» artirt

Year 2 Review
Brussels, February 12th, 2010

Transversal Activity

Achievements and Perspectives :

Design for Predictability
and Performance

f\rl - DA lanncenn
|G Ger . ucllyl. wONSSon

Uppsala University

EN'
nnnnnnnn

High-Level Objectives

technology and design techniques for achieving
predictability of systems

— especially on modern platforms

trade-offs between performance and predictability

Predictability transverses all levels of abstraction in
embedded systems design:

- Verification, modeling, compilation, OS, platforms.

SEVENTH FRAMEWORK
PROGRAMME

B V" U
Industrial Sectors

. safety-critical systems

— transportation, power automation, medical systems, ...
— Market of over $900 million in 2008 [int. ARC Advisory Group]

. sectors, where systems failure may lead to economic
consequences

— consumer electronics, telecom, ...

Partners
Modeling & Validation: OS & Networks
IST — Austria (Tom Henzinger) . Cantabria

(Michael Gonzalez—Harbour)
Uppsala (Bengt Jonsson) SSSA (Giorgio Buttazzo)

PARADES — Italy York (Alan Burns)
(Alberto Sangiovanni-Vincentelli) Hardware Platforms & MPSoC

INRIA — France (Alain Girault)

Code Generation & Timing analysis . Bologna (Luca Benini)

Dortmund (Peter Marwedel) . Braunschweig (Rolf Ernst)

Saarland (Reinhard Wilhelm) [affiliated]

TU Vienna (Peter Puschner) ETHZ — Zurich (Lothar Thiele)
IMEC — Belgium

(Stylianos Mamagkakis)
Linkoping (Petru Eles)

SEVENTH FRAMEWORK
PROGRAMME

.
Building Excellence

. Most existing work is within one system level, e.qg,:
- Modeling and verification of timed component-based systems,
— Timing analysis for programs
— Compiler techniques for timing and memory predictability
— OS Scheduling and resource management
— Predictability in memory

Main Aim:

. Integrate research across different levels of abstraction

SEVENTH F WORK
PROI

System Modeling and Validation
Checking Predictability and Robustness MW

Y 1: formalizations of predictability and robustness . Uppsala (Bengt Jonsson)
as determinism/continuity, Code Gonoraton & Timimg amanele

Y2: algorithms for checking and synthesizing [o (ot vimem
predictable and robust programs/circuits 05 & Notwerpnorer Pusernen
Component-based design under RT constraints ; gﬁ,ga“tab”a i G:;”:;'ef‘”ar)“““’
(RT-CCM component model) ardware Platforms & MPSoC
Standardization: Continuation of UML MARTE o (Rotl Bt afiate]
Participation to SysML standardization | MEG_ melgtim (Stytanos Momagkalie)
Dissemination of MARTE o meemoevEe
Workshops

Methodology

SEVENTH FRAMEWORK
PROGRAMME

U ——
Timing Analysis and Compiler Techniques

Modeling & Validation:

WCET Analysis for different features . IST- Austria (Tom Henzinger)
New cache replacement policies (FIFO) L Unvesia (e ooy

PARADES (Alberto Sangiovanni—Vincentelli)
€heration & Timing analy:

Pipeline representation
Operating modes in software

und (F viarwede

50
Saarland (Reinhard Wilhelm)

SRy eter P &r

Dynamic memory allocation 05 & Networks
. . ia=(MichaekGenzalaz=Harbour)
. ConteXt SW'tCheS . SSSA (Giorgio Buttazzo)b
|ntegrati0n Of WCET ana|YSiS and Compilation ;-Iardware Platforms &NH;I?’SOC
. . . Bologna (Luca Benini)
COntInuatlon Of Y1 WOrk . Brauischweig (Rolf Ernst) [affiliated]
. . ETHZ — Zirich (Lothar Thiele)
LOOp bound anaIySIS . IMEC — Belgium (Stylianos Mamagkakis)

Linkdping (Petru Eles)

WCET-aware optimizations

Resulting in the WCC compiler (the leading WCET-
aware compiler).

