = predictable behavior 



HTL Compilation 

●  Well-formed, race-free, time-safe, and transmission-
safe HTL programs are time-deterministic 

●  Modular checks for well-formdness, race-freedom, time-
safety and transmission-safety 

–  Except for time-safety check at the top level 

Well-formdness 

Time-safety 

Race-freedom Transmission-safety 

Code-generation 



HTL Distribution 

●  Transmission-safety can be asserted by standard 
schedulability criteria for a variety of network platforms 

–    (e.g. TDMA, FTT-CAN). 

●  Time-safety analysis and code generation can  be done 
separately per host 

●  Overall: scalable distribution 



Advances in WCET Determination 
●  Based on the Reineke-Metrics, the predictability of caches 

with FIFO replacement has been clarified. 

●  The powerset-domain for pipeline analysis war made more 
efficient by developing a compact, symbolic representation of 
sets of pipeline states using BDDs 

●  Making dynamic memory allocation timing predictable: 
–  Predictable allocator 

–  Transformation into static allocation 

●  Operating mode analysis 
–  Identifying operating modes 

●  Incorporation of context switches: Theoretical work and 
prototype implementations 



Cache Related Preemption Delay  
●  In case of preemption: preempting task might evict 

cache-content of preempted task 
●  Cache Related Preemption Delay (CRPD): cost of 

additional misses due to preemption 



Determination of CRPD 

●  A memory block m at program point P is a useful cache 
block, if it 

–  may be cached at P, 
–  may be reused at point Q reached from P without being evicted 

on that path 

●  UCB analysis safely overapproximates context switch 
costs 

●  WCET analysis safely overapproximates execution time 

●  Very pessimistic results if combined 



WCET Analysis vs. UCB Analysis 
●  WCET Analysis 

–  uses underapproximation of cache-content (must) 
–  only predicts cache-hit 

●  UCB Analysis 
–  uses overapproximation of cache-content (may) 

–  Predicts additional cache misses 

●  Some cache misses are counted twice 



Definitely-Cached UCBs 

●  A memory block m at program point P is a useful cache 
block, if it 

–  must be cached at P and on the path to its reuse, 
–  may be reused at point Q reached from P. 

●  UCB analysis possibly underapproximates context 
switch costs 

●  No cache miss counted twice 

●  Overapproximation (WCET) subsumes 
underapproximation (UCB) 

●  Tight and safe results if combined 



CRPD Computation 
Resilience of a UCB 

●  Not every UCB leads to an additional cache miss 

●  Depends on disturbance of preempting task 

●  Resilience: Amount of disturbance a UCB survives 
without preemption-induced cache misses 

●  Further reduction of CRPD bounds 



Fixed-Priority Multiprocessor  

Scheduling with Liu & Layland’s 

Utilization Bound 

Nan Guan, Martin Stigge, Wang Yi 
Uppsala University, Sweden 



Liu and Layland’s Utilization Bound 
●  Liu and Layland’s utilization bound for                              

single-processor scheduling [Liu1973]  

      (the 19th most cited paper in computer science) 

                         : the number of tasks,  



Open Problem (for many years) 

●  find a multiprocessor scheduling algorithm that can 
achieve Liu and Layland’s utilization bound 

number of  
processors 

? 
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Best Known Results 

Lehoczky et al. CMU 
ECRTS 2009 



Best Known Results 
Our New Result 



Lehoczky’s Algorithm[ECRTS’09] 

●  sort all task in decreasing order of utilization 
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Lehoczky’s Algorithm [ECRTS’09] 

●  pick up one processor, to assign as many tasks as 
possible  
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Lehoczky’s Algorithm [ECRTS’09] 

●  pick up one processor, and assign as many tasks as 
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Lehoczky’s Algorithm [ECRTS’09] 

●  pick up one processor, and assign as many tasks as 
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Lehoczky’s Algorithm [ECRTS’09] 

●  pick up one processor, and assign as many tasks as 
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Lehoczky’s Algorithm [ECRTS’09] 

●  pick up one processor, and assign as many tasks as 
possible  
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Our Algorithm 

width-first partitioning  

with increasing priority order 



Our Algorithm 

●  sort all tasks in increasing priority order 
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Our Algorithm 