SEVENTH FRAMEWORK
PROGRAMME

Time Predictability on Multiprocessor systems

Modeling & Validation:
IST - Austria (Tom Henzinger)

Scheduling Analysis and Model Checking
for multicore platforms

Uppsala (Bengt Jonsson)

. ERABES=(Adbenrte~-Bargiovanni—Vincentelli)
. . . . Code Generation & Timing analysis
Cache isolation (cache coloring) techniques for e Dortmuny (e e
tasks on muticores w. shared caches CSoatend rferd bl
Optlmal Utl|lzatI0n bOUﬂdS fOI' mU|t|prOCGSSOr ?S&Ne(t)v;:::lfria (Michael Gonzalez—Harbour)

Scheduling of tasks that access shared resources
in @ multicore system.

Schedulability tests for task sets with shared
resources (using priority ceiling)

Combining scheduling and model checking
techniques

. . ﬁbA (Giorgio Buttazzo) :
SChedu“ng . ork (Alan Burns)
Hardware Platforms 0

Bologna
e = o]

SEVENTH FRAMEWORK
PROGRAMME

Platforms and Architectures

Predictability for Fault-tolerant ES

Combining HW (processor hardening) and
SW (process re-execution) techniques, and
associated analysis

Predictability for MPSoC Architectures
New communication policies
Design and Synthesis of bus controllers

Guaranteeing predictability and efficiency.

Power prediction algorithms
For distributed embedded systems

Modeling & Validation:
IST - Austria (Tom Henzinger)
INRIA — France (Alain Girault)
Uppsala (Bengt Jonsson)
PARADES (Alberto Sangiovanni—Vincentelli)
Code Generation & Timing analysis
Dortmund (Peter Marwedel)
T
TU Vienna (Peter Puschner)
OS & NetworRS
Cantabria (Michael Gonzalez—Harbour)
SSSA (Giorgio Buttazzo)
York (Alan Burns)
S5 & VIP

. SChWeIg (IR0 ns ili

. H Qri hiele

. i i kakis)
(Linkdping (Petru Eles))

SEVENTH F WORK
PROI

Time Predictive Hardware and Software

Modeling & Validation:

Time predictive language and arch. . IST_Austia(Tom Henznge

g INRIA — France (Alain Girault)
PRET-C, time-predictive programming A=

Code Generation & Timing analysis

language (C with Esterel-like constructs for ~ " Dortmund (Pete Marwedel)

Saarland (Reinhard Wilhelm)

pa ra I I eI th rea d S) TU Vienna (Peter Puschner)

OS & Networks
Cantabria (Michael Gonzalez—Harbour)
SSSA (Giorgio Buttazzo)
York (Alan Burns)

Code Generation Techniques Hardware Plttorms & WPSoG

Bologna (Luca Benini)
for time-predictable program execution L e o etete

IMEC - Belgium (Stylianos Mamagkakis)

(eliminating timing anomalies) <.Lm o —

\a®]
Overall Assessment and Vision at YO+2

. Many collaborations working very well

- WCC Compiler, MPSoC architecture analysis, Definition and
assessment of “predictability”, Predictable implementation for Model-
based Design,

-~ New developments

. Scheduling on Multicore Platforms
. Time-predictive HW and SW implementations

— Global Event
10 joint publications, several mutual visits and joint projects

To be improved
. Wider transversal integration across levels of abstraction

- E.g., Towards implementation of model-based design, timing aware compiler,
predictable multicore architecture and operating system

. More solid definition of what is “predictability”

SEVENTH F WORK
PROI

Scientific Highlights
Synthesis of Real —Time Controllers from MTL
specifications

Improved utilization bound for multiprocessor scheduling
New results in WCET analysis

N —
Synthesis of Predictable Real-time Controllers

from Temporal Logic

Objective: automatic synthesis of predictable real-time controllers
from high-level specifications

Metric Temporal Logic (MTL) — real-time high-level specification
language
— Convert the MTL formula ¢ to a deterministic timed automaton (TA)
. Synthesis from specifications given as deterministic timed automata is possible

2 sources of non-determinism in automata constructed from MTL
formulas

— Unbounded number of “events” in a bounded time interval
. Automaton needs to remember them
- A-causal semantics of MTL

. Automaton needs to predict future values of inputs

m
P
2
gai
8z
3
£
mE
g
2

From MTL to Deterministic Timed Automata

memorize events

y1 = f3
y1 = f;] :=z9,y1 :=0
=0,y = L1 r9 = L1

Impose bounded variability of
input signals

Separate TA in two parts ah - an
_ Proposition monitor (PM) that N TN S

y1 = f;

Observes ChangeS in inpUtS and T ==ylL,:y{;:= 1L =z :=y0102iy€:: L r1 :_:_l‘f’yl = 12
memorizes events with clocks 2= 2:=tp=

Proposition monitor

Deterministic TA by construction _
discrete

Finite number of clock (bounded predictions
variability assumption)

- Dependent TA (DTA) that handles
a-causality of MTL

Generates discrete predictions
regarding future events

Passive use of clocks reset by PM

z = f N gq; "py

DTA can be determinized

Distributed, Modular HTL

. Hierarchical Timing Language (HTL)

- Real-time coordination language for distributed control systems
-~ Modular syntax and semantics
- Time-determinism is a key property of HTL programs

. Modularity = compositionality
- HTL compilation is (quite) modular
- HTL distribution is modular

. A system’s |/O behavior is time-deterministic if, for all
sequences of input values and times, the system always
produces unique sequences of output values and times.

- Time-deterministic = predictable behavior

SEVENTH FRAMEWORK
PROGRAMME

HTL Compilation

> Race-freedom =-eeeeeeeeeee > Transmission-safety

v
» Code-generation

Well-formdness

\ |
» Time-safety

Well-formed, race-free, time-safe, and transmission-
safe HTL programs are time-deterministic

Modular checks for well-formdness, race-freedom, time-
safety and transmission-safety

- Except for time-safety check at the top level

SEVENTH F WORK
PROI

HTL Distribution

Transmission-safety can be asserted by standard
schedulability criteria for a variety of network platforms

_ (e.g. TDMA, FTT-CAN).

Time-safety analysis and code generation can be done
separately per host

Overall: scalable distribution

B V" U
Advances in WCET Determination

Based on the Reineke-Metrics, the predictability of caches
with FIFO replacement has been clarified.

The powerset-domain for pipeline analysis war made more
efficient by developing a compact, symbolic representation of
sets of pipeline states using BDDs

Making dynamic memory allocation timing predictable:

— Predictable allocator

— Transformation into static allocation
Operating mode analysis
— ldentifying operating modes

Incorporation of context switches: Theoretical work and
prototype implementations

SEVENTH FRAMEWORK
PROGRAMME

Cache Related Preemption Delay

. In case of preemption: preempting task might evict
cache-content of preempted task

Cache Related Preemption Delay (CRPD): cost of
additional misses due to preemption

Ty 1
1> | |
[] = CRPD
| = Task Activation

\a®]
Determination of CRPD

A memory block m at program point P is a useful cache
block, if it

- may be cached at P,

-~ may be reused at point Q reached from P without being evicted
on that path

UCB analysis safely overapproximates context switch
costs

WCET analysis safely overapproximates execution time

Very pessimistic results if combined

SEVENTH FRAMEWORK
PROGRAMME

WCET Analysis vs. UCB Analysis
. WCET Analysis

— uses underapproximation of cache-content (must)

— only predicts cache-hit
. UCB Analysis

— uses overapproximation of cache-content (may)

— Predicts additional cache misses

. Some cache misses are counted twice

U —
Definitely-Cached UCBs

A memory block m at program point P is a useful cache
block, if it

- must be cached at P and on the path to its reuse,

— may be reused at point Q reached from P.