●  select the processor on which the assigned utilization is 
the lowest 

7 

6 

5 

4 

3 

2 

1 

P1 P2 P3 

highest priority 

lowest priority 



Our Algorithm 

●  select the processor on which the assigned utilization is 
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Our Algorithm 

●  select the processor on which the assigned utilization is 
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Our Algorithm 
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Our Algorithm 

●  select the processor on which the assigned utilization is 
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Our Algorithm 

●  select the processor on which the assigned utilization is 
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Our Algorithm 

●  select the processor on which the assigned utilization is 
the lowest 
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Our Algorithm 

●  select the processor on which the assigned utilization is 
the lowest 
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Our Algorithm 

●  select the processor on which the assigned utilization is 
the lowest 
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width-first partitioning 
with increasing prio ordder 



Comparison 
  maximal number of task splitting 

 both are M-1 

ours: width-first Lehoczky’s: depth-first 
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Comparison 

Ours: width-first Lehoczky’s: depth-first 

  why is our algorithm better? 
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key point: 
by our algorithm, split tasks generally  
have high priorities on each processor 

Ours: width-first Lehoczky’s: depth-first 
(increasing priority order) (decreasing utilization order) 



Our Algorithm 

●  intuition 
–  high priority tasks have better chance to meet its deadline 
–  an extreme scenario: 

●  can meet their deadlines anyway 

●  no “utilization increase” 

P1 P2 

… … 



Workshops and Meetings 
●  Workshop  on Reconciliating Performance and Predictability 

ESWEEK , Grenoble, France – October, 2009 

●  Workshop  on Software & Compilers for Embedded Systems 
(SCOPES) 2009    
Nice, France – April 23-24, 2009 

●  Meeting  on Static WCET Analysis of multi-process and Multi-
processor systems 
Saarbrücken, Germany – 25th of September, 2009 

●  Several Technical Meetings within Predator  
e.g., Pisa, Italy – 23th June, 2009, 

●  Several short visits for collaboration 



KeyNotes and Invited Talks 

●  ACES 2009 (Peter Marwedel, Dortmund) 

●  RTCSA 2009 (Lothar Thiele, ETHZ) 

●  SCOPES 2.009 (Reinhard Wilhelm, USAAR) 

●  WCET Analysis workshop (Petru Eles, Linköping) 

●  2009 Int. Conf. on Comp. Sci. and Eng. (Wang Yi, UU)  

●  Workshop on Emb. Comm., Braunschweig (Lothar Thiele, ETHZ) 

●  Ershov Memorial Conf. 2009 (Lothar Thiele, ETHZ) 

●  PUMA Workshop Reinhard Wilhelm, USAAR) 

●  Anniversary of Hasso-Plattner Inst.(Reinhard Wilhelm, USAAR) 

●  Tag der Informatik, Aachen (Reinhard Wilhelm, USAAR) 



Summer Schools 

●  ACACES 2009, (Peter Puschner, Vienna) WCET Analysis: Problems, 
Methods and Time-Predictable Architectures   

●  ARTIST Summer School 2009 (several speakers), 

●  COMES Autumn School Lugano, Switzerland (Lothar Thiele, 
ETHZ) 



Tools and Platforms 
●  AiT, the leading tool for computing WCETs [AbsInt, 

Dortmund, Saarland] 

●  WCC, the WCET aware Compiler [AbsInt, Dortmund, 
Saarland] 

●  MAST, Modeling and Analysis Suite for Real-Time 
Applications [Cantabria] 

●  MPA toolbox, analysis of distributed embedded real-
time systems, based on the real-time calculus [ETHZ] 

●  MPARM, virtual SoC platform, written in SystemC, to 
model  system HW and SW [Bologna] 

●  UPPAAL, leading tool for precise automata-based 
analysis of timed systems [Uppsala, Aalborg] 



Plans for Y3 

Continued transversal integration 
●  Principles for definition of predictability multi-core architectures 

●  Technology for designing  predictable software: language 
constructs, use of architectural features, operating system services, 
minimization of interference, handling parallel platforms. 

●  Continued work on Predictable HW and SW designs 

●  Fault-tolerance 

Global event 

Whitepaper 