UCB analysis possibly underapproximates context
switch costs

No cache miss counted twice

Overapproximation (WCET) subsumes
underapproximation (UCB)

Tight and safe results if combined

SEVENTH FRAMEWORK
PROGRAMME

Resilience of a UCB

Not every UCB leads to an additional cache miss
Depends on disturbance of preempting task

Resilience: Amount of disturbance a UCB survives
without preemption-induced cache misses

Further reduction of CRPD bounds

SEVENTH FRAMEWORK
PROGRAMME

Fixed-Priority Multiprocessor
Scheduling with Liu & Layland’s

Utilization Bound

Nan Guan, Martin Stigge, Wang Yi
Uppsala University, Sweden

SEVE;IYN FRAMEWORK

U
Liu and Layland’s Utilization Bound

Liu and Layland’s utilization bound for
single-processor scheduling [Liu1973]

(the 19" most cited paper in computer science)
1
O(N) = N2~ — 1)

: the number of tasks, N — 0o, O(N) =69.3%

4)
Y Ci/T, < N@2YY —1)

= the task set is schedulable

- /

O
Open Problem (for many years)

. find a multiprocessor scheduling algorithm that can
achieve Liu and Layland’s utilization bound

g ?

> Ci/T; 1 /N
< NYVN 1
=R NN
« 1 = the task set is schedulable
number of _
processors

Multiprocessor Scheduling

Global Scheduling Partitioned Scheduling Pavl;/’[llfrl]o_lr]::ksscr:iﬁx;ng

new task

waitipg queue l
é Q0

A

[\
—_ D
oo o w - XXEXXN}
| [\)
[OF]

cpoul cpu2 cpu3 cpoul cpu2 cpu3 cpoul cpu2 cpu3

SEVE;IRTN FRAMEWORK

80
70
60
50
40
30
20
10

Best Known Results

\ /
Task Splitting

A %
Liu and Layland’s
Utilization Bound
I [ECRTS'09] [RTCSA'06]
[TPDS’'05] [ECRTS’'03] [RTSS'04]
[OPODIS) . . l
leed Dynamic Fixed Dynamic Fixed Dynamic
Priority Priority Priority Priority Pnorlty\ Priority

Global Partitiong N
- Lehoczky et al. CMU
Multiprocessor Scheduling ECRTS 2009 7

N
nnnnnnnn

80
70
60
50
40
30
20
10

Best Known Results

Multiprocessor Scheduling

‘ OA)
Liu and Layland’s
Our New Result N Utilization Bound
I I I I [RTCSA'06]
[TPDS’05] [ECRTS'03] [RTSS'04]
[OPODIS) . . .

Fixed Dynamic Fixed Dynamic Fixed Dynamic

Priority Priority Priority Priority Priority Priority
\ /

Task Splitting
Global Partioned ——
—— —

N
RRRRRRRR

B % U
Lehoczky’s Algorithm[ECRTs’og]

. sort all task in decreasing order of utilization
+

lowest utilization | 8

N |[|W]|l &

highest utilization

.
Lehoczky’s Algorithm ecrrsiog

. pick up one processor, to assign as many tasks as

possible R
P1

lowest utilization | 8

7

6

5

4

3
highest utilization 2 |

.
Lehoczky’s Algorithm ecrrsiog

. pick up one processor, and assign as many tasks as
possible

P1
lowest utilization

N |[|W]|l &

highest utilization

.
Lehoczky’s Algorithm ecrrsiog

. pick up one processor, and assign as many tasks as

possible N
Pl
lowest utilization

7
6 8
5
4
3
2

highest utilization

.
Lehoczky’s Algorithm ecrrsiog

. pick up one processor, and assign as many tasks as

possible N
P1
lowest utilization
X
14
(62 0
3
4
3
highest utilization 2 |

.
Lehoczky’s Algorithm ecrrsiog

. pick up one processor, and assign as many tasks as

possible R
P1 P2
lowest utilization
X
14
(62 0
3
4
3
highest utilization 2 |

.
Lehoczky’s Algorithm ecrrsiog

. pick up one processor, and assign as many tasks as

possible R
P1 P2
lowest utilization
61
7
8
(oY
5
4
3
highest utilization 2 |

Lehoczky’s Algorithm ecrrsiog

. pick up one processor, and assign as many tasks as

possible R
Pl P2
lowest utilization
61
14
8)
A4

N |[|W]|l &

highest utilization

.
Lehoczky’s Algorithm ecrrsiog

. pick up one processor, and assign as many tasks as

possible R
P1 P2
lowest utilization
61
7 4
8)
62

highest utilization

.
Lehoczky’s Algorithm ecrrsiog

. pick up one processor, and assign as many tasks as

possible N
Pl P2
lowest utilization

61
3

7 4

8 5
62

highest utilization

.
Lehoczky’s Algorithm ecrrsiog

. pick up one processor, and assign as many tasks as

possible N
P1 P2
lowest utilization -
6 =
3
7 4
8 5
62

highest utilization 2°

.
Lehoczky’s Algorithm ecrrsiog

. pick up one processor, and assign as many tasks as

possible R
P1 P2 P3
lowest utilization -
6 s
3
7 4
8 5
52 22

highest utilization

.
Lehoczky’s Algorithm ecrrsiog

. pick up one processor, and assign as many tasks as

possible R
P1 P2 P3
lowest utilization -
6' =
3
v 4
8 5 1
A2 22

highest utilization

Lehoczky’s Algorithm ecrrsiog

. pick up one processor, and assign as many tasks as

possible N
Pl P2 .. P3
lowest utilization AR 1 ,’I \
6 ; ‘\‘ 3 1|
7 '. : ‘.
A S T R
8 .: i 5 '.' :‘ 1
: . 6z \L22

key feature:
depth-first partitioning

highest utilization with decreasing utilization order

Lehoczky’s Algorithm ecrrsiog

. pick up one processor, and assign as many tasks as

possible N
P P2 .. P3
lowest utilization AR 1 ,’I \
61 I'l l\‘ 3 :, \‘I
7 '. : ‘.
S I S T T
! ' B2, \ 22 |

Utilization Bound:

highest utilization 65%

Our Algorithm

width-first partitioning

with increasing priority order

SEVE;IYN FRAMEWORK

B
Our Algorithm

. sort all tasks in increasing priority order

lowest priority

WIS~ |0 O N

highest priority | 1

SEVE;"N FRAMEWORK

Our Algorithm
. select the processor on which the assigned utilization is
the lowest
+
lowest priority | 7
6
5
. Pl P2 P3
4
3
2
highest priority | 1 |

U
Our Algorithm

. select the processor on which the assigned utilization is
the lowest

lowest priority I

6
5
4
3

2

highest priority | 1

Our Algorithm
. select the processor on which the assigned utilization is
the lowest
A
lowest priority
5
. Pl P2 P3
4
3
' 7
5 6
highest priority | 1

Our Algorithm
. select the processor on which the assigned utilization is
the lowest
A
lowest priority

Pl P2 P3

highest priority | 1

Our Algorithm
. select the processor on which the assigned utilization is
the lowest
A
lowest priority

Pl P2 P3

highest priority | 1

Our Algorithm
. select the processor on which the assigned utilization is
the lowest
A
lowest priority

Pl P2 P3

highest priority | 1

Our Algorithm
. select the processor on which the assigned utilization is
the lowest
A
lowest priority
Pl P2 P3
21 4 3
7 5 5
[22

highest priority | 1

Our Algorithm
. select the processor on which the assigned utilization is
the lowest
A
lowest priority

P1 P2 P3
1 .
2 2 3
4
7
6 5

highest priority | 1

Our Algorithm
. select the processor on which the assigned utilization is
the lowest
A
lowest priority

P1 P2 P3
1 1
1 .
2 52 3
4
7
6 5

highest priority 2

SEVENTH WORK
PR

Our Algorithm
. select the processor on which the assigned utilization is
the lowest
A
lowest priority
Pl P2 P3
11 14
21 52 3
4
7 5 5
highest priority

Our Algorithm

. select the processor on which the assigned utilization is
the lowest

key feature:
lowest priority width-first partitioning
with increasing prio ordder

P1 P2 P3
e T
[or—— | e
il —---—4 ------ i TN
7 5 5)

— - — —— o —

highest priority

SEVE;"N FRAMEWORK

Comparison

[1 maximal number of task splitting
both are M-1

ours: width-first Lehoczky’s: depth-first
(increasing priority order)
P1 P2 P3 Pl ... P2.°7 P3
o S B TS A I PO

13 7 0 | — |
------ Rk K SRR S ¥ S e R
! | ! 7 22
8 I | 8 | LS \ :
I iy ““'Z ________ 6----- | '\ /27 Y 32 :

Comparison

[1 why is our algorithm better?

Ours: width-first Lehoczky’s: depth-first
(increasing priority order) (decreasing utilization order)
Pl P2 P3 Pl .. P2 77 P3
o S B TS A I PO
13 7 0 | — |
““““ S et s Y. NN f 4 A
! : ! 7 22
8 i | 8 | LD \ |
T Tl ““'Z ________ -6_—_—- : I\ VAN ‘\ 32 :

U
Comparison

key point:
by our algorithm, split tasks generally
have high priorities on each processor

Ours: width-first Lehoczky’s: depth-first
(increasing priority Order) (decreasing utilization order)
Pl P2 P3 Pl P2 P3
40
2I 1 1 61 31
3 7 1
4 5 4
2
B2 32

SEVE;"N FRAMEWORK

Our Algorithm

. intuition
— high priority tasks have better chance to meet its deadline

— an extreme scenario:
. can meet their deadlines anyway

. nho “utilization increase”

Pl P2

T ———
Workshops and Meetings

Workshop on Reconciliating Performance and Predictability
ESWEEK , Grenoble, France — October, 2009

Workshop on Software & Compilers for Embedded Systems
(SCOPES) 2009
Nice, France — April 23-24, 2009

Meeting on Static WCET Analysis of multi-process and Multi-
processor systems
Saarbriicken, Germany — 25! of September, 2009

Several Technical Meetings within Predator
e.g., Pisa, Italy — 23th June, 2009,

Several short visits for collaboration

SEVENTH FRAMEWORK
PROGRAMME

U —
KeyNotes and Invited Talks

ACES 2009 (Peter Marwedel, Dortmund)

RTCSA 2009 (Lothar Thiele, ETHZ)

SCOPES 2.009 (Reinhard Wilhelm, USAAR)

WCET Analysis workshop (Petru Eles, Linkoping)

2009 Int. Conf. on Comp. Sci. and Eng. (Wang Yi, UU)
Workshop on Emb. Comm., Braunschweig (Lothar Thiele, ETHZ)
Ershov Memorial Conf. 2009 (Lothar Thiele, ETHZ)

PUMA Workshop Reinhard Wilhelm, USAAR)

Anniversary of Hasso-Plattner Inst.(Reinhard Wilhelm, USAAR)
Tag der Informatik, Aachen (Reinhard Wilhelm, USAAR)

SEVENTH FRAMEWORK
PROGRAMME

Summer Schools
ACACES 2009, (Peter Puschner, Vienna) WCET Analysis: Problems,
Methods and Time-Predictable Architectures
ARTIST Summer School 2009 (several speakers),

COMES Autumn School Lugano, Switzerland (Lothar Thiele,
ETHZ)

Tools and Platforms

. AiT, the leading tool for computing WCETs [AbslInt,
Dortmund, Saarland]

. WCC, the WCET aware Compiler [Abslnt, Dortmund,
Saarland]

MAST, Modeling and Analysis Suite for Real-Time
Applications [Cantabria]

MPA toolbox, analysis of distributed embedded real-
time systems, based on the real-time calculus [ETHZ]

MPARM, virtual SoC platform, written in SystemC, to
model system HW and SW [Bologna]

UPPAAL, leading tool for precise automata-based
analysis of timed systems [Uppsala, Aalborg]

SEVENTH FRAMEWORK
PROGRAMME

B V" U
Plans for Y3

Continued transversal integration
Principles for definition of predictability multi-core architectures

Technology for designing predictable software: language
constructs, use of architectural features, operating system services,
minimization of interference, handling parallel platforms.

Continued work on Predictable HW and SW designs
Fault-tolerance
Global event

Whitepaper

SEVENTH F WORK
PROI

